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Abstract: As a new usage of Leibniz integral rule on time scales, we proved some new extensions
of dynamic Gronwall-Pachpatte-type inequalities on time scales. Our results extend some existing
results in the literature. Some integral and discrete inequalities are obtained as special cases of
the main results. The inequalities proved here can be used in the analysis as handy tools to study
the stability, boundedness, existence, uniqueness and oscillation behavior for some kinds of partial
dynamic equations on time scales. Symmetry plays an essential role in determining the correct
methods to solve dynamic inequalities.
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1. Introduction

Gronwall-Bellman’s inequality [1] in the integral form stated: Let 7 and f be continu-
ous and nonnegative functions defined on [4, b], and let 77y be nonnegative constant. Then
the inequality

t
n(t) < mo +/ f(s)rt(s)ds, forall te€ [a,b], 1)
a
implies that

ni(t) < 1o exp(/atf(s)ds) forall t€ [a,b].

Baburao G. Pachpatte [2] proved the discrete version of (1). In particular, he proved
that: If 7t(n), a(n), y(n) are nonnegative sequences defined for n € Ny and a(n) is non-
decreasing for n € Ny, and if

r(n) < a(n) + ¥ y(m)e(n)m € No, @
s=0

then

Symmetry 2022, 14, 1823. https:/ /doi.org/10.3390/sym14091823

https://www.mdpi.com/journal /symmetry


https://doi.org/10.3390/sym14091823
https://doi.org/10.3390/sym14091823
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-2822-4092
https://orcid.org/0000-0003-0387-921X
https://doi.org/10.3390/sym14091823
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14091823?type=check_update&version=1

Symmetry 2022, 14, 1823

2 of 14

Bohner and Peterson [3] unify the integral form (2) and the discrete form (1) by
introducing a dynamic inequality on a time scale T stated: If 77, { are right dense continuous
functions and y > 0 is regressive and right dense continuous functions, then

() < () + tn(;y)'y(ry)An, forall teT,

to

implies
t

m(t) <C(t)+ | eyt o(n)C(n)y(n)Any, forall teT,

to
For Gronwall-Bellman inequalities in two independent variables on time scales, An-
derson [4] studied the following result.

(e ) < alt ) +e(ts) [ [ (rlem)ldepiee,m) + be Vs, 6)

where 7, 4, ¢, d be nonnegative continuous functions defined for (t, s) € T x T, and b be a
nonnegative continuous function for (t,s) € [ty, o) X [t, %) and w € C}(Ry, Ry ) with
w' > 0for r > 0.

Time scales calculus with the objective to unify discrete and continuous analysis was
introduced by S. Hilger [5]. For additional subtleties on time scales, we allude the peruser
to the books by Bohner and Peterson [3,6].

Gronwall-Bellman-type inequalities, which have many applications in the qualitative
and quantitative behavior, like stability, boundedness, existence, uniqueness and oscillation
behavior, have been developed by many mathematicians and several refinements and
extensions have been done to the previous results, we refer the reader to [7-16].

Theorem 1 ([13]). Leibniz Integral Rule on Time Scales. In the following by Y2 (rq, 1) we mean
the delta derivative of ¥ (r1, o) with respect to r1. Similarly, ¥V (r1,r2) is understood. If ¥ , ¥4
and ¥V are continuous, and u,h : T — T are delta differentiable functions, then the following
formulas holds ¥ry € T9.

rrh(r) A h(ry)
(i) /( ¥ (ry, 12 Arz] ; YA (r1,12) Ay + (1) ¥ (o(r1), h(r1)) — ub(r1)
u 1’1
Y(o(r1),u(r1));
o [ v hn) o v -
(ii) /( ¥(ry, 12 Arz] - YV (r1,r2)Ar2 + hY (r1)¥(p(r1),h(r1)) — u” (r1)
u 71
Y(o(r1),u(r)); R
h(r h(rq)
muﬂlwmmw4 _ A;Wmme+WWWMMMm%WWﬂ
u }'1 ury
Y(o(r1),u(r)); .
h(r1) h(r1)
(iv) / ¥, Vrz] = / UV (1, 1) Vs + BV (1) ¥ (o(r1), (1)) — u¥ (1)
u(ry) (1)

¥(p(r1),u(r)).

In this work, by using the results of Theorem 1 (iii), we establish the delayed time
scale case of the inequalities proved in [17]. Further, these results are proved here extend
some known results in [18-20]. Symmetry plays an essential role in determining the correct
methods to solve dynamic inequalities.

2. Fundamental Result

Here we introduce basic result.

Lemma 1. Suppose Ty, Ty are two times scales and a € C(Q = Ty x Ty, R.) is nondecreasing
with respect to (9,t) € Q. Assume that T, ¢, f € C(Q,Ry), o1 € CY(Ty,Ty) and ¢, €
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CY(Ty, Ty) be nondecreasing functions with ¢1(8) < ¢ on Ty, ¢2(t) < t on Ty . Furthermore,
suppose ©, { € C(R4,Ry) are nondecreasing functions with {®,}(¢) > 0 for ¢ > 0, and

</>LHE O(¢) = +oo. If p(0, 1) satisfies

ot <awn+ [M ["densenteenvive @

for (8,t) € Q, then

o0.0 <oy [vaom+ [M [ cenrenvindl  ©

for0 <9 < 8,0 <t <ty where

e A
o $(@71(g))

v Ac
w £(©71(c))’

and (01, t1) € Q is chosen so that

(v [" ™ aemsenTiac)  Dom(y)

Proof. Suppose that a(d,t) > 0. Fixing an arbitrary (&, ty) € (), we define a positive and
nondecreasing function (9, t) by

Y(v) = v>109 >0, Y(+00) = / = +oo, (6)

P2(t
v =attotn)+ [ [ eenseniotnvve @)
0
for0 <89 <9y <%,0<t<ty;<t,then 1/7(190, t) = l[)(l9, i’o) = 0(190, to) and

$(8,1) <O H(y(8,1)). ®)

Taking A-derivative for (7) with employing Theorem 1 (iii), we have

2(t)
wien = o) [ w(ou0) mfer @) 0 (®) 1)y

to

@2(t)
#2(0) [ <o) )f (91(8), 1) (O (Wl (8), 1))V

v 10

IN

IN

(07 lor(0) 920) () [ clor@ OV O

Inequality (9) can be written in the form

Ao (9, 2(t)
sioatay < O [T 0L er(0) 1) (10

Taking A-integral for Inequality (10), obtains

1 2(
Yo < Yoo+ [ /t:” (e (e n) Ve

< Y(ﬂ(ﬂofto))Jr/ﬂ;pl /:2 (g, 1) f (s 1) VnAg.
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Since (9, ty) € Q) is chosen arbitrary,

P10

p(o,t) <Y ! [Y(a(ﬁ,t)) + \

) o (1)
/t :) (¢, 1) f (6, 1) VniAg|. (11)

From (11) and (8) we obtain the desired result (5). We carry out the above procedure
with € > 0 instead of a(¢,t) when a(9,t) = 0 and subsequently lete — 0. [

Remark 1. If we take T = R, 99 = 0 and ty = 0 in Lemma 1, then, inequality (4) becomes the
inequality obtained in ([17] Lemma 2.1).

3. Main Results

In the following theorems, with the help of Leibniz integral rule on time scales,
Theorem 1 (item (iii)), and employing Lemma 1, we establish some new dynamic of
Gronwall-Bellman-Pachpatte-type on time scales.

Theorem 2. Let ¢, a, f, @1 and ¢, be as in Lemma 1. Let 11, Tp € C(Q, Ry). If ¢(9, t) satisfies

1(8)  roa(t)
oige,n) < an+ [" [ anircnioen)
+ [ et vave, )

for (8,t) € Q, then

?1(9)

oo <o v (pon+ [ [anrenvia)} 0

0

for0 <9 < 6,0 <t <ty, whereY is defined by (6) and

1) ro2(t)
pe) =@+ [ [T aen( [Cawnax)vive  as

and (01,t1) € Qis chosen so that

(p(ﬁ, t) + /19 :](0) /t:)zm Tl(QrW)f(G’U)V’?AQ) € Dom(Y‘l).

Proof. By the same steps of the proof of Lemma 1 we can obtain (13), with suitable
changes. [

Remark 2. If we take 7;(0,t) = 0, then Theorem 2 reduces to Lemma 1.

Corollary 1. Let the functions ¢, f, 11, To, a, @1 and ¢y be as in Theorem 2. Further suppose that
g > p > 0are constants. If ¢(98, t) satisfies

1(8)  ra(t)
(0.0 < a0+ [T [ e nifeneen
+ /ﬁ R (x,ﬂ)Ax} Vive, (15)

for (8,t) € Q, then

1

1(8) 2 (1) =
<P(l9,t)§{;7(l9,t)+ ; /t(P 71(917)f(gﬂ7)V77A€} , (16)
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where
p(9,1) = (a(8,6)) T +/(P1(ﬁ) /W(t) Tl(g,n)(/ﬂ: Tz(X/W)AX>V77V€~

% to

Proof. In Theorem 2, by letting ©(¢) = ¢7, {(¢) = ¢ we have

v Ag v Ag q q-p q=pr
Yo)= [ ——o = [ 26> —v," ),0>
0= g g 2 (T ez aso

and )

a-p — a-p
Y~ 1(v) > {voq +qqpv} ,
we obtain the inequality (16). O

Theorem 3. Under the hypotheses of Theorem 2. Suppose ©, {, @ € C(R4,R..) to be nondecreas-
ing functions with {®, {,@}(¢p) > 0 for ¢ > 0 and ¢(9,t) satisfies

o < awo+ [" [" alemlienicmen)
+/190 Tz(X/’Y)C((P(X/’?))AX} Vive, (17)
for (8,t) € Q, then

oo, <0 v (e [+ [M " aensenvasd )} a9

for0 <9 < 8,0 <t <ty, whereY and p are as in (6) and (14) respectively, and

0 Ac
Joy @(©71(Y71(c)))

F(v) = ,02>79 >0, F(400) = +00, (19)

and (91, t1) € Q is chosen so that

[F(P(t%f)H 19:)1(0) /:m T1(€,17)f(977)V17A9} € Dom(F‘l).

Proof. Assume thata(d,t) > 0. Fixing an arbitrary (9, tg) € Q), we define a positive and
nondecreasing function (%, t) by

1(9)  ro2(t)
v = oo+ [" [ aenlrenzecmeecn)
+/ﬂz Tz(X/’?)C(GI’(X/ﬂ))AX} ViV, (20)

for0 <9 <8 <,0<t<ty<ty,then (o, t) = (8, ty) = a(d, tp) and

$(8,t) <O (p(8,1)). (21)
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Taking A-derivative for (20) with employing Theorem 1 (iii), gives

g2 (t)
ot = ot [ nip @) er (0 nIplern (0 1)o@ (pr() 1)

1(9)
+/ﬁ: ! Tz(x,n)é(tﬁ(x,n))Ax] Vi
2 (t)
91 (9) /,: 71 (91(8), 1) [£(91(8), 1) (07 (W (1(8), 1) )@ (O (9 (g1(8), 1))
1(9)
+ [ ez (e i) )ax] (22)
< gt ®L(07 ((e1(9), 92(1))))
[ e s o) na(e @) + [

B

IN

A

(®)
TZ(XJI)AX} V.

From (22), we have

Ag 2(t)
o < O [T @ [fee)ne(e ke e)))

¢1(9)
+ Tz(Xﬂ?)AX} V. (23)

0

Taking A-integral for (23), gives

Yo < voun+ [M ["aen[fene(e wen)
+/ TZ(X,U)AX]V'?AQ

< Y(a(o,t)) +/(Pl /t Flema(e(y(en))
+ /19 ! Tz(X,W)AX] ViiAg.

Since (¥, tp) € Q) is chosen arbitrarily, the last inequality can be rewritten as

1( 2(t)
v <pen+ [" [ aenrene(© o) vine e

Since p(9, t) is a nondecreasing function, an application of Lemma 1 to (24) gives us

Ry P1(9)  roa(t)
po.n <Y (FEp@ )+ [ [T nemsemviag ). @)
0 0
From (21) and (25) we obtain the desired inequality (18).
Now we take the case a(9,t) = 0 for some (4,t) € Q. Let ac(9,t) = a(d,f) +€
for all (4,t) € Q, where € > 0 is arbitrary, then a.(¢,t) > 0 and a.(d,t) € C(Q,R;)

be nondecreasing with respect to (¢,¢) € Q). We carry out the above procedure with
ae(0,t) > 0 instead of a(d,t), and we get

o0,0 <0 v (7 [meto.m + [ [ aemstenviad] ) .

where

P1(8) roa(t) ¢
pe(9,t) = Y(ac(8,1)) /19 /t T g,n)(/l9 Tz(XrW)AX)VUVG-
0 0

Letting € — 0", we obtain (18). The proof is complete. [
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Remark 3. Ifwe take T = R, 89 = 0 and tqg = 0 in Theorem 3, then, inequality (17) becomes the
inequality obtained in ([17] Theorem 2.2 (A_2)).

Corollary 2. Let the functions ¢, a, f, 71, To, @1 and ¢y be as in Theorem 2. Further suppose that
q, p and r are constants with p > 0,r > 0and q > p +r. If $(9, t) satisfies

1(8)  roa(t)
w00 < a@n+ M [ nenleneeneen
+ /ﬂ Reloaily (X,U)Ax} ViV, (26)

for (8,t) € Q, then

1

—p-r —p— 1(8) ra(t) ap
0@,0) < {[p(o, )7 + 2L [P0 Mo mnacy L @

where

pl6.0) = (ato,) T + 2 [ [ o ([Tnonax) vrve

to

Proof. An application of Theorem 3 with @(¢) = ¢7,{(¢) = ¢¥, and @(¢) = ¢" yields the
desired inequality (27). O

Theorem 4. Under the hypotheses of Theorem 3. If ¢(0, t) satisfies

o < awo+ [" [" aenlieniemen)
+ /19 0 rmrz)@@(mn»ww(mn)mx] ViV, @)

for (8,t) € Q, then

¢(8,1) <®—1{Y—1< [po (8,6)+ /:2 ﬂ)VﬂAg])}, (29)

for0 <9 <t,0 <t <ty where

poto.) = Fxtato, )+ [ [ aie) ([ mtvmaxn) vive,

and (01,t1) € Qis chosen so that

P2(
[po (0,t) + / ’ U)VUAQ] € Dom(F*1>.
to

Proof. Assume thata(d,t) > 0. Fixing an arbitrary (9, tg) € Q, we define a positive and
nondecreasing function ¢ (9, t) by

1 2(t)
v = ani+ [M [ aenifenzeeneon)

+f g w00 MEP 1) @($(x, 1)) dx | Vi Vg
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for0 <9 <0y <81,0<t<ty<ty,thenp(d,t) = P(8,ty) = a(d, ty), and
P(0,1) <O L(p(9,1)). (30)
By the same steps as the proof of Theorem 3, we obtain
_ P18 Pa2(t B
v < v vaounn+ [ [ e |fene(e i)
0
Jr/l9 Tz(x,n)w ®‘ (tp(x,n)))Ax} WAg}-
0
We define a nonnegative and nondecreasing function v(9, t) by
P1(8) roalt .
o0,1) = Yla(6o,t0)) + |, [ [Fleme (e wiem))]
to
+/19 Tz(x,ﬂ)w @’ (lP(x,ﬂ)))Ax] ViV,
0
then v(d, t) = v(9,to) = Y(a(d, to)),

P(8,t) <Y o(8,1)], (31)

and then, employing Theorem 1 (iii), we have

2,0 < o) [ o)) [fon 0o (@ (Y o (0).0))
+ " nne(e (v etu)) s v

2(t)
< ¢1A(z9)w(®*1(Y*l(v((pl(ﬂ),qu(t)))))/t:] t T (@1(9),7)[f (¢1(8), 1)
¢1(9)
+ o Tz(X/ﬂ)AX] vy,

or

e 5(F)
w(@)_l(y_(li';gﬁ’t)))) < (p?(l?)/@ 7 (@1(9),7)[f(¢1(9),7)

to

~1(8)
+ /19 Tz(Xﬂ?)AX] V.

< U0

Taking A-integral for the above inequality, gives

Fo ) < Fen )+ [ [ aen]fen + [ atona] v
or
o(8,1) < F{ a(8o, to)) +/¢1 /:2 flom)
+ /190 TZ(X/U)AX] WAg}- (32)

From (30)—(32), and since (8, tp) € Q is chosen arbitrarily, we obtain the desired
inequality (29). If a(9,t) = 0, we carry out the above procedure with € > 0 instead of a(9, t)
and subsequently let € — 0. The proof is complete. [
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Remark 4. If we take T = R and 89 = 0 and tg = 0 in Theorem 4, then, inequality (28) becomes
the inequality obtained in ([17] Theorem 2.2 (A3)).

Corollary 3. Under the hypothesise of Corollary 2. If ¢(9, t) satisfies
p1(9)  ro2(t) .
#en) < a@n+ [T [T ne e e e nd )
0 0

+ /ﬂ i Tz(x,n)4>"(x,17>¢’(x,f7)Ax] ViV, (33)

for (8,t) € Q, then

— 1(19 2 q—p—r
4’(19,f)§{P0(19f) - p r/f /tq’ n)vnAg}”, (34)
where
—r —_ — 10) 2
p(0,0) = (a(o,)) T 4 LZEE 1 [ e [ mbomax) vive.

Proof. An application of Theorem 4 with ®(¢) = ¢7,{(¢p) = ¢¥, and @(¢) = ¢" yields the
desired inequality (34). O

Theorem 5. Under the hypotheses of Theorem 3. If ¢ (0, t) satisfies

00,1 < [ wemateien) x
[f(g, e + [ n(m)Ax} ViV, @)

for (8,t) € Q, then

00,0 <0 {vi! (5 [ + [7 [" a@nsenviad )} o

for0 <8 < 18,,0 <t <ty where

— Ui o) = +mi— (0]
N0 = [ ceriEy P2 0Nt = [ o e (@)
Fi(v) :/: Ag ,0 > v > 0, F(+00) = 400, (38)

KICRCRO)]

1) rea(t)
neen =i+ [0 [ aen ([ ewnax)vive @9

o fo

and (9, tp) € Q) is chosen so that

91(9) roa(t) .
{H p1(9,1)) /19 /t 7 g,n)f(g,n)WAg] € Dom(F )
0
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Proof. Suppose that a(d,t) > 0. Fixing an arbitrary (8, o) € Q), we define a positive and
nondecreasing function (9, t) by

1(8)  rea(t)
v = aot)+ [ [ nleme@en)ienioen)
+/g (X U)AX] ViV
% ’
for0 <89 <9y <%,0<t<ty<t,then l/)(l90, i’) = lp(ﬁ, to) = a(ﬂo, to),

P(8,1) <O L(p(d,1)). (40)
Employing Theorem 1 (iii)

2(t)
00 < o0 [ neud),ma[e " e o) m)] [Fer0)mE (O pipr(e). 1))

to

¢1(9)
+ /ﬂo Tz(Xfﬂ)AX} Vi

IN

2(t)
o3 (91|07 (9(g1(8), 92(1))) | /tf( 71 (91(8),1) [f(91(8), e (@7 (9(1(9), 1)) )

¢1(9)
+/19 Tz(XITI)AX} v,

0

then
L < oo [ atnon o me(e e o))
+ /19:’1(19) Tz(Xﬂ?)AX} V.
Taking A-integral for the above inequality, gives
i) < e+ " [ aen[renie )
+ /; Tz(X/’?)AX} ViAg,
then

1(8)  roa(t)
e < @)+ " [ aen[fene(e i)
+ /1; Tz(X/’?)AX} ViAg.

Since (0, tp) € Q) is chosen arbitrary, the last inequality can be restated as

e <peo+ [M [ aenieni(e wen) e

to

It is easy to observe that p;(9,t) is a positive and nondecreasing function for all
(8,t) € Q, then an application of Lemma 1 to (41) yields the inequality

¢1(9

%

) 2 (t)
P(0,t) SYﬁ(Pﬁ {H(m(ﬂ,t)w /! t Tl(g,ﬂ)f(g,ﬂ)WAgD- )
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From (42) and (40) we get the desired inequality (36).
If a(9,t) = 0, we carry out the above procedure with € > 0 instead of a(%,t) and
subsequently let e — 0. The proof is complete. O

Remark 5. If we take T = R and 09 = 0 and tg = 0 in Theorem 5, then, inequality (36) becomes
the inequality obtained in ([17] Theorem 2.7).

Theorem 6. Under the hypotheses of Theorem 3 and let p be a nonnegative constant. If ¢(9,t)
satisfies

1 2(t)
o) < a@n+ " [ acnercn »
{f(g,n)éw(g,n)) +/ﬁo Tz(XrU)AX} ViV, (43)

for (8,t) € Q, then

00,0 <0 I (5 [+ [M [ aenrenvind ) a

for0 <8 < 18,,0 <t <ty where

Y1(U):/U%,’02’00>0,Y1(+00):/+m%:+oo, (45)
v [071(¢)] w  [07Hg)]
and Fy, py are as in Theorem 5 and (0, tp) € Q) is chosen so that
pa(t 1
Fi(p1(8,1)) +/ / fle,n)VniAg eDom(F )
% to

Proof. An application of Theorem 5, with @(¢) = ¢? yields the desired inequality (44). [

Remark 6. Tnking T = R. The inequality established in Theorem 6 generalizes ([20] Theo-
rem 1) (with p = 1, a(d,t) = b(8) +c(t), % = 0, to = 0, u(c,n)f(¢c,n) = h(c,n), and

7o) (Js, 2 0umax) = gls ).

Corollary 4. Under the hypotheses of Theorem 6 and q > p > 0 be constants. If (9, t) satisfies

.0 < oo+ Lo [ e x
[f(grﬂ)é(qb(g,n)) +/190 Tz(X/W)AX} ViV, (46)

for (8,t) € Q, then

1

-P

0(0,1) < {7 [Ripr(6,0) + o /:2 fenvive|} ' an

for0 <9 <1, 0 <t <ty where

pr(8,1) = [a(8,1)]'7 +/ﬂjl(§) /tjzm Tl(@’?)(/ﬂj Tz(XrU)AX) ViV,

and F is defined in Theorem 5.
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Proof. An application of Theorem 6 with ©(¢(9,t)) = ¢* to (46) yields the inequality (47);
to save space we omit the details. [

Remark 7. Tuking T =R, 89 = 0, to = 0, a(d,t) = b(9) +c(t), (s, n)f(¢,n) = hig, 1),
and Ty (g, 1 (f% (X, U)AX) <(g, ) in Corollary 4 we obtain ([21] Theorem 1).

Remark 8. Tuking T =R, 9y =0, tg = 0,a(d,t) = cl’gﬂ, 7(c,n)f(c,n) =h(n), and
(s (fﬁo T (X, U)AX) g(1n) and keeping t fixed in Corollary 4, we obtain ([22] Theorem 2.1).

4. Application

In this following, we discus the boundedness of the solutions of the initial boundary
value problem for partial delay dynamic equation of the form

(Aﬂ)Vth(ﬁlt) = A(19, t, A(0—hy(9),t— hz(t)),/: B(g,t,A(gc — hl(g),t))Ag), (48)

A(8,t0) = a1(8), A(Bo, t) = ax(t),a1(8o) = ay,(0) =0,

for (8,t) € Q, where A,b € C(Q,R4),A € C(Qx R%R),B € C({xR,R) and Iy €
CY(Ty,R4),hy € CY(Tp,R;) are nondecreasing functions such that #1(¢) < ¢ on Ty,
hy(t) < ton Ty, and h{(9) < 1, h(t) < 1.

Theorem 7. Assume that the functions a1, ay, A, B in (48) satisfy the conditions

|a1(8) + ax(t)| < a(d,t), (49)
IA@WJ&WISqipﬁ@w)U@wﬂNp+WH/ (50)
B(o 1, A)| < iy )AL, (51)

where a(9,t),t1(g, 1), f(c, 1), and 72 (x,n) are as in Theorem 2, q > p > 0 are constants. If
A(0,t) satisfies (48), then

1

4

1(9) roa(t) —
a@ol < {pen+ s [*7 [ aensenvidt, e

where
q-p
p(0,t) = (a(d,t) 7
p1(9 P2(t) _
+M1M2/ /t ( 1/ TQ(X,U)AX)VUVQ,
0
and ,
M; = Max——+——, M, = Max———
B = A EYE 2T T m

and T (7, &) =t (v +hi(g), &+ ha(n), (1, &) = w(p, & + ha(n)),

fr8) = flr +m(g), ¢+ ha(n))-
Proof. If A(d,t) is any solution of (48), then

A8, 1) = a1(9) +ax(t)

+// (g,n, (¢ — hl(G)rU_hZ(U))/AzB(XfU/A(X_hl(X)/U))A?C)v’?vQ' (53)
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Using the conditions (49)—(51) in (53) we obtain

Aol < a@n+ T [T ool -,y - o)
+/195 Tz(m)lA(x,v)”Ax] ViVe. (54)

Now making a change of variables on the right side of (54), ¢ —h1(g) = v, —ha(y) =
¢, 0—h1(9) = ¢1(0) for & € Ty, t — hy(t) = @a(t) for t € T, we obtain the inequality

- 18)  rea(t) -
Aol < a@+ T [77 [ a0 | fonolaear

0

ity [ 5, OIAGe )P u| Ve )

We can rewrite the inequality (55) as follows:

— P1(8)  roa(t) — -
Aol < a+ e [77 [ A feninenl
q o to
[
ety [0 A G Pox| Tnds. )
0

As an application of Corollary 1 to (56) with ¢(8,t) = |A(9,t)| we obtain the desired
inequality (52). O

5. Conclusions

In this important article, we proved some new two dimensional dynamic inequalities
of the Gronwall-Bellman-Pachpatte-type by employing the Leibniz integral rule on time
scales. We discussed many extensions of the delay dynamic inequalities proven in [4,17]
and generalised a few of those inequalities to a generic time scale. We also looked at the
qualitative characteristics of various different dynamic equations’ time-scale solutions.
Besides that, in order to obtain some new inequalities as special cases, we also extended
our inequalities to discrete and continuous calculus. Symmetry plays an essential role in
determining the correct methods to solve dynamic inequalities.
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