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Abstract: Blockchains (BCs) are distributed database systems, popular for their innovative, unsuper-
vised maintenance process. They use a so-called consensus protocol to prevent inference by any third
party of absolute trust. Security, privacy, consistency, and energy consumption have been identified
as the main issues involved in BC maintenance. According to the recent literature, some of these
issues can be formulated as combinatorial optimization (CO) problems, and this fact motivated us to
consider incorporating CO approaches into a BC. In this paper, we propose the new combinatorial
optimization consensus protocol (COCP) based on the proof-of-useful-work (PoUW) concept that
assumes solving instances of real-life CO problems. Due to the complexity of the underlying CO
problems, we have developed various types of heuristic methods, which are utilized in the COCP.
Most of these methods are problem-dependent stochastic heuristic or metaheuristic methods. As
is the case with the majority of consensus protocols, PoUW exhibits the property of asymmetry. It
is difficult to find a solution for the considered CO problem; however, once a solution is found, its
verification is straightforward. We present here a BC framework combining the two above-mentioned
fields of research: BC and CO. This framework consists of improvements aiming towards developing
the COCP of the PoUW type. The main advantage of this consensus protocol is the efficient utilization
of computing resources (by exploring them for finding solutions of real-life CO problem instances),
and the provision of a broad range of incentives for the various BC participants. We enumerate the
potential benefits of the COCP with respect to its practical impacts and savings in power consumption,
describing in detail an illustrative example based on part of the real-life BC network. In addition,
we identify several challenges that should be resolved in order to implement a useful, secure, and
efficient PoUW consensus protocol.

Keywords: consensus protocols; energy efficiency; combinatorial optimization; heuristic methods;
distributed computing

1. Introduction

We investigated the application of combinatorial optimization (CO) methods in the
maintenance of blockchain (BC) systems. BCs can be seen as public or private autonomous
(unsupervised) distributed data storage systems with the property of immutability. Au-
tonomy means that a BC should be maintained without any third party of absolute trust;
instead, all participants may be responsible for BC maintenance. It is generally assumed
that reliability, security, and consistency are in the interest of all participants; however, this
may not always be the case. Therefore, BC communication protocols should be designed
in such a way as to prevent malicious actions and data corruption. Digital signatures,
time-stamping, and hashing (encoding) provide data security and consistency. Distribution
in BC systems refers to the fact that each participant has a copy of the whole database in
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order to prevent data loss and misuse. Due to the delays in peer-to-peer (P2P) communi-
cation, it is very important to pay close attention to synchronization and data consistency
when making decisions about BC maintenance. Immutability means that data stored in
BCs cannot be changed anymore. This property is explored by checking the security and
consistency of the whole BC system.

The first BC implementation was related to the financial domain—performing trans-
actions with Bitcoin cryptocurrency [1]. However, nowadays, BC systems have a wide
range of applications, such as IoT, insurance, healthcare, smart contracts, smart property,
digital identity, digital content distribution, voting, notary systems, Botnet, P2P broadcast
protocols, and many others [2]. BC system maintenance is based on democratic principles,
which are reflected in consensus algorithms and the self-governing of the BC. On the other
hand, the BC itself represents a reliable tool for democracy [3] that can be used in electronic
voting and administration. Digital forensics is another interesting BC application proposed
in [4]. In order to trace the chain of custody in digital forensics, it is very important to
prove that nobody has been tampering with the evidence at any point of the investigation.
BCs seem to be very suitable for the storage of forensic evidence as their immutability
guarantees that digital evidence is collected, stored, and transmitted in a valid and legal
way. More precisely, it is easy to detect when any inconsistency occurs and to identify who
is responsible for it.

Several key concepts that have contributed to the success of the BC have been iden-
tified, such as the distributed nature of data, data integrity, transparency, auditability,
programmability, immutability, and the necessity of achieving consensus [5,6]. On the
other hand, the shortcomings of BC technology, especially the computing overhead, scaling,
security, and privacy issues, must not be disregarded [7]. We are especially interested in two
issues, the development of the new consensus protocol based on the proof-of-useful-work
(PoUW) concept (to resolve the inefficient usage of resources) and the identification of
malicious activities (as a tool to manage the security of BC systems). Access to BCs is
realized via the Internet, by exchanging messages between participants (also referred to
as agents, users, clients, customers, entities, and nodes). Therefore, BCs are always at
risk, and their security has been addressed by numerous researchers from corresponding
domains. On the other hand, the computing resources involved in BC maintenance are
huge. Occasionally, disconnection or breakage of some devices could happen, but the main
problem is the enormous amount of energy spent keeping this system in operation. Energy
savings and increasing the efficiency of resource usage in BC have been considered in the
recent literature; however, this is still a topic of great importance.

Our main contributions are the development of the new consensus protocol that we
named the combinatorial optimization consensus protocol (COCP) and the identification
of several challenges that should be resolved in order to implement a useful, secure, and
efficient PoUW consensus protocol. Our COCP combines the BC and CO research fields, in
accordance with the PoUW concept [8–10], with the aim of ensuring potential benefits with
respect to energy consumption and security issues. Regarding the efficient use of energy,
we propose to deal with the hard, real-life CO problem instances as a useful part of the
consensus protocol. To resolve security issues, our COCP relies heavily on hashing and
time-stamping. The main part of this paper is devoted to providing a detailed description
of COCP and presenting a case study simulation. We explain the main steps involved in
COCP, and provide a simulation using a part of the real-life BC network to illustrate the
achieved benefits. In the Discussion section, we list the challenges identified and provide
ways to resolve them.

In the remainder of this paper, we present basic facts about the BC systems and a
review of the relevant literature, i.e., a survey of papers considering various aspects of
the proof-of-useful-work consensus protocol in Section 2. Section 3 contains the proposed
solution framework, with a primary focus on the possible execution scenarios, along
with combinatorial optimization problems selected for the preliminary evaluation. The
simulation that we performed is described in Section 4. In Section 5, a discussion about
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the proposed solution framework is provided. Finally, Section 6 contains a summary and
conclusions of the work performed, as well as suggestions for future research.

2. Preliminaries and Related Work
2.1. BC Background

To explain the basics of the BC system, Figure 1 provides a schematic illustration
of its organization. Data, referred to as “committed transactions”, published by the BC
participants named basic users, are grouped together into blocks and stored in a list (chain)
of blocks [6]. Each block contains several transactions and a hash value of the previous
block to maintain consistency. The block structure is roughly divided into the block’s
header and the block’s body. Transactions are stored in the body, whereas the block’s
header contains various data required for maintaining the BC system. The most important
field in the block’s header is the hash value of the previous block, which is crucial to
maintaining the chain structure and preserving consistency. Other important fields are the
miner identification, timestamp, nonce (if the PoW consensus protocol is applied), etc.

Figure 1. Organization of the BC system.

New blocks are allowed to be added to the BC simultaneously by agents, called the
miners, which gain a certain reward (e.g., an amount of cryptocurrency) for adding data. In
order to add a new block to the BC, the miners must perform some tasks that are part of
the block insertion mechanism called the consensus protocol. This protocol is responsible
for maintaining the validity of transactions, as well as the integrity and security of the
whole BC system. Although it is assumed that the miners who invested some resources in
performing the required tasks are not interested in destroying the integrity of the BC system,
an additional verification step is also included. More precisely, only blocks verified by the
agreement (consensus) between a given number of agents called verifiers (selected among
the participants) can be added to the chain. By performing these two steps of the consensus
protocol (solving the required tasks and verifying the corresponding blocks), maintenance
of the BC data is realized without the need for “trusted third parties”. The validity of a
transaction should become common knowledge among all participants. Therefore, one of
the crucial properties in the BC consensus protocol is the guarantee that the consensus of
verifiers is achieved in every execution step and that all transactions occur in a trustworthy
way. More precisely, the most important issues that the consensus protocol has to deal with
are the reliability and security of the BC system.

A large number of consensus protocols are based on solving cryptographic puzzles
related to the inversion of one-way functions (see, as an illustration, [11]). The main
characteristic of these functions is the asymmetry between the calculation of their values
and their arguments. More precisely, it is easy to calculate the function value for the given
arguments; however, there are no efficient ways to find the arguments that correspond to
a given function’s value (or a function’s values satisfying the required property). When
the consensus protocol is based on solving a cryptographic puzzle, it is performed by
employing computational resources, i.e., by performing some work. Therefore, these
protocols are referred to as the proof-of-work (PoW).

Figure 2 provides a graphical representation of the PoW consensus protocol and the
above defined terms. The classical PoW [6,12] works as follows: The data submitted by
basic users are stored in the pool of transactions (see the left part of Figure 2). The miners
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select transactions from the pool and generate blocks that they want to add to the BC, as
presented in the top right part of Figure 2. Usually, transactions are selected in a greedy
manner, i.e., in such a way as to ensure the largest reward for the miner. The next step
in executing the PoW is to solve the corresponding cryptographic puzzle, i.e., to find the
unknown value called the nonce with the following property. Combined with the block
content by means of the hash function, the nonce produces the resulting value that is less
than a given threshold, i.e., the value that begins with a pre-specified number of zeros.
It is well known that this puzzle is very hard; there is no better algorithm to solve it
than to examine all the possible values for the nonce. Therefore, the miners expend huge
amounts of computational power to properly guess the nonce value in order to publish the
composed block. Once the miner announces its block and the corresponding nonce value,
the verifiers check its validity and approve its addition to the BC (see the bottom right part
of Figure 2). The corresponding miner receives the reward, which is marked by the dotted
line connecting the “Block reward” rectangle with the green marked miner in the top right
part of Figure 2.

Figure 2. Illustration of the classical PoW consensus protocol.

The described PoW represents a highly concurrent process. A number of miners are
trying to add a new block (not necessarily the same one) simultaneously. All of them
iteratively calculate the hash value for different nonce values until one of two criteria is
satisfied: (i) the desired hash value is obtained, or (ii) a potentially new block for verification
arrives. In the first case, the corresponding miner sends its block and the corresponding
nonce value to others for verification, whereas the second case means that some other
miner found the proper value for the nonce and its block will probably be accepted for
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inclusion in the BC. Consequently, only a single miner’s work is productive, whereas all the
others merely waste their resources, time, and energy. In addition, transactions included
in their blocks (and not in the accepted one) must be returned to the transaction pool and
considered again.

There are other traditional BC consensus protocols [12,13]: proof-of-stake (PoS), proof-
of-concept (PoCo), Byzantine fault tolerance (BFT), proof-of-authority (PoA), proof-of-
activity (PoAc), proof-of-burn (PoB), proof-of-capacity (PoC), proof-of-elapsed-time (PoET),
proof-of-importance (PoI), etc. In the systematic overview of consensus protocols presented
in [14], BC consensus protocols are divided into two large groups, designated as popular
consensus protocols and alternative protocols. The protocols in the popular group are PoW,
delayed PoW, PoS, delegated PoS, PoA, PoI, the ripple protocol, practical BFT, delegated
BFT, federated BFT, PoET, PoB, and PoC. After providing short descriptions of these
protocols and a list of the BC platforms that use the popular BC consensus protocols, the
authors consider alternative protocols. They divide these protocols into four categories,
which are presented in Table 1, based on the requirements for the selection of a block
publisher. Each of the alternative protocols is described and compared against the PoW
consensus protocol, using the following metrics: throughput, scalability, security, energy
consumption, and finality (the assurance or guarantee that transactions cannot be altered,
reversed, or canceled after they are completed).

Table 1. Categories of alternative consensus protocols presented in [14].

Categories Consensus Algorithms

Based on effort or work
proof-of-benefit, proof-of-phone, proof-of-learning, proof-
of-sincerity, proof-of-accuracy, proof-of-adjourn, proof-of-
search, proof-of-evolution, and proof-of-experience

Based on wealth or resources proof-of-participation-and-fees

Based on past behavior or reputation proof-of-familiarity, proof-of-reputation, and proof-of-
reputation X

Based on representation proof-of-vote and CHB/CHBD

The execution of the consensus protocol appears as an overhead in the BC that should
be paid to avoid the centralized verification paradigm. The overheads implied by the
employed consensus protocol can be very large (with respect to the engaged memory or
the running time, i.e., the energy consumption) and their minimization is an open topic of
research. Therefore, to address the energy consumption overhead, we developed a new
consensus protocol based on the PoUW paradigm [8–10,15], which involves solving some
real-life CO problems instead of solving cryptographic puzzles.

Among the main requests required to be fulfilled in BC databases is the anonymity of
the participants, i.e., to prevent the public availability of personally identifiable information
(PII) of the BC participants. PII connects participants with their corresponding transac-
tions [16]. Anonymity is achieved by means of encryption, which relies on two keys: public
and private. Therefore, it is important to keep the private key unknown to the community.
Although anonymity is a desirable feature from the viewpoint of participants, it can be
exploited in order to hide malicious actions. BCs can be used as means of anonymizing
transactions involving illegal activities that thus become difficult to trace [17,18]. Transac-
tions of this kind are difficult to trace because generating new accounts and sharing data
between them is a common occurrence, in a process called a peeling chain [19]. Therefore, it
is possible for a single owner to possess several accounts. In this case, the owner is called
an entity, which represents a person or an organization, which makes transactions via a BC.
Although there is a slight possibility that one BC account may be shared by several people,
that case can be ignored because it happens rarely. There is also a class of viruses, known as
ransomware, that encrypt sensitive data in infected systems and demand a ransom before
allowing the victim to decrypt the data. Some forms of ransomware may ask for a ransom to
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be paid using a BC, and these are known as crypto-ransomware [20]. Crypto-ransomware
also follows the peeling chain pattern when spreading across the BC network. In light of all
the issues mentioned above, BC users are subject to constant attacks focused on discovering
patterns in the transaction history that could help adversaries to identify individual users.
If an adversary is able to link transactions to their owner, the consequence is so-called
deanonymization, i.e., the property of anonymity is broken. In order to minimize the threat
to a user’s anonymity, all the risks related to a BC should be disclosed [21]. On the other
hand, deanonymization allows for the discovery of malicious users and the prevention
of attacks due to the abovementioned observation about the possibility of grouping users
that exhibit similar behavior. In essence, deanonymization can be treated as a well-known
classification/clustering problem. In this approach, the BC data can be modeled by means
of a directed graph (DG) structure [22–24] called a transaction graph and generated using
the publicly available BC data. The nodes of the DG denote participants, whereas directed
edges represent transactions performed between them. A key issue in the clustering of the
BC data is entity detection, where different addresses are connected to the same entity, i.e.,
we are actually dealing with the problem of community detection in directed graphs. This
problem belongs to the CO class. Therefore, it can be considered as a useful part of the
PoUW consensus protocol in a self-contained blockchain [25].

2.2. Related Work

In the recent literature, PoUW has already been established as a concept that aims to
ensure the energy-efficient implementation of the BC consensus protocol [8–10,15]. Thus,
the aim of our literature review is to briefly discuss the previous research on PoW and
its drawbacks. In addition, we provide a detailed explanation of recent studies that have
proposed how to turn PoW’s biggest drawback (namely, its uselessness) into a benefit for
blockchain participants.

PoW [6,12] was the first consensus protocol used in relation to the Bitcoin cryptocur-
rency to ensure secure financial transactions between participants without the need for a
trustful third party. It is a very secure and highly decentralized consensus protocol [11,14],
as it explores cryptographic mechanisms involving encryption with asymmetric keys and
hashing. However, the PoW approach has several major disadvantages. The first of them
has already been mentioned: its enormous power consumption with completely useless
resulting value [10,26]. Another drawback is the time-complexity of solving the hash-based
cryptographic puzzle. The time required to complete the PoW task usually ranges from
10 to 20 min [27], which means that the PoW is not suitable for networks that require high
transaction throughput per second [28].

Several alternative approaches, which use different hash functions, have been pro-
posed in the recent literature, such as prime number verification [29], graph-theoretic
proof-of-work [30], and proof-of-work based on the generalized birthday problem [31].
However, they all have the same drawbacks as the classical PoW. In the PoW based on the
Collatz conjecture (PCC) [32], the running time does not increase exponentially with the
number of blocks in the BC, as is the case with the classical PoW. However, PCC eliminates
only the complexity issues of the PoW procedure; the problem of the usefulness of this
algorithm still remains.

An example of a metaheuristic method being applied to the blockchain was presented
in [33]. The authors proposed using a non-dominated sorting genetic algorithm II (NSGA-
II) to improve the difficulty adjustment method of the proof-of-work consensus protocol. In
particular, NSGA-II was used to optimize both the block interval and difficulty adjustment
interval. Two objective functions were considered simultaneously: the standard deviations
of the average block time and difficulty. The authors concluded that introducing NSGA-II
into the difficulty adjustment method can help the blockchain to reach the desired difficulty
faster, but it has some drawbacks, for instance, increasing the necessary processing power.

The proof of useful work concept, introduced in [10], tries to relate consensus protocol
hardness to computational problems, such as orthogonal vectors. The authors provide a
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mathematical formalization of the PoUW and the properties that it should satisfy. They
claim that, while keeping the basic properties of the classical PoW, the corresponding results
are no longer energy-wasteful as long as problems of practical interest are considered. The
main issue with their proposal is the requirement that the considered problem can be
represented by polynomials and treated as orthogonal vectors.

The authors in [34] developed a hybrid scheme including a PoUW based on the
traveling salesman problem (TSP) that operates in two rounds. In the first round, i.e., the
hashcash stage, the classical PoW is executed using ASIC hardware in a deterministic time
interval. In the second round, an instance of the NP-hard TSP is constructed based on
the results from the first stage and solved. As the main advantage of this approach, the
authors point to the efficient usage of the existing ASIC hardware, although the usefulness
of the approach is not adequately elaborated. More studies have been dedicated to solving
TSP [35,36]. In [37], the authors proposed the PoUW consensus protocol that performs
machine learning (ML) model training as its useful component. Two sources of rewards are
introduced for the miners: the standard reward for adding a new block and the reward
offered by clients for training their ML models. By comparing cloud hourly fees and BC
reward amounts, the authors showed that using the BC system for ML model training
was more profitable for both clients and miners. Many works have aimed to develop
new PoUWs based on the training of machine learning and deep learning models [37–42].
Authors have proposed using BC systems to train deep learning models as a part of the
consensus protocol.

The hybrid approach to mining introduced in [43] combines hash value calculations
(hashcash) with distributed problem solving (DPS). The main idea is that the user can
submit a real-world problem for the miners to solve. A new block can be added to the
chain either by solving submitted problems or by means of the hashcash process when
real-world problems are not available. A modification of the PoW, named difficulty-based
incentives for problem solving (DIPS), which gives incentives to miners who solve real-life
problems of scientific interest, is described in [44]. When a better solution to a real-life
problem is found, the difficulty of block hashing is reduced, making it easier to mine a new
block. However, in that study, the exact method of submitting a new real-life problem is
not provided; instead, the authors propose some ideas for submitting a new problem. One
of these ideas includes choosing a set of privileged nodes that can submit a new problem.
According to the second idea, every node has the right to submit a problem, and then all
nodes vote on which problem to accept. The third idea for submitting problems enables any
node to submit a problem, as long as that node invests a certain amount of tokens (coins).
The weaknesses of these ideas and implementation issues are not discussed in this paper.
On the other hand, a potential problem with the DIPS protocol as a whole is identified as
the Bubka attack problem. Upon finding several successive solutions to a real-life problem,
instead of using the best one, a miner could use all these solutions successively to hash
several blocks in a row.

A more recent study related to the PoUW concept [15] was based on solving the prob-
lem of clustering a set of transportation requests sharing the same origin and destination.
Each transportation request is specified by several key data and submitted to the pool
of requests. Mining consists of grouping transportation requests into clusters so that all
transportation requests belonging to one cluster can be performed by the same vessel. By
combining transportation requests, the cost of each transportation request is reduced and
the corresponding cost savings are used to reward the miner who solved the clustering
problem. The block mining process starts after inserting a specified minimal number of
transportation requests into the pool. This condition guarantees that the corresponding
clustering problem is difficult enough to solve and that the solving time is not less than the
expected rate of mining blocks. All transportation requests selected for clustering, as well
as the corresponding determined clusters, are stored in the block’s header. The block’s body
consists of other transactions submitted for storage in the BC. Although demonstrating
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obvious usefulness, this proposed approach does not specify the connection between the
solved problem and the set of transactions forming a new block.

In all of the presented PoUW protocols, the main drawback of the classical PoW (the
uselessness of energy consumption) has been addressed, and some other issues (such as
integrity, security, and latency) have also been identified. Various approaches to resolving
these issues have been proposed, the most prevalent being the solution of hard real-life
CO problems and artificial neural network (ANN) training as the work to be completed
within the new consensus protocol. These ideas ensure the maintenance of the benefits
of the PoW and introduce two sources of rewards for the miners. The first source is the
standard reward for adding a new block into the BC. The second source is a reward offered
by the customers. They submit CO problem instances to be solved as a useful part of the
PoUW consensus protocol and deposit some amount of cryptocurrency as a reward for the
successful miner. The main drawback of all the surveyed papers is that only ideas have
been presented, and their advantages discussed, and only some sporadic simulations have
been described, mostly on a conceptual level. Only a few [8–10] have describing actual
implementations and/or experimental evaluations and also provide theoretical proof of
the security (under the required conditions) of their PoUW-based consensus protocols.

A relatively detailed implementation of the PoUW, named the proof-of-search method,
is described in [9]. The author proposed this consensus protocol as a tool to search for good
approximate solutions to any optimization problem. In that study, a special type of BC
participant (client) is introduced. Their role is to submit instances of some optimization
problem, together with the optimization method to be used for solving them, and an
evaluation function is used by both the miners and the verifiers. The miners use the
evaluation function to calculate the objective function values and to test whether the
stopping criterion is fulfilled. Verifiers need this function to check if the provided solutions
correspond to the announced objective function values and to confirm that the miners
invested adequate work in the search process. The main idea is to code each visited solution
and use it as a nonce in the classical PoW sense. In this system, the miners are forced to
examine an adequate number of candidate solutions to prove that they invested work in
mining a current block. The best-obtained solution (by all the miners) is kept and reported
to the client, and a search process is performed until a proper nonce (one that provides a
given number of zeros at the beginning of the block hash value) is discovered. The author
analyzed the properties of the proposed approach, providing proof for its resistance to
various types of malicious behavior. However, the complexity of the overall proof-of-search
protocol seems to be too large, especially the introduction of intermediate mini-blocks. In
addition, the protocol is focused on security and fairness issues, rather than the quality of
the provided solutions. The requirement for clients to provide the solution method and
evaluation function seems too restrictive. In such a case, a BC can be considered as a set of
resources that is rented to interested clients for solving their instances.

Another formal description, including security proofs, of a PoUW-based consensus
protocol—in this case named Ofelimos—is presented in [8]. In that study, the doubly paral-
lel local search (DPLS) algorithm, crafted to suit implementation as the PoUW component
of the adjusted PoW-based BC consensus protocol, is proposed. DPLS represents a general
purpose stochastic local-search algorithm with a main component called the exploration
algorithm, which is used to produce a set of points in a solution space based on the given
input parameters. The consensus protocol proposed in [8] was designed to prevent users
from picking exploration steps that are not complex enough and to disallow the creation of
CO problem instances that would enable malicious users to mine faster than the honest
miners by solving those instances. The protocol also has adjustable mining difficulty: it
allows relatively fast publishing of new points in the DPLS algorithm and it has only a
small overhead in preparing the execution of the exploration algorithm. After forming a
block, a miner starts with a task similar to the standard PoW: generating a nonce value,
and calculating the resulting hash value of the block. Each calculated hash value is used as
a seed for a random number generator in the exploration algorithm of DPLS that the miner
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executes next. After the result of the exploration algorithm is found, the miner checks if the
hash value of the block is below a certain threshold (based on the current mining difficulty),
as this allows the block to be published. If the hash value is not below the threshold, the
mining continues until a block is published. However, even if the block is not published,
the miner publishes the result received from executing the exploration algorithm in the
form of a special transaction, so that the result can be used for further execution of the
DPLS. The authors also provide a detailed security and usefulness analysis and show how
DPLS can be implemented for a variant of WalkSAT algorithm. However, some of the
details are still not clear, for example, how the underlying optimization problems should
be defined and published in the BC to be subjected to DPLS.

Based on the literature review presented here, we identified several issues that should
be resolved in order to implement a useful, secure, and efficient PoUW consensus protocol.
They are listed as challenges and described in Section 5, together with our proposal for
how to address them.

3. Our Solution Framework

In this section we present a detailed description of COCP, the PoUW-based consensus
protocol that we propose, explain how it can be incorporated into a BC network, and list
the benefits of its utilization. This section also contains examples of CO problems and the
corresponding solution methods that we have developed. These methods are used in our
simulation described in Section 4.

3.1. Proposed PoUW Consensus Protocol

We propose to modify the classical PoW consensus protocol (shown in Figure 2)
in such a way as to replace cryptographic puzzles with instances of hard CO problems
that have real-life applications. The proposed COCP solution framework is illustrated
in Figure 3, which is an extension of Figure 2 obtained by adding new components on
its right side. A preliminary, brief description of our framework was presented in [45].
Here, we extend the development of the COCP, provide more details, and consider more
challenges. To develop a successful PoUW protocol in the proposed COCP framework,
we introduce a new type of participant, the problem publisher, client, or customer. These
are individuals, organizations, or companies that join a BC system because they need its
resources to provide software and hardware support for solving their real-life CO problems.
The instances of these problems need to be specified to the system, and this specification
must include the following important information:

• Customer identification;
• A timestamp;
• A valid address for CO problem instance data;
• The hash value of CO problem instance data;
• The solution threshold;
• The deadline for finding the solution; and
• The reward specification.

As the size of the problem definition may be large, and storing large data on BC
systems is expensive, the CO problem instance specification does not contain the problem
input data. Instead, a valid address that points to the location of the problem definition is
provided. However, in order to prevent malicious behavior, the customer must also put
a hash value of the instance data into the transaction. This way, one can easily detect if
the instance is modified at any time after its publication. In addition to these two fields, a
desired quality of the solution defined by the solution’s threshold, the deadline for finding
the solution (optional), and the reward that will be given to the miner who solves the
corresponding CO problem instance have to be specified. The pseudo-code for submitting
a CO problem instance is presented in Algorithm 1. The reward offered by the customers
for solving their instances is not specified in advance: only the minimum value is provided
to discourage dishonest miners from committing fraud. Based on the input data specified
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by the customer, the hash value (hi) is calculated, and it is verified whether or not the
given instance i has already been solved (through the GetSolutions procedure). If at least
one solution already exists, it is provided to the customer without the need to solve this
instance. The only way to resubmit the same instance again is when the threshold value
has been adjusted, i.e., when the customer wants a solution of higher quality. On the other
hand, if there are no solutions for instance i, a transaction (t) is created that announces CO
problem instance i to the BC. A timestamp, i.e., the time when instance becomes active,
which is determined upon transaction t, is included in a block added to the BC. The value
of the timestamp will be the same as the timestamp of the block that includes the submitted
instance. The timestamp of the block is determined by the miner who formed the block,
and this represents the unix time reported by the miner. Although it is difficult to verify
that the time reported by the miner is correct, there are two conditions that the timestamp
must meet. First, the timestamp of the block must be larger than the timestamp of its parent
block. Second, the timestamp must not be too far in the future, i.e., it should be within the
pre-specified time window of the current verifier’s unix time.

It should be noted that the CO problem instances could be published in at least two
slightly different ways. The first involves a special kind of transaction that is published
within the network and which enters the transaction pool. When these transactions are
inserted in a block that becomes part of the BC network, the corresponding instances enter
the instance pool. This is illustrated in the rightmost part of Figure 3. The existence of these
new instances becomes common knowledge among all participants. The second method of
publishing instances incorporates the use of smart contracts. Therefore, it is suitable for the
BC systems that support them. In this case, the instance pool contains a set of special smart
contracts at an address known to all participants. Instances can be accessed by interacting
with the contract.
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Algorithm 1 Procedure for instance submission

procedure INSTANCESUBMISSION(userID, dataAddress, threshold, deadline, reward)
if reward < minReward then

PRINT(‘Reward should be at least’, minReward)
return . Reward must not be too low

end if
hi ← HASH(dataAddress)
sols← GETSOLUTIONS(hi, threshold)
if sols then

PRINT(‘Problem was already solved’)
return sols

end if
t← CREATETRANSACTION(userID, hi, threshold, deadline, reward)
SENDTRANSACTION(t) . Timestamp will be defined upon adding t to BC
return

end procedure

Published CO problem instances are located in the instance pool, which contains
all instances that are still active. An active instance is a published instance for which the
deadline has not passed and that still does not have a solution. Similarly to the connection
between the block and the nonce value, it is necessary to establish the correspondence
between the block and the active instance. We propose to accomplish this by means of
the method presented in Algorithm 2. First, we reserve two fields from the block’s header
(field1 and field2) for storing data related to the corresponding CO problem instance. When
a block B to be mined is formed (repeat loop of Algorithm 2), the hash value, hB, of the
block’s header (without the values in these two reserved fields) is calculated and it is used
to select one among the active instances to be solved. We assume that the active instances
in the pool (P) are enumerated (starting with 0) according to the same predefined criterion,
for example, according to the increasing order of their deadlines. Note that the value of the
deadline does not necessarily correspond to the hardness of the instance. The index i of
the instance corresponding to block B is calculated by performing the modulo operation
(mod (·)) between hB and the number of instances in the pool, i.e., i = hB (mod |P|). If
the enumeration of instances starts with 1, i = 0 corresponds to the instance marked with
|P|. Once the miner determines index i, the instance needed to be solved for this particular
block is pi ∈ P and that should be common knowledge among all participants, especially
the verifiers.

After selecting the corresponding CO problem instance i for block B, the miner executes
the available solution method, trying to find a valid solution for instance i. The solution
algorithm runs until one of the following events occurs (switch command of Algorithm 2):

• INTERRUPT: This means that another miner has already announced a new block and
it is undergoing the verification process. If they are close to solving instance i, the
miner may decide to continue mining for some short time period and, if successful, to
announce the obtained valid solution for i and publish the composed block B. Even
if B is not accepted for inclusion in BC, the miner could be rewarded for providing a
valid solution for instance i.

• SOLVED: This indicates that the solution method succeeded in finding a valid solution
for CO problem instance i, and the miner can announce it and publish block B.

• FAILED: This stands for the case when a solution method reaches the stopping criterion
without providing a valid solution for instance i. In that case, the CO problem instance
is returned to the instance pool for another attempt related to some future block.

Once the selected instance is solved, the miner is ready to announce a new block. To
establish the correspondence between the composed block and the solved CO problem
instance, the miner stores a pointer to the transaction, introducing the CO problem instance
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or smart contract that corresponds to the submitted instance in field1. This information
enables all participants to access the data related to the solved instance.

Algorithm 2 Procedure for block mining

procedure MINING( )
while True do

B← INITBLOCK()
repeat

t← SELECTTRANSACTION() . Adding transactions to compose block B
if ISVALID(t) then

ADDTRANSACTION(B, t)
end if

until ISCOMPLETED(B)
hB ← HASHNN(B) . Calculating the block hash value
i← hB (mod |P|) . Selecting CO problem instance
ind, soli, obji ← SOLVE(i) . Invoking solution method
switch ind do

case INTERRUPT : . Another miner already announced a block
if |obji − threshold| < ε then . If close to getting valid solution

ind, soli, obji ← SOLVEC(i) . Continue mining
if ind = FAILED then

break
end if

else
break

end if
case SOLVED : . Valid solution is obtained

hsoli ← HASH(soli)
field1← dataAddress
field2← XOR(hi, hsoli )
WRITESOLUTION(minerID, field1, hi, obji, hsoli ) . Announce solution
PUBLISHBLOCK(B) . Publish block B
break

case FAILED : . Stopping criterion is reached without a valid solution
break

end switch
end while

end procedure

For security reasons and to save space, similarly to problem definitions (instance data),
solutions are stored in the miner’s private location, which is predefined and known to all
participants. In particular, field2 of the published block, the hash value of the instance, the
data, and the hash value of the solution are stored in order to prevent malicious behavior
(e.g., publishing a block and finding a solution later). However, both hash values (for
instance and solution) are 256 bits long, also representing the maximum length of any field
in the block’s header. Therefore, to store them in field2, the miner performs the bit-wise xor
operation on the instance hash and the solution hash values. Knowing the instance hash
(from the published instance’s data), it is easy to reconstruct the hash value of the solution.

Upon obtaining a valid solution for the considered CO problem instance, the miner
stores it in a solution pool, together with the miner ID, with the content of field1 (pointing to
address of the instance data), the hash value of the instance (hi), the objective function value
(obji), and the hash value of a solution (hsoli ) corresponding to the considered instance.
The role of the solution pool is to keep all valid solutions for each considered instance
and to enable the identification and rewarding of the miner who found the best solution.
The SOLUTIONRETRIEVAL procedure, presented in Algorithm 3, is used to determine if
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the solution of instance i has been obtained. It works in a loop that ends when at least
one solution is reported or when the deadline is met without a valid solution for instance
i. By calling the procedure FINDSOLUTIONS, the list solutionList of all valid solutions
is created. It is then passed to the procedure FINDBESTSOLUTION for the comparison
of all valid solutions and the determination of the best among them. Data relevant for
delivering the solution to the customer and rewarding the miner who found the best
solution are returned. In the case in which no solution is reported, solutionList is empty
and the SOLUTIONRETRIEVAL procedure checks whether the deadline has been missed. If
the deadline for solving instance i has passed, the customer is informed that the solution
process failed and instance i is removed from the instance pool.

Algorithm 3 Procedure for solution retrieval

procedure SOLUTIONRETRIEVAL(hi)
while True do

solutionList← FINDSOLUTIONS(hi) . All solutions for instance i are collected
if solutionList then . If at least one valid solution is generated

minerID, dataAddress, hsoli ← FINDBESTSOLUTION(solutionList)
return minerID, dataAddress, hsoli . The best found solution and

end if . the miner ID are returned
if TIME() > deadline then . No valid solution is generated before the deadline

return ‘Fail’
end if

end while
end procedure

In the process of block verification (see Algorithm 4), the validity of all transactions is
checked first. Next, it is confirmed that the solved instance i is the corresponding one for
block B. The verifiers can access the instance data via the information from field1 and the
solution from the miner’s private location. The verification part related to COCP consists
of reconstructing the hash value of the solution from field2 by performing the bit-wise xor
operation with the instance’s data hash. After this process, the verifier has all the data
needed to perform the successful validation of the block. The hash value of the CO problem
instance is calculated based on the instance data from the pool and compared with the
corresponding hash value provided by the customer. On the other hand, the reconstructed
hash of the solution is compared with the hash value calculated from the solution itself.
If any pair of hashes does not contain the same values, the corresponding block cannot
be validated and is discarded. In the next step of the verification process, the objective
function value of the reported solution is calculated and compared with the solution quality
provided by the miner. If these two do not match, block B is discarded as invalid. At the
end of the verification process, the instance archive is checked to verify whether the miner
solved the CO problem instance specified by this dataAddress. If not, block B is discarded
as invalid.

All solved instances are removed from the pool and new ones are included as soon
as they are published. The solved instances are stored in an instance archive (as illustrated
in the bottom rightmost part of Figure 3), together with the corresponding solutions and
all other relevant data (minerID, timestamp, etc.). It may occur that the same instance
is published again, and we should prevent both the wastage of resources in solving that
instance again, as well as malicious behaviour by some miners trying to exploit the existing
solution and add a new block without expending any effort. The role of the instance archive
is to prevent this type of fraud, as it is easy to check if any newly submitted instance has
already been archived.
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Algorithm 4 Procedure for block verification

procedure VERIFICATION(B)
repeat . Checking the validity of all transactions

t← GETTRANSACTION(B)
if ¬ISVALID(t) then

return ‘Invalid block’
end if

until END(B)
Ptimestamp ← INSTANCEPOOLSTATE(timestamp)
i← hB (mod |Ptimestamp|) . Verifying that the correct instance was solved
dataAddress← DATAADDRESS(field1)
solAddress← SOLADDRESS(field1)
hi ← HASH(dataAddress)
hsoli ← XOR(hi, field2)
if hsoli 6= HASH(solAddress) then

return ‘Invalid block’
end if
if ¬EVALUATE(solAddress) then . Calculating objective function value

return ’Invalid block’ . Reported solution quality is not valid
end if
minerID ← GETMINERID(B)
minerList← RETRIEVEMINERID(dataAddress) . Retrieve miners from archive
if minerID /∈ minerList then

return ‘Invalid block’ . Miner ID is not valid
end if
APPENDBLOCK(B) . Valid block is added to BC
return ‘Valid block’

end procedure

3.2. Benefits of COCP

As indicated in the literature, the main drawback of the classical PoW consensus
protocol is that a large amount of computing power is expended in order to maintain a single
block. Usually, several (sometimes even a quite large number of) miners compose blocks
and try to add them simultaneously; however, only one will succeed. Therefore, the work
of all the other miners is wasted. The transactions composing their blocks will be returned
to the pool and eventually will be added to some other block(s). Such an unsuccessful
mining event can happen more than once, increasing the amount of wasteful work even
further. Our intention was to reduce the number of unnecessary computations as much
as possible by proposing the above-described COCP, the PoUW-based consensus protocol.
Although the transactions from discarded blocks are also returned to the transaction pool
in COCP, for the next attempt to include them in block, a new CO problem instance will be
considered.

In the classical PoW consensus protocol, miners with a larger computing capacity
than others have a greater probability of adding blocks and thus earning a reward. Early
backers of rising BC services or technologies are the backbone of the infrastructure and of
its sustainability, reliability, and its potential success, but they do not necessarily have a
large computing capacity. Once a BC network gains momentum, attracting new miners
with larger computing capacities, the early backing miners might find themselves drowned
out and cast aside from the rewarding process. In such a case, BC technologies may lose
their early backers. Our COCP is designed in such a way as to provide incentives for early
backers to re-join the mining process as we provide CO algorithms that can successfully
run on standard hardware resources.

In addition, our COCP introduces new incentives for various types of participants.
Customers, as new participants who join the network, benefit by having their problems
solved. The miners who add a new block are now doubly rewarded: by the customer for
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solving the CO problem instance and, as before, for adding a block. The miners who solve
the instance but who do not add blocks can still be rewarded by customers. Moreover,
resources are expended for some useful work and thus the overall energy consumption is
decreased, as the same amount of energy is used for mining a block and for solving one or
more real-life CO problem instances.

Keeping in mind that the BC network is a highly dynamic distributed environment,
we identified several possible scenarios that might occur when a consensus protocol is
running and we describe them below.

Scenario 1. The miners create their own blocks, calculate the hash values of the
block’s headers, and select the appropriate CO problem instances from the pool. The fastest
miner who solves the corresponding instance publishes the created block and collects both
rewards. All instances that were not solved are returned to the instance pool.

Scenario 2. It may happen that two or more miners solved their instances at about the
same time and published their blocks, creating the situation that is known as a fork in BC
systems. Forks are usually resolved in the synchronization phase. Only one of the blocks
will pass both the verification and synchronization phases; however, customers will receive
the solutions for all problems solved by the miners. In the case in which some miners
solved the same CO problem instance, the best among the obtained solutions is provided to
the corresponding customer and the miner who found that particular solution is rewarded.

Scenario 3. After a new block is published, some miners, believing that they are close
to finding a solution, may continue working on their current instances for some short
period of time. If they succeed in solving them, a fork may appear. After the verification
and synchronization phase, it will be determined which block is to be included in the BC
and how the rewards will be assigned to the miners.

Scenario 4. A group of miners can combine their computational power with the aim
of solving the corresponding CO problem instance faster and splitting the reward. This is a
common situation in the classical PoW consensus protocols and is known as a mining pool.
We believe that it could be used in our COCP approach as well, but it is beyond the scope
of this paper and is thus left to future works.

3.3. Some Examples of Optimization Problems

This section is devoted to describing the real-life CO problems utilized in our study.
Some instances of scheduling, asymmetric vehicle routing, and maximum satisfiability
problems represent the useful part of our COCP, which is tested on a small BC example in
Section 4. All these problems are intensively studied in the relevant literature and various
optimization methods (exact, heuristic, approximate, and metaheuristic) have been devel-
oped. We explore heuristic methods that are the results of our recent projects. At the end of
the problem description, we provide a brief overview of the corresponding optimization
method. We envision the ability to adopt any CO problem; however, algorithms to deal
with them must be incorporated in the proposed COCP to ensure that the appropriate tools
are available for the miners.

It is important to note that the benchmark instances for testing various optimization al-
gorithms could also be considered as real-life CO problem instances: when developing their
new optimization methods, scientists need to execute them (usually several times) on the
corresponding benchmark sets in order to test their efficiency and undertake comparisons
with the state-of-the-art results.

3.3.1. Scheduling Problems

Scheduling, generally speaking, deals with assigning tasks to resources in time. There
are numerous variants of scheduling problems [46], each of them having an important role
in modeling real-life tasks. Here, we describe two examples that we have been studying
and for which we have developed efficient algorithms utilized to deal with large real-
life instances.
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Scheduling Independent Tasks for Identical Processors (P||Cmax)

Here we revisit the problem of scheduling independent tasks on parallel proces-
sors [46–49] as it recently gained importance with respect to the efficient exploitation of
high-performance computing resources, cloud computing, and massively parallel mul-
tiprocessor systems. We consider a case study involving P||Cmax-static scheduling of
independent tasks on identical processors. The expression static means that the number
of tasks and their duration (lengths and processing times) are known a priori. The prob-
lem objective is to minimize the time required to complete the execution of all tasks, i.e.,
makespan Cmax.

More specifically, let m be the total number of available identical processors and n
the number of tasks to be executed. The P||Cmax problem consists of assigning tasks to
processors and determining their starting times. All the tasks should be allocated for
execution, each to exactly one processor. Task execution is performed in a non-preemptive
way: once the task starts its execution, no interruption is allowed until completion. We
denote by T = {1, 2, . . . , n} a given set of independent tasks, and by M = {1, 2, . . . , m}
the set of identical processors. Each processor can engage only one task at a time. Let pi
denote the processing time of task i (i = 1, 2, . . . , n), which is known a priori and fixed,
and let yj (j = 1, 2, . . . , m) represent the load of processor j, calculated as the sum of the
processing times of all tasks assigned to processor j. The goal is to find a schedule of tasks
on processors such that Cmax = maxj∈M(yj) is minimized. P||Cmax can be formulated as
an integer linear program (ILP) based on the assignment variables [50], on the arc-flow
model [51], or in some other way [52], and it is known to be NP-hard in a strong sense [53].
Numerous exact [51], heuristic [54], and metaheuristic [47,55–57] algorithms have been
developed for P||Cmax.

Several efficient heuristics, based on greedy iterative stochastic transformation (GIST),
were proposed in [58]. These heuristics perform transformations of the current solution
with the aim of improving it by rescheduling tasks to processors in such a way that either
the lower bound is increased or the upper bound is decreased until they coincide or some
predefined stopping criterion is satisfied. The best-performing subset of the proposed
heuristics was used in our simulation described in Section 4.

Weighted Scheduling Problem with Deadlines and Release Times

Using Graham’s notation [59], this variant of the scheduling problem can be classified
as P|ri, di|∑ wiXi. Besides the execution time pi, each task i is described by the release time
ri, deadline di, and the weight (price, reward) wi. The considered version is non-preemptive,
implying that tasks cannot be split into several parts and have to be executed fully before
the next task can start. The tasks cannot start before a certain number of time units have
passed, specified by the release time (ri). Similarly, the tasks have to finish before the
deadline (di). The precedence relation between tasks can be enforced by specifying the
appropriate release times and deadlines. In the literature, it is common to allow missing
deadlines and release times by adding some penalty to the objective function value, but
in our version of the problem, this is strictly prohibited; therefore, tasks that cannot be
scheduled without violating the deadline and the release time constraints are omitted from
the schedule entirely. This version of the problem is even more complex than the one with
penalties, as it requires us to determine the best possible subset of tasks to be executed,
without breaking any constraints, and maximizing the objective function value, which is
defined as the sum of the weights of all scheduled tasks.

A mixed-integer linear programming (MILP) formulation of this problem was pre-
sented by Stanković et al. (2021) [60] and tested in the framework of the CPLEX exact
solver. A metaheuristic approach based on the general variable neighborhood search (GVNS)
method was proposed by Matijević et al. (2021) [61]. It explores five neighborhoods in
the shaking phase and two neighborhoods in the variable neighborhood descent local
improvement step. For the simulation, we explored GVNS, as it performs better than the
MILP-based solvers.
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3.3.2. Asymmetric Vehicle Routing Problem

The vehicle routing problem (VRP) asks “What is the optimal set of routes for an
existing fleet of vehicles that need to serve a given set of customers?” and arises in many ev-
eryday situations related to the transportation of goods [62–64]. VRP was proposed in [65]
as an abstraction of vehicle scheduling problems. Since then, the formulation of VRP has
evolved in many directions based on imposed constraints and defined objective functions.

The asymmetric vehicle routing problem (AVRP) can be represented on a complete di-
rected graph G = (V, E), where V is the set of vertices representing customers, and E is
the set of edges connecting those customers. The goal is to minimize the total distance
traveled by all of the vehicles. Each edge eij ∈ E is associated with a non-negative weight
dij, representing the distance between customers i and j. Aside from vertices representing
customers, there are two more vertices {0} and {n + 1}, corresponding to the origin and
destination of each route (depots). Each vehicle starts from depot {0}, serves a certain
number of customers, and ends its route at depot {n + 1}. Each customer should be served
by exactly one vehicle and should not be visited more than once. Each vertex representing a
customer is associated with a non-negative weight ci, corresponding to the demand of that
customer. Each vertex representing a customer is associated with a non-negative weight ci,
corresponding to the weight of goods demanded by that particular customer. Vehicles are
homogeneous, i.e., they all have the same capacity Q and average speed S. The total travel
time of each route is limited and can be calculated by taking into consideration distances
between customers, the speed of the vehicle, and the waiting time at each customer’s
location, which is given as a parameter. The number of customers that can be served by
each vehicle is also limited, with the idea of balancing the workload of each driver.

The above-described variant of AVRP was considered in [66–68]: an MILP formulation
was developed and several local search-based metaheuristic methods were implemented.
These methods include the multistart local search (MLS), greedy randomized adaptive
search procedure (GRASP), and five variants of GVNS exploring three neighborhoods in
different ways. In our COCP evaluation, we have utilized the best-performing GVNS.

3.3.3. Maximum Satisfiability Problem

Propositional satisfiability problems, known as SAT problems, are crucial in com-
putational complexity theory. They provide a basis for determining the complexity of
considered algorithms and have been applied in many scientific disciplines, such as math-
ematics, computer science, and even philosophy. Propositional formulas are constituted
of basic building blocks, such as propositional (Boolean) variables and logical operators,
for example, negation (¬), conjunction (∧), and disjunction (∨). Propositional formulas
are used to articulate different statements that can have unique truth values (TRUE or
FALSE). Propositional variables and their negation that appear in formulas are named
literals. A formula, represented as a conjunction over disjunctions of its literals, is known as
a conjunctive normal form (CNF). Each disjunction of literals in a CNF is referred to as a
clause. SAT problems are defined as those in which we need to decide whether the given
formula F , including n Boolean variables X = {x1, x2, · · · xn}, is satisfiable, i.e., whether
there exists a valuation (truth assignment) A of X for which formula F is TRUE. This
actually means that all clauses must be TRUE. Boolean variables can take the values TRUE
(>) or FALSE (⊥). Therefore, in order to find the truth assignment that satisfies formula F
on n variables, in the worst case, we need to check 2n valuations.

The maximum satisfiability problem (MAX-SAT) represents the optimization variant
of SAT problem in which the objective is to find a model that maximizes the number of
satisfied clauses. For a given formula F in CNF, the goal is to find a truth assignment A
that satisfies as many clauses as possible.

The majority of researchers have adopted heuristic and metaheuristic approaches
for tackling MAX-SAT as it belongs to the class of NP-hard problems [69]. It is a highly
attractive research topic, as a large number of problems can be reduced to MAX-SAT,
including variants of routing problems [70], protein sequence alignment [71], the max-clique
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problem [72], scheduling problems [73], software debugging problems [74], community detection
problems [75], and many others. More examples can be found in [76].

In evaluating our COCP, we consider instances of MAX-SAT problem and address
them using the sequential and parallel local search-based metaheuristics developed by L.
Matijević and M. Todorović. The neighborhood is defined in a usual way: flipping the value
of a propositional variable. Keeping in mind that evaluating the truth value of formula F
can be performed simultaneously for many truth assignments, they implemented parallel
MLS and VNS metaheuristics to be executed on GPUs. In our simulation, we applied
parallel MLS as it performed slightly better than parallel VNS.

All presented CO problems and the corresponding solution methods are presented in
Figure 4. New problems or new variants of the same problem can be added to our COCP
easily, as well as the corresponding solution methods. In addition, it is possible to add new
(and potentially more efficient) solution methods for already existing CO problems. Then,
miners would be able to select between different solution methods or to let the system
invoke one of the available methods randomly.

Figure 4. Explored CO problems and corresponding solution methods.

4. Results: COCP Simulation

In this section we first describe one of the environments in which the proposed
PoUW consensus protocol could be implemented, together with the selected simulation
setup. To illustrate how our proposed PoUW-based consensus protocol (COCP) works,
we performed simulations of the scenarios explained in Section 3.2 on a small example
containing 11 blocks (denoted by B1, B2, . . . , B11) from the publicly available Ethereum test
network Ropsten (https://ropsten.etherscan.io/ accessed on 17 May 2022). The headers of
these 11 blocks are given in Appendix A.

In our simulation, we assume that it is necessary to add blocks B1–B11 in the same
order as in the original sequence presented in Appendix A when executing COCP instead
of the classical PoW-based consensus protocol. Although in each step the different miners
can create (and even publish) different blocks, our goal was to propagate the corresponding
current block from the example and to illustrate the direct benefits, as well as the side-
benefits, of using our COCP. Moreover, in this simulation, we did not change the timestamp
and the miner identification fields because they do not have a significant impact on the
simulation results. Here, we consider all the implementation details of proposed COCP,
but the comprehensive task of implementing a full-blown BC network that includes our
COCP is beyond the scope of this paper.

https://ropsten.etherscan.io/
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4.1. Description of the Ethereum Platform

Ethereum represents an open distributed system, where anyone can join, participate in
its functioning, and leave at any time. As in any other BC platform, every participant must
have a local copy of the whole BC network, in order to prevent data loss and to maintain
consistency and security. The participants in Ethereum can be basic users, verifiers, and
miners with the roles already explained in Section 2. Ethereum uses “modified Merkle
Patricia tries” to efficiently store transactions in blocks using their hash values. A trie,
also called a Radix trie, Patricia trie, or prefix trie, is a data structure which is the fastest
at finding common prefixes, simple to implement, requires a small memory, and which
is thus used as a core data structure in data storage [77]. More details about the storage
fundamentals of Ethereum can be found on (https://eth.wiki/ accessed on 2 June 2022).

As in other BC networks, each block in the Ethereum system consists of two main
parts—the header and the body. The body of a block contains transactions and their receipts,
which are processed and verified when the block is formed. The transactions and the
receipts are stored in two separate trie structures. A third trie, representing the state of the
system after executing transactions, is also part of the body. The header of a block contains
various important data used by participants. The data stored in block’s header are given
in Table 2. An example of a block’s header, taken from the Ethereum test network called
Ropsten, is shown in Figure 5 in JSON format.

Table 2. Data fields in Ethereum’s block header.

Data Field Description

difficulty
A number that corresponds to the difficulty of the problem that is being solved
for the current block. It is adjusted to ensure constant frequency in the addition
of new blocks to the system.

extraData A byte array that can contain any data related to the block, with a maximum
length of 32 bytes.

gasLimit
A number that is the current limit of gas spending per block. Every transaction
that is part of the block has a certain gas value, and their total gas value must
be less than or equal to this number

gasUsed Total value of gas spent by transactions of this block.

logsBloom Represents the Bloom filter that consists of information that can be indexed,
that are found in every log entry of the transactions.

miner 160-bit Ethereum address of the miner who mined the block.

number Ordinal number of the block.

parentHash The hash value of the parent block’s header.

receiptsRoot Hash of the root node of the trie that represents transaction receipts.

sha3uncles

The hash value of the uncle’s list for this block. Uncle blocks represent the
blocks that were mined at the same time as the parent of the current block, but
which did not become part of the canonical chain. However, using this field,
uncle blocks are still recorded and the miners that created those blocks receive
some reward.

stateRoot The hash value of the state trie’s root node.

timestamp A value that represents the Unix time at the moment when the block was
created.

transactionRoot The hash value of the root node of the trie containing all of the block’s transac-
tions.

mixHash 256-bit hash that, along with the nonce, is used to prove that the corresponding
problem was solved during the mining process.

nonce 64-bit value representing the solution of the mining problem.

https://eth.wiki/
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{
"difficulty": "0x292a4b23",
"extraData":
"0xd983010507846765746887676f312e372e348777696e646f7773",
"gasLimit": "0x47e7c4",
"gasUsed": "0x5d605",
"logsBloom":
"0x040020000000400100000000000000000005000000000000000000000
000000000000000000000000000000000000000000040000020000000001
000000000000400000000000000000000000000000000000000000000000
000000008000000000000000204000000000080000008004000000802000
000020000000000000000000088000000000000000000004001802000000
000000000000000000000800000000000000000000201000000000000001
000000000000000000004000000000000000000202000000000000420000
000000000000000000000000000200000000000000000000000000000000
40008000000008000000000000000000000",
"miner": "0x01711853335f857442ef6f349b2467c531731318",
"mixHash":
"0x86e6b640aff07166247148c75a704e147379d2aaa7e8dde21eaa5a8a9
3442994",
"nonce": "0x553af8d427c002b4",
"number": "0x87a23",
"parentHash":
"0x99f79cb280e7f736c876450672b4c1ab85e47d6751223c6302ca889e3
0fbb3cf",
"receiptsRoot":
"0xe78338ba52991540d0bb5aa34943047e5ba2d2788d97e40fc72ac678c
fbaaa4a",
"sha3Uncles":
"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd4
0d49347",
"stateRoot":
"0x18ec19011134a8a31fd8f2031eca5971574b0438513d8d4c9f04fa4bf
9d4304a",
"timestamp": "0x58a7eefd",
"transactionsRoot":
"0x4078301176c351b83778465cf51e486e61d6e4957cc41bf1f52f72f27
6f03fd7",

}

Figure 5. An example of a block’s header.

The standard Ethereum network uses a well-known PoW consensus algorithm that
is based on solving a simple yet heavily resource-demanding cryptographic puzzle. The
goal of the miner is to find a certain number, the content of the nonce field of the block’s
header, which yields a hash value of the block beginning with a number of zeroes specified
in the difficulty field of the block. The described cryptographic puzzle actually represents
the inversion of the so-called one-way function. Its value for the given arguments is easy
to calculate; however, there is no efficient way to find the arguments that correspond to a
given function’s value. The only way for the miner to determine the value of the nonce is by
guessing. As we have already mentioned, the main drawback of this consensus algorithm
is that a large quantity of computing power is used for solving a problem that has no
application outside of mining a block. The role of the timestamp is important, especially in
the verification process. The Ethereum whitepaper (https://ethereum.org/en/whitepaper/
accessed on 21 August 2022) states that the timestamp of the block needs to be larger than
the timestamp of the parent block and smaller than the current unix time of the verifier,
with allowed differences of 15 min. However, in the current implementation of the Geth
client, this time difference is set to 15 s.

https://ethereum.org/en/whitepaper/
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4.2. Simulation Setup

To specify CO problem instance data using transactions, a modification of Ethereum’s
protocol is necessary in order to accommodate this new type of transaction. On the other
hand, using a smart contract in Ethereum is straightforward.

For CO problem instances representing the useful part of our COCP, we selected:

• Nine instances of the P||Cmax problem (C_1_1, . . . , C_1_9);
• Ten instances of P|rj, dj|∑ wjXj (Sched1, . . . , Sched10);
• Nine instances of AVRP (named EX_< n >_< m >, where n denotes the number of

customers and m stands for the number of vehicles); and
• Six examples of MAX-SAT (f600, f1000, f2000, hole8, hole10, pr150_75).

Keeping in mind that in our example we used Ethereum’s test network Ropsten,
with a 10–15 s time interval between any two blocks, and we selected instances for which
reasonable-quality solutions could be obtained in that amount of running time. The
instances used came from companies that we worked with and from the libraries of
benchmark instances for the considered CO problems from the literature.

We assumed that each mining step is performed by four miners on computers with
the following characteristics: Intel Core i7-10750H CPU @ 2.60 GHz, 32 GB RAM and
NVIDIA GeForce RTX 2060 with 6 GB GPU memory. The OS used on mining computers
was Ubuntu 20.04, whereas the mining software was based on the latest version of the
standard Ethereum Go client geth [78] and employed the same hash function keccak256 that
is used by Ethereum’s PoW algorithm.

It is evident that the number of instances (34) was larger than the number of blocks in
our example. This is because we wanted to make sure that all possible scenarios could be
simulated by the proposed PoUW concept. Ensuring an adequate number of CO problem
instances is of vital importance to ensure the correct functioning of our COCP. It is necessary
that at least one instance of some CO problem is available each time the block is to be
announced. Otherwise, i.e., in cases when the instance pool is empty, a hybrid variant,
combining COCP with the PoW, PoS, or any other traditional consensus protocol, needs to
be considered.

To establish the correspondence between the composed block and the solved CO
problem instance, the two reserved fields were selected as follows: field1 was actually the
nonce field, whereas field2 was selected to be mixHash. Thus, the mixHash field contained
the result of the bit-wise xor operation on the CO problem instance hash and the solution
hash values. To indicate the locations of input data, we simply inserted the hash value of
the instance input data file name (without extension) into the nonce field. We needed to
specify both these values to be able to calculate the hash value of the complete block that
represented the connection between blocks in the BC network and which was stored in the
header of the next added block using the parentHash field. In Appendix A, we present the
changed values of the three specified fields (mixHash, nonce, and parentHash), colored
in red.

4.3. Simulation Results

At the beginning of our simulation, we assumed that there were three published
instances; they were enumerated starting with 0 in order to easily determine the instance
that corresponded to the result of the modulo operation (mod (·)) between hB (without
mixHash and nonce values) and |P|. Let the instance pool contain the following three
active instances:

0. Ex_20_3
1. f1000
2. C_1_1

The instances are ordered by the publishing timestamp. We have neglected the
deadlines here as the running times are reasonably small.
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All four miners have created their blocks and started the mining process. However, as
the number of instances is smaller than the number of miners, at least two of them must
solve the same CO problem instance. Let us assume that all of them completed executions
at approximately the same time, i.e., the second scenario described in Section 3.2 occurs.
In addition, let us assume that block B1 is accepted for inclusion in the BC. When the
(mod 3) operation is performed on the calculated hash value of B1, the result (2) suggests
that instance C_1_1 should be considered for solving (see Figure 6). Therefore, the miner
publishing B1 receives the reward coming from both sources: adding block B1 and solving
instance C_1_1.

Figure 6. An illustration of adding the first block to our BC example (B0 is a generic block required to
establish BC network structure).

As the remaining instances are also solved, the rewards for their solutions should
be given to the creditable miners. Please note that “solving an instance” means finding
a solution that is better than the specified threshold. Suppose that instance f1000 was
considered by two miners and that they provided different solutions. The miner who found
a better solution would be rewarded. All instances are removed from the pool and, together
with the solutions, moved to the instance archive.

While the miners were trying to add the first block, customers submitted six new
instances.

0. C_1_3
1. f2000
2. Ex_22_2
3. C_1_4
4. Sched5
5. f600

For the inclusion of the second block, let us follow the first scenario. The fastest
miner composed block B2 and calculated the block hash value (mod 6) (equal to 2), which
pointed to the third available instance, Ex_22_2. After rewarding this miner, instance
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Ex_22_2 is moved from the pool to the archive, whereas the other considered instances are
returned to the pool.

Before considering the third block, two new instances were published and the pool
was composed of the following seven instances:

0. C_1_3
1. f2000
2. C_1_4
3. Sched5
4. f600
5. Sched4
6. Sched8

Let us assume that the second scenario is followed again and that four miners are
considering three different instances. In addition, we assume that two miners are solving the
instance f2000, corresponding to the target block B3, because hB3 (mod 7) = 1. According
to the second scenario, all miners found their solutions at the same time; all three instances
(f2000, Sched5, and C_1_4) are regarded as solved and moved from the pool to the archive.
However, for instance f2000, two different solutions are provided and, among the possible
cases, we adopt the following assumptions: the miner who created B3 provided the worse
solution and, after the block had been accepted, was rewarded only for adding the block to
BC; the other miner (providing a solution of better quality) was rewarded for solving the
CO problem instance.

After the beginning of the mining process for the fourth block, four new instances are
submitted and the instance pool contains the following eight instances:

0. C_1_3
1. f600
2. Sched4
3. Sched8
4. pr150_75
5. hole10
6. Ex_25_3
7. C_1_9

Assuming the second scenario, the miners were able to solve two CO problem in-
stances. The first one is pr150_75, which corresponds to B4, as the result of the (mod 8)
operation applied to the block hash value is 4. The block B4 is verified and approved to be
added to the BC. Therefore, a successful miner is rewarded from both sources. The second
instance is Sched8, which was solved by another equally fast miner.

Having removed two instances and assuming that a new one is added, the content of
our pool is now as follows:

0. C_1_3
1. f600
2. Sched4
3. hole10
4. Ex_25_3
5. C_1_9
6. Sched1

Assuming that the first scenario applies to the insertion of B5, the corresponding
instance is the fifth one, as the result of the (mod 7) operation on the block hash value is
four. The solved instance Ex_25_3 is removed from the pool and three new instances are
added at the end of pool (Ex_19_2, C_1_7, and Sched7), increasing the number of active
instances to nine.

0. C_1_3
1. f600
2. Sched4
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3. hole10
4. C_1_9
5. Sched1
6. Ex_19_2
7. C_1_7
8. Sched7

For mining the sixth block, we assume the third scenario. Let the fastest miner solve
instance Ex_19_2, and, although being aware of this information, let the two other miners
decide to continue solving their instances. After only a couple of milliseconds, one of them
manages to solve instance C_1_3, which, according to the (mod 9) operation (giving the
result 0), happens to be the corresponding instance for block B6 (see the upper part of
Figure 7). After the verification and synchronization process is completed, it is decided that
B6 should be included in the BC. Appropriate rewards are provided to the miners and both
instances are moved to the archive.

Figure 7. Adding B6 and resolving the corresponding fork.

Before mining the seventh block, three new instances are submitted and the miners
need to consider the following instance pool:

0. f600
1. Sched4
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2. hole10
3. C_1_9
4. Sched1
5. C_1_7
6. Sched7
7. Ex_15_2
8. Ex_30_3
9. C_1_2

After the last instance (considering that hB7 (mod 10) = 9) is solved following the
first scenario, block B7 is included in the considered BC network, as shown in the lower
part of Figure 7.

In the next step, no instance is added to the pool and, before the eighth block is mined,
the following instances are available in the pool:

0. f600
1. Sched4
2. hole10
3. C_1_9
4. Sched1
5. C_1_7
6. Sched7
7. Ex_15_2
8. Ex_30_3

According to scenario 2, four instances are solved at approximately the same time,
C_1_9, corresponding to block B8 as hB8 (mod 9) = 3. This instance resulted in both
rewards being given to the miner who solved it, whereas the remaining three miners
received rewards only for solving instances Sched4, Sched1, and Ex_15_2.

When the ninth block is to be mined, three instance are appended, increasing the pool
size to 8:

0. f600
1. hole10
2. C_1_7
3. Sched7
4. Ex_30_3
5. Sched6
6. C_1_5
7. Sched10

In this case, we assume scenario 2 with the following outcome. The miner composing
block B9 solved instance Sched7 (hB9 (mod 8) = 3). The two other miners provided
solutions for the instance f600, and the one reporting the better solution was rewarded.
Finally, the fourth miner solved instance C_1_7, and all three instances were removed from
the pool.

The next state of the instance pool is obtained by appending five new instances:

0. hole10
1. Ex_30_3
2. Sched6
3. C_1_5
4. Sched10
5. C_1_6
6. Sched2
7. Sched3
8. C_1_8
9. Sched9
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Following scenario 3, the fastest miner solved instance C_1_6 as hB10 (mod 10) = 5.
With a slightly increased effort, two more instances (Sched6 and Ex_30_3) were solved;
however, the miners collected rewards only from customers.

After the above-mentioned three instances are removed from the pool, for the mining
of the last block, the following seven instances remain:

0. hole10
1. C_1_5
2. Sched10
3. Sched2
4. Sched3
5. C_1_8
6. Sched9

When mining the eleventh block, scenario 2 is applied: instance hole10 corresponds to
block B11 (hB11 (mod 7) = 0), whereas the solution for Sched2 is also provided without
adding the corresponding block.

Meanwhile, four new instances are submitted in the pool, and our simulation of this
small example is completed with the following nine active instances:

0. C_1_5
1. Sched10
2. Sched3
3. C_1_8
4. Sched9
5. Ex_26_2
6. Ex_35_3
7. hole8
8. Ex_31_2

However, in the real case, new blocks and new instances need to be created continuously.

5. Discussion
5.1. Comments on Simulation Results

In Table 3 we summarize the results and here we provide a point-by-point discussion
of the takeaways of the simulation. Each row of Table 3 corresponds to the inclusion of one
block into the BC. The block identification is presented in the first column. The state of an
instance pool is given in the second column, whereas the third column contains the list of
solved instances with the solution time, presented in brackets. The instance corresponding
to the added block is presented in bold. The cumulative number of solved instances is
given in the last column.

From the performed simulation, as summarized in Table 3, it can be seen that we solved
25 instances of various CO problems while adding the considered 11 blocks. Due to the
fact that the times required for solving instances were almost negligible, their influence on
the decision to accept the block were not the most significant. The time at which the miner
started the mining process, as well as the duration of the verification and synchronization
processes, were the dominant factors when deciding on the block to be included in the BC.

We cannot precisely compute the energy savings because we do not have knowledge
about the computational power required to build (mine) the corresponding 11 blocks in the
original part taken from the Ropsten test network. Moreover, the results that we presented
might not be repeatable due to the distributed and stochastic nature of the mining process.
However, the benefits of our approach are clearly evident from the fact that the employed
resources enable not only the addition of new blocks, but also the solution of some real-life
CO problem instances provided by customers.

The described process can be performed as long as there are instances to be solved and
blocks to be added. In this simulation, we assumed that there was an adequate number of
instances. Otherwise, the classical PoW or some other type of consensus protocol should be
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performed. It is always possible that some miners may prefer to execute the PoW process
rather than the PoUW process, even if the pool of instances is not empty. Therefore, the
hybrid variant may be an appropriate approach and, although it is out of the scope of this
paper, we believe that its realization would be straightforward.

Table 3. Summary of simulation results.

Block Pool of Instances Solved Instances (Time) # Solved

B1 Ex_20_3, f1000, C_1_1 Ex_20_3 (0.0027), f1000 (0.5828),
C_1_1 (1.4114)

3

B2
C_1_3, f2000, Ex_22_2,
C_1_4, Sched5, f600

Ex_22_2 (0.0248) 4

B3
C_1_3, f2000, C_1_4,
Sched5, f600, Sched4, Sched8

f2000 (1.4957), Sched5 (0.0012), C_1_4 (1.2769) 7

B4
C_1_3, f600, Sched4, Sched8, pr150_75, hole10,
Ex_25_3, C_1_9

pr150_75 (0.3384), Sched8 (0.0002) 9

B5
C_1_3, f600, Sched4, hole10,
Ex_25_3, C_1_9, Sched1

Ex_25_3 (0.0444) 10

B6
C_1_3, f600, Sched4, hole10,
C_1_9, Sched1, Ex_19_2, C_1_7, Sched7

Ex_19_2 (0.0020), C_1_3 (0.7260) 12

B7
f600, Sched4, hole10, C_1_9, Sched1, C_1_7,
Sched7, Ex_15_2, Ex_30_3, C_1_2

C_1_2 (1.4992) 13

B8
f600, Sched4, hole10, C_1_9, Sched1,
C_1_7, Sched7, Ex_15_2, Ex_30_3

C_1_9 (0.0003), Sched4 (0.0001),
Sched1 (0.0001), Ex_15_2 (0.0050)

17

B9
f600, hole10, C_1_7, Sched7, Ex_30_3, Sched6,
C_1_5, Sched10

Sched7 (0.0002), f600 (0.4741), C_1_7 (0.5858) 20

B10
hole10, Ex_30_3, Sched6, C_1_5, Sched10,
C_1_6, Sched2, Sched3, C_1_8, Sched9

C_1_6 (0.8465), Sched6 (0.0007),
Ex_30_3 (0.1481)

23

B11
hole10, C_1_5, Sched10, Sched2,
Sched3, C_1_8, Sched9

hole10 (0.1506), Sched2 (0.0008) 25

5.2. Challenges

In order to develop a successful PoUW consensus protocol, it is necessary to consider
the challenges that we addressed throughout our work. Table 4 summarizes the challenges
and we provide a point-by-point discussion below of the challenges and how each of them
was resolved.

Table 4. Summary of identified challenges.

Challenge ID Short Name Long Name

1 Submission Privileges Who is allowed to submit the CO problem instances

2 Problem Range Which CO problems are allowed for submitting the
corresponding instances

3 Problem–Block
Correspondence

The correspondence between CO problem in-
stances and the composed block

4 Ensuring Usefulness
The number of CO problem instances should be
adequate to ensure usefulness and make the block–
instance correspondence meaningful

5 Controlling Hardness The hardness of CO problem instances should be
controlled
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Table 4. Cont.

Challenge ID Short Name Long Name

6 Efficient Hardware
Exploitation

Efficient exploitation of dedicated hardware al-
ready owned by miners

7 Data Management and
Malicious Behavior

Addressing various types of malicious behavior in
managing data

8 Increasing Efficiency

Increasing the efficiency of the whole system by dis-
tributing the work among the available resources
of each miner or among several miners (compris-
ing the pool of miners) and considering the arising
security issues

1. Submission Privileges
Description: In some of the papers considering PoUW-based consensus protocols,
there is a special type of user that can submit CO problem instances. They need to
provide problem input data and incentives for the miners who solve them.
Challenge resolution: We introduced a new category of users, customers, who pay
to obtain high-quality solutions for the provided instances of real-life CO problems.
Thus, we resolved challenge 1 regarding who is allowed to submit the CO problem
instances. Customers can play any other role in the BC network; specifically, they
could be considered basic users, because their payments should represent regular
BC transactions.

2. Problem Range
Description: The majority of prior papers considered a particular CO problem (e.g.,
TSP) for which the structure of the input data was known (i.e., the number of cities, dis-
tances between them, and optionally the pickup/delivery quantities, etc.). However,
such an approach is very limited and the inclusion of various CO problems in these
considerations may be more beneficial. On the other hand, in such a case, a proper
user interface differentiating input data for distinct CO problems, as well as the corre-
sponding solution methods, should be provided. In [8,10] the authors proposed the
use of a generic solution framework that can accommodate numerous CO problems.
This approach requires a pre-processing step in which the submitted CO problem
instance is transformed into the form that is accepted by the generic framework.
Challenge resolution: We envisioned that customers could submit instances of any
CO problem of their choosing. The reasoning behind a resolution of challenge 2 in
this manner is the fact that the number of clients requiring solutions for an instance
of any particular problem may be negligible, whereas the number of CO problems
and their variants is limitless for all practical purposes. In our COCP framework,
CO problem instances are specified by a special kind of transaction or by a smart
contract containing all the information necessary to decode which CO problem is to be
considered and to select the appropriate solution method. We also envision the ease
of appending new modules for different types or variants of CO problems. Expecting
customers to provide algorithms for their CO problems (as is suggested in [9]) is
reasonable only for scientific purposes. Otherwise, it is necessary to provide efficient
solution methods as a part of the BC software system. Numerous optimization
methods are available in open-source formats on the Internet.

3. Problem–Block Correspondence
Description: In the classical PoW, the nonce represents an adequate correspondence
between the composed block and the work performed by the miner to publish it.
When the PoUW is applied, this correspondence should be substituted by selecting
an adequate submitted CO problem instance. It is important that the block structure
refers to exactly one of the submitted instances. Some authors [8,10] use a nonce value
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(with the original meaning) to prove that a large number of solutions has been visited
before an attempt to publish a composed block.
Challenge resolution: When a pool of various instances is established, resolving
challenge 3 involves choosing the instance that corresponds to the composed block,
mimicking the connection between the hash value of a block and the nonce in the
PoW-based consensus protocols. Only in a few papers in the literature is this corre-
spondence problem mentioned; however, no adequate solution has been provided.
The authors in [10] assumed that each instance has priority and the miners selected
instances in accordance with that priority without specifying any more details. In [9]
the authors suggested always dealing with a set of instances, rather than using only
one. The authors also included mini-blocks that are put between actual blocks and
each of them corresponds to one of the CO problem instances; however, the precise
matching method is not provided.
We resolved this challenge by performing a modulo operation (mod (·)) between the
hash value of the composed block and the number of instances currently available in
the instance pool. Note that resolving this challenge also makes it very difficult, if not
impossible, for a miner to choose instances to work on at will. The state of the instance
pool at any moment should be common knowledge among all the BC participants.
This is easy to ensure, bearing in mind that each instance has a timestamp marking
the time of its submission. To ensure diversity in the block–instance correspondence,
the number of instances in the pool has to be at least as large as the number of miners.
This requirement is not strict: COCP can work correctly even if it is not fulfilled.

4. Ensuring Usefulness
Description: The number of submitted CO problem instances must be as large as
possible so that different blocks always correspond to different CO instances. In
addition, the number of miners solving the same instance (during the process of
mining a new block) decreases and the expected time for solving the corresponding
CO problem instance increases. To estimate the number of required CO instances,
we considered several use cases. The Bitcoin block insertion frequency is 10–15 min,
and we require at least four to six instances per hour, i.e., 96–144 instances per day
to ensure an instance for each inserted block. In some of the Ethereum BC systems,
blocks are inserted every 10–15 s, and we need to provide 240–360 instances per
hour. To the best of our knowledge, this problem has not been discussed in the
relevant literature.
Challenge resolution: The number of customers who would provide instances in a
timely fashion is very important if we want COCP to perform useful work at all times.
Customers such as delivery services (providing instances of various vehicle routing
problems, especially in urban logistics), production companies, VLSI producers (who
model the layout and connections between components through instances of the
(MAX-)SAT problem), team builders or advertisers (who need to group their users into
compact clusters/communities), and schedulers for cloud resources (especially when
relatively small computing equipment has been rented for the execution of a large
number of simple tasks), could jointly generate large numbers of instances. However,
if we face a lack of CO problem instances we could generate classical cryptographic
puzzles to represent CO problem instances and increase the instance pool.

5. Controlling Hardness
Description: It is very important to consider the trade-offs involved in keeping the
complexities (i.e., the expected solution times) of all submitted CO problem instances
very similar, even though it is very difficult to predict their complexities in advance.
If miners obtain instances of lower complexity they might have a higher chance of
solving the corresponding instance and obtaining an award. However, solving easy
instances could be useful in some cases.
Challenge resolution: In our study we assumed that both hard and easy instances
were important for customers. Easy instances can be solved quickly and the solution
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could be provided to customers faster than if the instance was hard. The correspond-
ing miners are rewarded accordingly. It may happen that some of the submitted CO
problem instances are very hard, preventing the miners from solve them efficiently
and thus introducing latency into the PoUW consensus protocol. However, in the
PoUW it is not important to obtain an optimal solution of the considered CO instance.
One of the input data corresponds to the solution threshold, i.e., the bound on the
desired objective function value. For example, if we are addressing an instance of the
TSP problem, the customer should specify the largest acceptable length of the resulting
tour. As soon as the miner finds a solution with an objective function smaller than the
given threshold, they can publish the corresponding block. If the instance is too hard
and is not solved before another block is announced, it is returned to the instance
pool for another solution attempt (as explained in Section 3.1). Solution methods are
usually stochastic heuristics methods and each run may provide a different outcome.
Each instance can be granted multiple solution attempts as long as its deadline is not
passed. If the time required to obtain the desired quality solution is over the deadline,
the instance is removed from the instance pool, and the customer may submit the
instance again with an adjusted deadline value. To decrease the number of unusable
instances, the optimization methods must be implemented in such a way as to accept
the current best-known solution as an input parameter, i.e., to enable the continuation
of the solution process. In such a way, it is possible to increase the time allowed to
solve extremely hard instances. In general, NP-hard problems do not become easier
when a good solution candidate is provided. However, in some cases it could help to
solve them faster and make it possible to decrease the number of unusable instances.
To be able to guarantee that the blocks are added in an approximately regular time
interval, we set the stopping criterion of heuristic algorithms to the maximum CPU
time, calculated in correspondence with the block insertion frequency. As the mining
process is highly concurrent, we expect that at least one miner will be able to solve the
instance within the given CPU time limit. However, if some of the instances are too
easy, the corresponding blocks may be added more frequently. Therefore, we plan to
include an instance pre-processing phase, in which an estimation of its hardness will
be performed. This phase would enable us to balance the work of miners by requiring
them to solve one hard instance or a group of several easy instances. The estimation
of instance hardness is related to predicting the performance of stochastic heuristic
algorithms. It is not an easy task; however, it has been studied by the CO research
community and some results have already been published. It has been shown in
the literature that stochastic (randomized) algorithms (solution methods based on
a random number generator) exhibit exponential run-time distributions [79]. The
question of predicting the performance of such algorithms is addressed by building
so-called empirical hardness models, which take into account the parameters/features
of the corresponding hard CO problem instances, as well as the algorithm’s parameter
settings. A comprehensive review of different instance features and models can be
found in [80]. The application of these methods in practice is a part of ongoing work.
The lack of a pre-processing phase for the estimation of the instance hardness does
not impede the proposed framework. Although some miners may need to solve
easier instances, and some miners need to solve harder ones, the robustness of the
system to this is the same as the robustness of the classic PoW regarding the luck of
some miners.
In order to prove that the miners invested a certain amount of work when executing
the proof-of-solution consensus protocol, in [9] it was necessary to calculate the hash
value of each solution and use it as a nonce in the classical PoW sense. This means
that the miner had to evaluate as many solutions as was necessary to find the proper
nonce value. In our approach, it is possible to use the number of objective function
evaluations as the stopping criterion for the applied optimization method and to
obtain a similar effect.
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6. Efficient Hardware Exploitation
Description: In the classical PoW, the miners perform a large number of simple oper-
ations and they are equipped with suitable hardware resources. On the other hand,
dealing with the selected CO problem instances in PoUW-based consensus protocols
does not exploit hardware resources that are usually owned by a typical miner.
Challenge resolution: Dealing with the selected CO problem usually does not require
any special resources that are considered standard in the classical BC networks. There-
fore, it may occur that the miners cannot engage their existing expensive hardware
resources. In the literature, it has been suggested to implement a hybrid approach
(involving both the PoW and the PoUW methods) and to allow miners to decide
which consensus protocol they want to use. In order to increase their rewards, miners
are motivated to use the PoUW approach (i.e., to select and solve an instance from the
pool). We propose considering an alternative approach: To develop optimization algo-
rithms suitable for execution on the hardware already owned by miners. For example,
we developed a GPU-based metaheuristic approach to the MAX-SAT problem.

7. Data Management and Malicious Behavior
Description: Some of the BC data security issues with respect to the malicious be-
havior of users include changing input or solution data and introducing confusion
between an instance and its solution, stealing a solution from a successful miner,
selfish mining, announcing a new block before obtaining a valid solution and hoping
that the solution will be ready while the verifiers approve the block, and accessing
instances and solutions from the archive.
Challenge resolution: Regarding BC data security issues, we focused on the parts
we introduced: input data and solution data for CO problem instances. Both data
types can be very large and are thus not included in blocks of the BC system. Instead,
they are stored in some public location that is accessible to everyone. For the input
data, the location address is provided and included in the corresponding block via a
transaction or via a smart contract. Upon finding a valid solution, the miner stores it
in a private location, which is predefined and known to all participants. The name of
the file containing the solution is the same as the name of a file with the instance input
data and the solution file is always read-only. In addition to the input data location,
the miner stores a pointer to the transaction or a smart contract that corresponds to
the solved CO problem instance in the nonce field of the block’s header, enabling all
participants to access its input data.
The first example of data security issue involves preventing miners from performing
selfish mining and other types of known frauds [81,82]. For example, miners could
play the role of a customer and submit instances for which they already have high-
quality solutions with the aim of composing and adding blocks to the BC without
much effort. This is strongly discouraged by providing an adequate number of CO
problem instances. Namely, when the number of instances in the pool is adequate,
the effort needed to compose the block corresponding to any particular instance is
very similar to the effort needed to solve the instance. Additionally, this is further
discouraged as the malevolent miner must form a block that would provide a hash
value that would pair up with the index of the instance that they posted, after applying
the modulo operation. This is a difficult task to complete because the hash value of
the block cannot be predicted and must always be calculated. In addition, the index
of the problem may change over time because the content of the instance pool may be
updated. It should also be noted that the malevolent miner cannot form the block in
advance that pairs up with his instance, as he will not know the index of the instance
until the instance enters the instance pool, which happens only when the transaction
with the instance enters the BC. Moreover, the cost of announcing a CO problem
instance is greater than the reward provided for its solution.
The same argument holds for an attempt by a malicious miner to steal a solution from
another miner and announce it as their own.
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The miner could try to announce a new block before obtaining a valid solution,
hoping to obtain a valid solution before the verifiers approve the block. To prevent
this security issue, the published block should contain both the hash value of the
instance input data and of the solution in field2 (the mixHash field in our example).
Some malicious users may try to change the input data of the CO problem instance
and introduce confusion between instance and its solution. To prevent this security
issue, a hash value of the problem data is stored in the transaction. Thus, any change
can be detected by comparing this hash value with the one calculated from the file
pointed by the location address.
In the process of block verification, the verifiers access the instance data via the
information provided in the field1 field and the solution obtained from the miner’s
private location. Verification consists of reconstructing the hash value of the solution
from field2 by performing the xor operation with the CO problem instance’s hash.
Additionally, they check whether the miner ID corresponds to the miner ID associated
with the solution saved in the instance archive. After this is completed, the verifier
has all the data needed to validate the block. The hash value of the CO problem
instance is calculated based on the instance data from the pool and compared with
the corresponding hash value provided by the customer. On the other hand, the
reconstructed hash of the solution is compared with the hash value calculated from
the solution itself. If any pair of hashes does not contain the same values, we can
detect malicious behavior and discard the corresponding block.
To provide unhindered access to the solved CO problem instances and their solutions,
the instance archive must be implemented in a distributed manner. Each instance and
solution that are stored must be available at any time to the BC users because they
need to perform mining and verification. There are already some distributed storage
solutions that may be suitable for hosting the instance archive, such as SWARM
(https://www.ethswarm.org/ accessed on 4 August 2022) and the InterPlanetary File
System (https://ipfs.tech/ accessed on 4 August 2022). Both of these systems divide
files into chunks and store multiple copies on various nodes, providing stable access
to stored files that are resistant to tampering.

8. Increasing Efficiency
Description: Distributed computing may significantly increase the efficiency of
PoUW-based consensus protocols; however, this requires proper (parallel) optimiza-
tion algorithms. Another type of distributed mining involves cooperation between
miners in so-called pools of miners, specifically, a number of miners can team up in
order to solve mining problems together and split the rewards accordingly. The
main issue related to pools of miners considers the honesty of each pool member in
maximally contributing toward the joint work. A dishonest miner could announce
the solution as their own or even sell the solution to another mining pool.
Challenge resolution: Distributed computing may significantly increase the efficiency
of PoUW-based consensus protocols, however, this requires proper (parallel) optimiza-
tion algorithms. Developing parallel optimization methods, both exact and heuristic,
is a very fruitful field of research and the resulting algorithms can be efficiently used
in COCP framework.
Another type of distributed mining involves cooperation between the miners in so-
called pools of miners, as considered in scenario 4: a group of miners can decide to work
together and use their resources in order to find a solution to the mining problem and
split the reward. These pools have an entity called a pool manager who forms a block
and passes tasks to members of the pool for completion in order to mine the block.
When the block is mined, the whole mining pool receives a reward which needs to
be shared among its members based on the pool’s policy. Pools can have different
policies, but they can be divided in two basic groups. One group consists of policies
where the members of the pool receive payments immediately after completing a task
given by the pool manager, whereas the policies of the other group split the reward of

https://www.ethswarm.org/
https://ipfs.tech/
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the mined block to the members based on the amount of the tasks they have solved.
However, pool mining can have some drawbacks. First of all, the miners who join
a pool must follow the decisions of the mining pool, and cannot make decisions by
themselves when it comes to mining. Members of a pool also depend on the pool
manager, who may be malicious, which may harm them. On the other hand, some
of the members of the pool may exhibit malicious behavior, such as announcing the
solution as their own or even selling the solution to another mining pool. Although
this is a very important issue regarding the maintenance of the BC, it is outside the
scope of our current research.

6. Conclusions

We have presented a new consensus protocol of the proof-of-useful-work (PoUW) type
that is based on solving real-life instances of combinatorial optimization (CO) problems
instead of traditional cryptographic puzzles. We named the protocol the combinatorial
optimization consensus protocol (COCP). The main advantage of COCP is the efficient
utilization of computing resources. The new type of blockchain user (entity), the customer,
is introduced. These users can be organizations or companies that deal with optimization
tasks in their everyday business.

We performed a simulation of a PoUW-based blockchain network to explore the
COCP concept, using a small example consisting of 11 blocks from the publicly available
Ethereum Ropsten network. The inclusion of each block was performed according to one
of the possible scenarios that could occur during the block mining process. Our simulation
illustrated the benefits of COCP over the classical PoW approach. As a result of our
literature review and protocol implementation, we identified several challenges that should
be resolved in order to implement a useful, secure, and efficient PoUW consensus protocol.
We described these challenges, as well as the ways to resolve them.

In our future work, we plan to conduct a comprehensive implementation of an
entire blockchain system that will include our consensus protocol and to increase its
efficiency by designing a pool of miners so that miners can cooperate while solving
combinatorial problems.
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Abbreviations
The following abbreviations and acronyms are used in this manuscript:

ANN Artificial neural network
ASIC Application-specific integrated circuit
AVRP Asymmetric vehicle routing problem
BC BlockChain
BFT Byzantine fault tolerance
CNF Conjunctive normal form
CO Combinatorial optimization
COCP Combinatorial optimization consensus protocol
CPU Central processing unit
DG Directed graph
DIPS Difficulty-based incentives for problem solving
DPLS Doubly parallel local search
DPS Distributed problem solving
GPU Graphics processing unit
GRASP Greedy randomized adaptive search procedure
GVNS General variable neighborhood search
IoT Internet-of-Things
MAX-SAT Maximum satisfiability problem
MILP Mixed integer linear programming
ML Machine learning
MLS Multistart local search
NSGA-II Non-dominated sorting genetic algorithm II
P2P Peer-to-Peer
PCC Proof-of-Collatz conjecture
PII Personally identifiable information
PoA Proof-of-authority
PoAc Proof-of-activity
PoB Proof-of-burn
PoC Proof-of-capacity
PoCo Proof-of-concept
PoET Proof-of-elapsed-time
PoI Proof-of-importance
PoS Proof-of-stake
PoS Proof-of-stake
PoUW Proof-of-useful-work
PoW Proof-of-work
TSP Traveling salesman problem
VLSI Very-large-scale integration
VRP Vehicle routing problem

Appendix A. The Considered BC Example

The eleven original consecutive blocks obtained from Ethereum’s test network Ropsten,
given in the JSON format. The red color indicates the changed values of the corresponding
fields received for the same blocks when they were mined in the proposed COCP.

{
"difficulty": "0x292a4b23",
"extraData":
"0xd983010507846765746887676f312e372e348777696e646f7773",
"gasLimit": "0x47e7c4",
"gasUsed": "0x5d605",
"logsBloom":
"0x040020000000400100000000000000000005000000000000000000000
000000000000000000000000000000000000000000040000020000000001
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000000000000400000000000000000000000000000000000000000000000
000000008000000000000000204000000000080000008004000000802000
000020000000000000000000088000000000000000000004001802000000
000000000000000000000800000000000000000000201000000000000001
000000000000000000004000000000000000000202000000000000420000
000000000000000000000000000200000000000000000000000000000000
40008000000008000000000000000000000",
"miner": "0x01711853335f857442ef6f349b2467c531731318",
"mixHash":
"0x86e6b640aff07166247148c75a704e147379d2aaa7e8dde21eaa5a8a9
3442994",
"mixHash":
"0xea1c58bb55a623fc2c685ef361f5d868ff58874755b8594039bfb19b2
eef1831",
"nonce": "0x553af8d427c002b4",
"nonce": "0x000000435F315F31",
"number": "0x87a23",
"parentHash":
"0x99f79cb280e7f736c876450672b4c1ab85e47d6751223c6302ca889e3
0fbb3cf",
"receiptsRoot":
"0xe78338ba52991540d0bb5aa34943047e5ba2d2788d97e40fc72ac678c
fbaaa4a",
"sha3Uncles":
"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd4
0d49347",
"stateRoot":
"0x18ec19011134a8a31fd8f2031eca5971574b0438513d8d4c9f04fa4bf
9d4304a",
"timestamp": "0x58a7eefd",
"transactionsRoot":
"0x4078301176c351b83778465cf51e486e61d6e4957cc41bf1f52f72f27
6f03fd7"

}
{

"difficulty": "0x29200099",
"extraData":
"0xd983010507846765746887676f312e372e348777696e646f7773",
"gasLimit": "0x47e7c4",
"gasUsed": "0x2e33c",
"logsBloom":
"0x000000000000400100000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000020000000000
000000000000000000000000000000000000000000000000000000000000
000000008000000000000000000000000000000000000000000000802000
000000000000000000000000000000000000000000000004001802000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000400000
000000000000000000000000000000000000000000000000000000000000
40000000000000000000000000000000000",
"miner": "0x01711853335f857442ef6f349b2467c531731318",
"mixHash":
"0x9d4ef45135296e5f0bc6895c907760497ce4c9a85952764a0f9ffec5d
5ee772b",
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"mixHash":
"0x36b69851360ff94d7064185e62cfbf62b9264a0579cc014acd1069cf1
4ce5298",
"nonce": "0x2c05d3c0c62e8ab9",
"nonce": "0x0045785f32325f32",
"number": "0x87a24",
"parentHash":
"0x0df7a045fb360d4b232bdc526914312bc4d23aab7f11225acf63d4485
9bf11bd",
"parentHash":
"0x5084776d443d1f0737b074983784aa3f7a79484be255c0a9f2cec7303
7f9d48c",
"receiptsRoot":
"0xdfc38158eea4212cac3ed677a7696e7709a97c4fa00b963c1831a0273
76d47c9",
"sha3Uncles":
"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd4
0d49347",
"stateRoot":
"0x85a095e2c1eb7abafeabcf31d0dfb566d99948ce45768ada57de5e965
4306d26",
"timestamp": "0x58a7ef20",
"transactionsRoot":
"0xcd28c6687851dc52e885cd37fcbc81b1b8f17d078e177643899fd9642
6df7da6"

}
{

"difficulty": "0x291adca1",
"extraData":
"0xd983010507846765746887676f312e372e348777696e646f7773",
"gasLimit": "0x47e7c4",
"gasUsed": "0x4b7be",
"logsBloom":
"0x000000000000400100000000000000000000000000000000000000000
000200000000000000000000000000400000000000000000020000000000
000000000000000000000000000000000010000000000000000000000000
000000008000000000002000000000000000000000000000000000802000
000000000000000000000000000000000000000000000004001802000000
000000000000000000000000000000000000000400000000000000000000
000000000000000000000000000000000000000000000000000000400000
000000000000000001000000000000000000000000000000000000000000
40000000000000000000000000000000000",
"miner": "0x01711853335f857442ef6f349b2467c531731318",
"mixHash":
"0x436b15cb54b1d4278af0d2db7ce83ba6f853afe0763c69ea15f6f09a2
0ce160e",
"mixHash":
"0xdc66687a253a78f0bd0eb703c8cf6a5e2df35703d3be8360d7d595ecc
25e0800",
"nonce": "0xdd560fea7ff557c0",
"nonce": "0x0000006632303030",
"number": "0x87a25",
"parentHash":
"0x7f1ca6ac202856bce47b4d4f60c5e8374e11a0066331d200943e355be
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0a3ae28",
"parentHash":
"0x717eecaa1fa9d8bdadd31b72e9f22fe3c907f0f583872637bcaffa533
67778b5",
"receiptsRoot":
"0x23153f7a0aede4b7caf40b4fb0f1e82dd632711ac6d85e7f79b032478
fba96cd",
"sha3Uncles":
"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd4
0d49347",
"stateRoot":
"0xcadb4765a517e660f3d7b9f0b7e023f5856d4ff2b8d342e2c56d7901a
21fc27a",
"timestamp": "0x58a7ef3d",
"transactionsRoot":
"0x2a65f30274b8a6282b9583fd6f761f26783dd12934892e73482664903
d15ee30"

}
{

"difficulty": "0x291adca9",
"extraData":
"0xd983010507846765746887676f312e372e348777696e646f7773",
"gasLimit": "0x47e7c4",
"gasUsed": "0x5e552",
"logsBloom":
"0x040020000000400100000000000000000045000000000000000000200
000000000000000100000000004000000000000000000000020000000001
000000000000000000000000000000000000000000000000000000000000
000080008000000000000000204400001000000000008004000000802000
000000000000000000000000088000000000010000000004001802000000
000000000000000000000880000000000000000000001000000000000000
000000000000000000004000000100000001000002000020000000400000
000000000000000000000004000200000000000000000000000000000000
40008000000008002000000000000004000",
"miner": "0x01711853335f857442ef6f349b2467c531731318",
"mixHash":
"0x9825409c744256b12b8e02986438430c98ee2ecdd809bd698e990add4
3bfd92c",
"mixHash":
"0xcfd517d71972f880b98198c8d2726013185b1139aab09ea937a48daf3
b2acc29",
"nonce": "0xf5c9d9c6a58206a3",
"nonce": "0x70723135305f3735",
"number": "0x87a26",
"parentHash":
"0x61610e246d607f71f853dcd9d2ab48e06e29a7fb85871fe0d58956c25
dad57a3",
"parentHash":
"0x6a41a9adc92d21aa6cba24e26af80e39c84e1b503a5b54b22125202a7
4ae9977",
"receiptsRoot":
"0xcfdf126013056b7b322974c323cbcad93ba702a0808bc7c344163f133
36299ef",
"sha3Uncles":
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"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd4
0d49347",
"stateRoot":
"0x9ab0feb0a2d705c50b06f56a3294964c7d4b63305dbc21cff86cfc48e
18c7a0e",
"timestamp": "0x58a7ef4c",
"transactionsRoot":
"0xa161a37dc01456eccfb394f1969ed7373e561d3af8060886f7498e18d
e5d37ce"

}
{

"difficulty": "0x291095fb",
"extraData":
"0xd983010507846765746887676f312e372e348777696e646f7773",
"gasLimit": "0x47e7c4",
"gasUsed": "0x4b7be",
"logsBloom":
"0x000000000000400100000000000000000000000000000000000000000
000200000000000000000000000000400000000000000000020000000000
000000000000000000000000000000000010000000000000000000000000
000000008000000000002000000000000000000000000000000000802000
000000000000000000000000000000000000000000000004001802000000
000000000000000000000000000000000000000400000000000000000000
000000000000000000000000000000000000000000000000000000400000
000000000000000001000000000000000000000000000000000000000000
40000000000000000000000000000000000",
"miner": "0x01711853335f857442ef6f349b2467c531731318",
"mixHash":
"0xc0a457799045d4d91f763716b60b3979eda0602952c4f08d68ae6ba8e
af6d46d",
"mixHash":
"0x9371110f43616e458f41e9cd7f5c9d9257ed60f60df95ec253d5d68dd
1ec4532",
"nonce": "0x097cd39a1aba1a34",
"nonce": "0x0045785f32355f33",
"number": "0x87a27",
"parentHash":
"0x1db092f0a10c3bbf86d97d789cd4f2a147250d4dbda17b733d177dfb5
2f8f68c",
"parentHash":
"0x0x5cbfd45af1008d023b1052c64b56edcf4eb8dca655ea34633b3475bf4
63df951",
"receiptsRoot":
"0xd62458880481ff44977daf2390081a5c56f077e14dc3c139fb0388dbd
fcc41c6",
"sha3Uncles":
"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd4
0d49347",
"stateRoot":
"0x8464d5411e71aecd93d934d5e386c0208916e56a8448e18b7150889ea
b0a0158",
"timestamp": "0x58a7ef6b",
"transactionsRoot":
"0x176dc803b45839874cac4797be2a01a259b3b4fd00ec1c9464fa46655
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fbe7a16"
}
{

"difficulty": "0x29109603",
"extraData":
"0xd883010509846765746887676f312e372e348664617277696e",
"gasLimit": "0x47e7c4",
"gasUsed": "0x2e33c",
"logsBloom":
"0x000000000000400100000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000020000000000
000000000000000000000000000000000000000000000000000000000000
000000008000000000000000000000000000000000000000000000802000
000000000000000000000000000000000000000000000004001802000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000400000
000000000000000000000000000000000000000000000000000000000000
40000000000000000000000000000000000",
"miner": "0xc9d904c6ec8fdbd4099bf5471182811883871dcd",
"mixHash":
"0x6c3059ec3bbc99a0993c745eb948490f47f7fc853b7cb59b13bb59cfa
1553900",
"mixHash":
"0x3941410c8c70f4c1379a12ac8474526856849e9513c3132b44932b5e7
9485891",
"nonce": "0x7fc99cdecc451bb6",
"nonce": "0x000000435f315f33",
"number": "0x87a28",
"parentHash":
"0xc250fc02118b1dd346ee23e0608a19ed6fb471b672ffc527186d98acd
6d1daa4",
"parentHash":
"0x32e66223fcdc6496a5941f09afc8b72384b0982fc23e1b89d9458e701
3ce084d",
"receiptsRoot":
"0xa7c2b62e1ec5ce8035c58e8d15b2d708f813920e9dc6d904a85577a1e
8b9fd86",
"sha3Uncles":
"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd4
0d49347",
"stateRoot":
"0x1d475493385cbc9085e974d64131952692c8947d9a24384bb34c10b93
510278d",
"timestamp": "0x58a7ef77",
"totalDifficulty": "0xa9107ec61598",
"transactionsRoot":
"0xc0ddbce2da1928d4b914bdaea9695775ee28ec867deb7ea85ef15c702
b2a7af9"

}
{

"difficulty": "0x290b73f9",
"extraData":
"0xd983010507846765746887676f312e372e348777696e646f7773",
"gasLimit": "0x47e7c4",
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"gasUsed": "0x454fa",
"logsBloom":
"0x000000000000400100000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000020000000000
000000000000000000000000000000000000000000000000000000000000
000000008000000000000000000000000000000000000000000000802000
000000000000000000000000000000000000000000000004001802000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000400000
000000000000000000000000000000000000000000000000000000000000
40000000000000000000000000000000000",
"miner": "0x01711853335f857442ef6f349b2467c531731318",
"mixHash":
"0x702a0ff777b97c7790b340659e108045808cc0443c1edf64073162bce
daa45ec",
"mixHash":
"0x63dbef7504f20900e68c5d508e2177146f16e63affacafac17e1a6657
9767c47",
"nonce": "0xae827f755a086921",
"nonce": "0x000000435f315f32",
"number": "0x87a29",
"parentHash":
"0xd289b213ec499717ec9f9ea02018014e1865966f65b50319d6f4f1851
31067ab",
"parentHash":
"0x7d989ef89e91dd208459b1939078142aec74b0e5a9aa0c9ae3587a9db
4474eb3",
"receiptsRoot":
"0xdc301b1effba0416779258b38946d517a651f3faa39113b0ff1c4e69d
8e691d2",
"sha3Uncles":
"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd4
0d49347",
"stateRoot":
"0x04b0c8d01a40ff25a618f9c2d624e1fc48757699b67255a59019e5deb
ac26927",
"timestamp": "0x58a7ef94",
"transactionsRoot":
"0x76168830498f3459159ae7a8fa94885a32a994dbc1b15dabd42aeae04
2c4c842"

}
{

"difficulty": "0x29065293",
"extraData":
"0xd883010509846765746887676f312e372e348664617277696e",
"gasLimit": "0x47e7c4",
"gasUsed": "0x2e33c",
"logsBloom":
"0x000000000000400100000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000020000000000
000000000000000000000000000000000000000000000000000000000000
000000008000000000000000000000000000000000000000000000802000
000000000000000000000000000000000000000000000004001802000000
000000000000000000000000000000000000000000000000000000000000
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000000000000000000000000000000000000000000000000000000400000
000000000000000000000000000000000000000000000000000000000000
40000000000000000000000000000000000",
"miner": "0x24f3f53c77f82ed99f72b09be92f3a477d82b5b7",
"mixHash":
"0xfe27cad57a4bfd6858b6aedb518658d6c3c3f934c34abb6e9b37be747
7a4d9da",
"mixHash":
"0x6a417e6f0009d1ab0faf422f91bc0a1428ca9b1cb92094a3a2cbed5e5
aa2f97c",
"nonce": "0x7702ba8141366b20",
"nonce": "0x000000435f315f39",
"number": "0x87a2a",
"parentHash":
"0x6c722229826e83664faef5643a474d9571c33f7e7419832a7557ddc21
1e0be42",
"parentHash":
"0x46e721cf057219b1e4bc4c6b41399bc51f7e91eeb52b67c82e8952d55
60babfe",
"receiptsRoot":
"0x8189dcfb5e4354a58faa3c5201e73f36fe45c7e31d3e6927e45e7fae8
e68f49f",
"sha3Uncles":
"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd4
0d49347",
"stateRoot":
"0x93db5b444d8c456afff0824aabbf9c059cb2829784e0c05a2e243fbed
1da36d3",
"timestamp": "0x58a7efa9",
"totalDifficulty": "0xa910d0d7dc24",
"transactionsRoot":
"0xb31066da735ea182b13a3c642a861af1e8298544f2bbcb247ea179479
f162a4b"

}
{

"difficulty": "0x290b7365",
"extraData":
"0xd983010507846765746887676f312e372e348777696e646f7773",
"gasLimit": "0x47e7c4",
"gasUsed": "0x0",
"logsBloom":
"0x000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000",
"miner": "0x01711853335f857442ef6f349b2467c531731318",
"mixHash":
"0x2f1e295a4a7e67ecf63f7851224272b559d7f8c686d1838cfd9fb52a3
5f90268",
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"mixHash":
"0x43e0e25054e33aeb820b67ecc37ec34dba6b6aac2a6413da162ffa311
f6aa6e0",
"nonce": "0x64de5090560ae962",
"nonce": "0x0000536368656437",
"number": "0x87a2b",
"parentHash":
"0xc98cb05a3d4592ff2ac87ceb7f041a09adb63f5cd7f51b26b36042246
9016e99",
"parentHash":
"0xd140df43ca5087955911cfe6132c7ba729fbad347fb85ac9323dc1d55
f25c53b",
"receiptsRoot":
"0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e
363b421",
"sha3Uncles":
"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd4
0d49347",
"stateRoot":
"0x8bb40bbb3ac87f954b7118186943c79c7040ab0a7a8a58058232b9c54
98cfd71",
"timestamp": "0x58a7efac",
"transactionsRoot":
"0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e
363b421"

}
{

"difficulty": "0x28fc0f23",
"extraData":
"0xd883010509846765746887676f312e372e358664617277696e",
"gasLimit": "0x47e7c4",
"gasUsed": "0x135d77",
"logsBloom":
"0x040020000000400100000000100008000005000000000000000000000
000000000000000120000000000000000000000000040000020000000001
000000000000000000080080000400000000000000081000000000000000
000000008000000000000040204000000000080000008004000000802000
000000000001000000000200088000000000000000000004001802000000
000000000000000000000881000000000000000000001000000000000000
000000000800000000004000400100000000000002001000000000400000
000040000000000000000000000200000000000000000000000000000000
40008000000008000000000000300000000",
"miner": "0xd232442ad7ffb9dd7ec335d1389a5911fe3a266f",
"mixHash":
"0x84bc853012ccf221fe1a5fa6e1c122a73bb2a8775d4bf5d6877abc6af
3788b40",
"mixHash":
"0x2dae13644689205690da7262b23c3df0f3d06175516462b7e6e64c7c4
432c8a8",
"nonce": "0x02989d3405d69573",
"nonce": "0x000000435f315f36",
"number": "0x87a2c",
"parentHash":
"0x8cfaed23d113e6ce073b755c5be16db4efc5f573b4e2c223c809d7a5f
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ad987fe",
"parentHash":
"0xe4dca860f241b0866329d9ac8bb2803097e020cd5a684537f4babf160
849ca0d",
"receiptsRoot":
"0xa63567d134d8686df6ced71cb1965fab03bfe51d3594a8ade98d7b344
3c295bd",
"sha3Uncles":
"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd4
0d49347",
"stateRoot":
"0x98052a21305398deef1fec3549b852c9cd12503c5f798d6028a56e712
368e32f",
"timestamp": "0x58a7efd7",
"transactionsRoot":
"0x6574fe5663f427b094341ad091b8c767ecf7a9b3ee966302bf69ed222
d258186"

}
{

"difficulty": "0x29012eac",
"extraData":
"0xd983010507846765746887676f312e372e348777696e646f7773",
"gasLimit": "0x47e7c4",
"gasUsed": "0x0",
"logsBloom":
"0x000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000",
"miner": "0x01711853335f857442ef6f349b2467c531731318",
"mixHash":
"0x50b77c1b642ed833071aad42512e61fb13ab87589c7cf79f56bafc333
5bdb6cd",
"mixHash":
"0x1e23ecbf189ae48bb67d7c199e745775fd9fb69c636fa423cc6acdb6c
6c96b7e",
"nonce": "0x4272cc62cd0c15e1",
"nonce": "0x0000686f6c653130",
"number": "0x87a2d",
"parentHash":
"0x54f92f3eef2030e7c27b731af1e2fcbadba1000f9baba37d4f398ce70
01502d2",
"parentHash":
"0x30c0b6fa024b2943a0da0f84d5f69ef0dddace14cb1549cf9690dca7f
47762ff",
"receiptsRoot":
"0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e
363b421",
"sha3Uncles":
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"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd4
0d49347",
"stateRoot":
"0xecc415fde444fa236e4dc6af8f7e342dfffd8eb68929a7a29ef16d1fb
83cd2e7",
"timestamp": "0x58a7efdd",
"transactionsRoot":
"0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e
363b421"

}
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