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Abstract: In this article, we apply the double ARA–Sumudu transformation (DARA-ST) to the
nonlocal fractional Caputo derivative operator. We achieve interesting results and implement them to
solve certain classes of fractional partial differential equations (FPDEs). Several physical applications
are discussed and analyzed, such as telegraph, Klein–Gordon and Fokker–Planck equations. The new
technique with DARA-ST is efficient and accurate in examining exact solutions of FPDEs. In order to
show the applicability of the presented method, some numerical examples and figures are illustrated.
A symmetry analysis is used to verify the results.

Keywords: double ARA–Sumudu transform; ARA transform; Sumudu transform; fractional partial
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1. Introduction

The fractional calculus generalizes the operations of differentiation and integration to
noninteger orders. The fractional calculus has become an important tool for the study of
some physical phenomena, engineering and science, such as electromagnetics, viscoelas-
ticity, fluid mechanics, electrochemistry, biological population models, optics and signal
processing. Furthermore, fractional calculus processes have become one of the most useful
approaches in a variety of applied sciences to deal with certain properties of (long) memory
effects. There are many definitions of fractional derivatives, such as Riemann–Liouville,
Caputo, Caputo–Fabrizio, Atangana–Baleanu, conformable and the generalized fractional
derivative [1–6].

Fractional partial differential equations appear in various applications of science,
such as chemistry, physics, engineering and mathematics, which is why researchers have
established many techniques for solving such equations such as the homotopy perturbation
method, variation iteration method, Adomian decomposition method, finite difference
method and others [7–15].

A new approach in this area has recently emerged, including combining some previous
methods with integral transforms, such as Laplace transform, Sumudu transform, Elzaki
transform and ARA transform. These composites generated some new methods, such as
Laplace decomposition method, Laplace variation iteration method, Sumudu decomposi-
tion method, Sumudu homotopy perturbation method, Elzaki variation iteration method,
Elzaki project differential transform method, Elzaki homotopy perturbation method, Elzaki
decomposition method, ARA residual power series method, etc. [16–24]. The previous
methods can be implemented to solve linear and nonlinear FPDEs.

The method of double integral transforms is a hot topic in recent research, and it
basically depends on applying a single transformation twice on functions of two variables
or applying two different transformations on the same function. This new approach is a
powerful tool for solving PDEs. Although double integral transformations, their properties
and theorems are recent studies, they have attracted the interest of many mathematicians.
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Therefore, many researchers have studied new combinations, such as double Laplace
transform, double Sumudu transform, double Elzaki transform, double Laplace-Sumudu
transform and others [25–32].

Sumudu and ARA integral transformations are efficient tools for solving FDPEs [33–35],
these transformations can be combined with other iteration methods to solve
nonlinear problems.

Recently, a new combination between ARA transform and Sumudu transform was
introduced in [35] and it is given by

GxSt[ f (x, t)] = F(s, u) =
s
u

∞∫
0

∞∫
0

e−sx− t
u f (x, t)dxdt, s > 0, u > 0,

where f (x, t) is a continuous function of two variables x > 0 and t > 0.
In this article, we implement DARA-ST to solve families of FPDEs of the form

A Dα
x f (x, t) + B Dβ

t f (x, t) + C L f (x, t) = z(x, t), x, t ≥ 0,
n− 1 < α ≤ n , m− 1 < β ≤ m and m, n ∈ N,

(1)

with the initial conditions (ICs)

∂j f (x, 0)
∂tj = gj(x), j = 0, 1, · · · , m− 1 (2)

and the boundary conditions (BCs)

∂i f (0, t)
∂xi = hi(t), i = 0, 1, · · · , n− 1, (3)

where A, B and C are real constants, Dα
x and Dβ

t are the fractional Caputo’s derivatives
with respect to x and t, respectively, L is a linear operator and z(x, t) is the source function.

The main motivation of the present study is to expand the applications of DARA-ST
by using it to solve FPDEs. We show the efficiency of the proposed method by applying the
DARA-ST to several interesting applications to obtain the exact solutions and analyze the
results. The novelty of this work arises from the establishment of a new simple formula for
solving PDEs of fractional orders. The simplicity and applicability of this new formula is
illustrated by handling some applications, where we use the new approach to solve some
important FPDEs.

This article is organized as follows: in the next two sections, we present some basic
definitions and theorems related to our work. A new algorithm for solving families of
FPDEs using DARA-ST is presented in Section 4. Several examples are given in Section 5 to
demonstrate the proposed technique. We illustrate the numerical evaluations of the results
in Section 6. Finally, our results are discussed in Section 7.

2. Sumudu and ARA Transformations

In this section, we introduce the definition of Sumudu and ARA transforms with
some properties.

Definition 1 [33]. Sumudu transform of the function f (x) is defined as

S[ f (x)] =
1
u

∞∫
0

e−
x
u f (x)dx, u > 0.
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Definition 2 [34]. ARA transform of order n of the function f (x) is given by

Gn[ f (x)](s) = F(n, s) = s
t∫

0

tn−1e−sx f (x)dx, s > 0, n ∈ N

and the ARA transform of the function f (x) of order one is defined as

G1[ f (x)] = s
∞∫

0

e−sx f (x)dx, s > 0.

For simplicity, let us denote G1[ f (x)] by G[ f (x)].

Theorem 1 [33]. (The sufficient condition for the existence of Sumudu transform).
If the function f (x) is a piecewise continuous in every finite interval 0 ≤ x ≤ α and satisfies

| f (x)| ≤ Meαx, M > 0,

then Sumudu transform exists for all 1
u > α.

Theorem 2 [34]. (The sufficient condition for the existence of ARA transform).
If the function f (x) is a piecewise continuous in every finite interval 0 ≤ x ≤ β and satisfies∣∣∣xn−1 f (x)

∣∣∣ ≤ Keβx, K > 0,

then ARA transform exists for all s > β.

Table 1 presents the fundamental properties of ARA and Sumudu transforms.

Table 1. ARA and Sumudu transforms for some functions.

f(x) G[f(x)]=F(s) S[f(x)]=F(u)

1 1 1
xa Γ(a+1)

sa Γ(a + 1) ua

eax s
s−a

1
1−au

sin ax a s
s2+a2

a u
1+a2u2

cos ax s2

s2+a2
1

1+a2u2

sinhax as
s2−a2

a u
1−a2u2

cosh ax s2

s2−a2
1

1−a2u2

f (n)(x) G1[ f (t)](s)−
n
∑

j=1
sn−j f (j−1)(0) G(u)

un − f (0)
un − . . .− f (n−1)(0)

u

( f ∗ g)(x) G1[ f (x)]G1[g(x)]
s u S( f (x))S(g(x))

3. Basic Definitions and Theorems of DARA-ST

In this section, we present the definition of DARA-ST of functions of two variables
and the existence conditions and some basic properties of the new double transform
are introduced.
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Basic Definitions

Definition 3 [35]. The DARA-ST of the continuous function f (x, t) of two variables x > 0 and
t > 0 is given by

GxSt[ f (x, t)] = F(s, u) =
s
u

∞∫
0

∞∫
0

e−sx− t
u f (x, t)dxdt, s > 0, u > 0,

provided the integral exists.

Clearly, the DARA-ST is linear, since

GxSt[a f (x, t) + b g(x, t)] = a GxSt[ f (x, t)] + b GxSt[ g(x, t)],

where a and b are constants.
The inverse DARA-ST is given by

G−1
x S−1

t [F(s, u)] = f (x, t) =
1

2πi

c+i∞∫
c−i∞

esx

s
ds

1
2πi

ω+i∞∫
ω−i∞

e
t
u

u
F(s, u)du .

Definition 4. The Caputo derivatives of orders α and β of the function f (x, t) with respect to x
and t, respectively, are given by

Dα
x f (x, t) =

∂α f (x, t)
∂xα

=


1

Γ(n−α)

x∫
0
(x− ς)n−α−1 ∂n f (ς,t)

∂ςn dς, n− 1 < α < n,

∂n f
∂xn , n = α,

, n ∈ N,

Dβ
t f (x, t) =

∂β f (x, t)
∂tβ

=


1

Γ(m−β)

t∫
0
(t− τ)m−β−1 ∂m f (x,τ)

∂τm dτ, m− 1 < β < m,

∂m f
∂xm , m = β,

, m ∈ N.

Definition 5. The Mittag-Leffler function is defined by

Eα,β(x) =
∞

∑
k=0

xk

Γ(kα + β)
, x ∈ C, Re(α) > 0, Re(β) > 0.

The single ARA transform of xβ−1Eα,β(λxα) takes the value

Gx

[
xβ−1Eα,β(λxα)

]
=

sα−β+1

sα − λ
, |λ| < |sα|.

The single Sumudu transform of tβ−1Eα,β(λtα) takes the value

St

[
tβ−1Eα,β(λtα)

]
=

uβ−1

1− λuα
, |λ| < |uα|.

Definition 6. A function f (x, t) defined on [0, X]× [0, T] is called a function of exponential orders
λ and γ as x → ∞ and t→ ∞ , if ∃M > 0 such that ∀x > X and t > T, we have

| f (x, t)| ≤ Meλx+γt.
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Table 2 illustrates the values of DARA-ST for some basic functions.

Table 2. DARA-ST for some functions [35].

f(x,t) GxSt[f(x,t)]=F(s,u)

1 1
xatb, s−aΓ(a + 1)ubΓ(b + 1)

eax+bt s
(s−a)(1−bu)

ei (ax+bt) i s
(s−i a)(bu+i)

sin(ax + bt) s (a+b s u)
(a2+s2)(b2 u2+1)

cos(ax + bt) s (s−abu)
(a2+s2)(b2 u2+1)

sinh(ax + bt) s (a+b s u)
(a2−s2)(b2 u2−1)

cosh(ax + bt) s (s+abu)
(a2−s2)(b2 u2−1)

J0

(
c
√

xt
)

, J0 is the zero order Bessel function 4s
4s+c2u

f (x− δ, t− ε)
H(x− δ, t− ε) e−sδ− ε

y F(s, u)

( f ∗∗k)(x, t)
( u

s
)

F(s, u)K(s, u)

Theorem 3 [35]. (Existence condition). Let f (x, t) be a continuous function on the region
[0, X) × [0, T). If f (x, t) is exponential orders λ and γ, then DARA-ST of f (x, t) exists, for
Re[s] > λ and Re

[
1
u

]
> γ.

Proof of Theorem 1. The DARA-ST definition yields that

|F(s, u)| =

∣∣∣∣∣ s
u

∞∫
0

∞∫
0

e−sx− t
u f (x, t)dx dt

∣∣∣∣∣ ≤ s
u

∞∫
0

∞∫
0

e−sx− t
u | f (x, t)|dx dt

≤ M s
u

∞∫
0

e−(s−λ)xdx
∞∫
0

e−(
1
u−γ)tdt = Ms

u(s−λ)( 1
u−γ)

= Ms
(s−λ)(1−uγ)

, Re[s] > λ and Re
[

1
u

]
> γ.

The proof is completed. �

Theorem 4 (Derivative properties) [35]. If F(s, u) = GxSt[ f (x, t)], then

i. GxSt

[
∂ f (x,t)

∂x

]
= sF(s, u)− sSt[ f (0, t)].

ii. GxSt

[
∂ f (x,t)

∂t

]
= 1

u F(s, u)− 1
uGx[ f (x, 0)].

iii. GxSt

[
∂2 f (x,t)

∂x2

]
= s2F(s, u)− s2St[ f (0, t)]− sSt[ fx(0, t)].

iv. GxSt

[
∂2 f (x,t)

∂t2

]
= 1

u2 F(s, u)− 1
u2Gx[ f (x, 0)]− 1

uGx[ ft(x, 0)].

v. GxSt

[
∂2 f (x,t)

∂x∂t

]
= s

u (F(s, u)− St[ f (0, t)]− Gx[ f (x, 0)] + f (0, 0)).

Theorem 5 [35]. (Convolution theorem).
If GxSt[ f (x, t)] = F(s, u) and GxSt[k(x, t)] = K(s, u) , then

GxSt[( f ∗ ∗k)(x, t)] =
(u

s

)
F(s, u)K(s, u),

where

( f ∗ ∗k)(x, t) =
x∫

0

t∫
0

f (x− δ, t− ε)k(δ, ε)dδdε.



Symmetry 2022, 14, 1817 6 of 17

4. Algorithm of DARA-ST Method

In this section, we present the technique of using DARA-ST to solve families of FPDEs.
In order to achieve our goal, we have to calculate DARA-ST for the nonlocal Caputo
fractional derivative in the following lemma.

4.1. DARA-ST of Fractional Derivatives

Lemma 1. The DARA-ST for Caputo fractional derivatives can expressed as

i. GxSt[Dα
x f (x, t)] = sαF(s, u)−

n−1
∑

i=0
sα−iSt

[
∂i f (0,t)

∂xi

]
, n− 1 < α ≤ n.

ii. GxSt

[
Dβ

t f (x, t)
]
= F(s,u)

uβ −
m−1
∑

j=0
uj−βGx

[
∂j f (x,0)

∂tJ

]
, m− 1 < β ≤ m.

Proof of Lemma 1. i. Applying DARA-ST on Dα
x f (x, t), we obtain

GxSt[Dα
x f (x, t)] = GxSt

 1
Γ(n− α)

x∫
0

(x− ς)n−α−1 ∂n f (ς, t)
∂ςn dς

,

from the definition of the convolution, we have

GxSt[Dα
x f (x, t)] = GxSt

[
1

Γ(n−α)

(
xn−α−1 ∗ ∂n f (x,t)

∂xn

)]
= St

[
1

Γ(n−α)
Gx

[
xn−α−1 ∗ ∂n f (x,t)

∂xn

]]
.

Using the convolution property of ARA transform in Table 1, we obtain

GxSt[Dα
x f (x, t)] = St

[
1

Γ(n− α)

(
1
s
Gx

[
xn−α−1

]
Gx

[
∂n f (x, t)

∂xn

])]
.

Applying the derivative property of ARA transform in Table 1, we obtain

GxSt[Dα
x f (x, t)] = 1

Γ(n−α)
St[

Γ(n−α)
sn−α (snGx[ f (x, t)]− sn f (0, t)− . . .

−s ∂n−1 f (0,t)
∂xn−1 )].

After simple computations, we obtain

GxSt[Dα
x f (x, t)] = sαF(s, u)− sαSt[ f (0, t)]− . . .− sα−n+1St

[
∂n−1 f (0,t)

∂xn−1

]
= sαF(s, u)−

n−1
∑

i=0
sα−iSt

[
∂i f (0,t)

∂xi

]
.

ii. Applying DARA-ST on Dβ
t f (x, t), we obtain

GxSt

[
Dβ

t f (x, t)
]
= GxSt

 1
Γ(m− β)

t∫
0

(t− τ)m−β−1 ∂m f (x, τ)

∂τm dτ

,

from the definition of the convolutions, we have

GxSt

[
Dβ

t f (x, t)
]
= GxSt

[
1

Γ(m−β)

(
tm−β−1 ∗ ∂m f (x,t)

∂tm

)]
= Gx

[
1

Γ(m−β)
St

[
tm−β−1 ∗ ∂m f (x,t)

∂tm

]]
.
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Using the convolution property of Sumudu transform in Table 1, we obtain

GxSt

[
Dβ

t f (x, t)
]
= Gx

[
1

Γ(m− β)

(
u St

[
tm−β−1

]
St

[
∂m f (x, t)

∂tm

])]
.

Applying the derivative property of Sumudu transform in Table 1, we obtain

GxSt

[
Dβ

t f (x, t)
]

= 1
Γ(m−β)

Gx[Γ(m− β)u um−β−1( St [ f (x,t)]
um − f (x,0)

um − . . .

− 1
u

∂m−1 f (x,0)
∂tm−1 )].

After simple computations, we obtain

GxSt

[
Dβ

t f (x, t)
]
= u−βF(s, u)− u−βGx[ f (x, 0)]− . . .− um−β−1Gx

[
∂m−1 f (x,0)

∂tm−1

]
== F(s,u)

uβ −
m−1
∑

j=0
uj−βGx

[
∂j f (x,0)

∂tJ

]
.

�.

4.2. Solving FPDEs by DARA-ST

In this section, we apply DARA-ST to obtain solutions of some FPDEs. We consider
the initial boundary value problems (1)–(3). To obtain the solution by the new approach,
we apply DARA-ST on both sides of Equation (1), to obtain

GxSt

[
ADα

x f (x, t)]+GxSt[B Dβ
t f (x, t)

]
+ GxSt[C L[ f (x, t)]] = GxSt[z(x, t)],

which implies

A
(

sαF(s, u)−
n−1
∑

i=0
sα−iSt

[
∂i f (0,t)

∂xi

])
+B

(
u−βF(s, u)−

m−1
∑

j=0
u−β+jGx

[
∂j f (x,0)

∂tj

])
+CGxSt[ L[ f (x, t)]] = Z(s, u).

(4)

Furthermore, we apply the single ARA transform to the ICs (3), and the single Sumudu
transform to the BCs (2), to obtain

Gx

[
∂j f (x, 0)

∂tj

]
= G

[
gj(x)

]
= Gj(s), ∀j = 1, 2, · · · , m− 1, (5)

St

[
∂i f (0, t)

∂xi

]
= S[hi(t)] = Hi(u), ∀i = 1, 2, · · · , n− 1. (6)

Simplifying Equation (4), and substituting the values in Equations (5) and (6), we have

F(s, u) = 1
Asα+Bu−β (A

n−1
∑

i=0
sα−i Hi(u) + B

m−1
∑

j=0
u−β+jGj(s)

−CGxSt[ L[ f (x, t)]] + Z(s, u)).
(7)

Running the inverse DARA-ST, G−1
x S−1

t on both sides of Equation (7), we obtain

f (x, t) = G−1
x S−1

y [ 1
Asα+Bu−β (A

n−1
∑

i=0
sα−1Hi(u) + B

m−1
∑

j=0
u−β+jGj(s)

−CGxSt[ L[ f (x, t)]] + Z(s, u))],
(8)
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which is the solution of the target problem.

5. Illustrative Examples

In this section, we introduce some famous PDEs in mathematical physics such as
Reaction–diffusion, advection–diffusion, telegraph equation, wave equation, Klein–Gordon
and Fokker–Planck, we apply the new double transform on these equations and use
it to obtain the solution of these problems and we implement the obtained formula in
Equation (8) to solve FPDEs, to handle these problems using the new approach. The main
goal here is to illustrate the applicability and ease of use of the new double transform.

5.1. Fractional Reaction–Diffusion Equation

Consider the fractional reaction–diffusion equation

A Dα
x f (x, t)− Dβ

t f (x, t) + C f (x, t) = 0, 1 < α ≤ 2, 0 < β ≤ 1, (9)

with the IC
f (x, 0) = g0(x), (10)

and the BCs
f (0, t) = h0(t), fx(0, t) = h1(t). (11)

Applying the single ARA transform on g0(x) in Equation (10), we obtain

G0(s) = Gx[g0(x)].

Applying the single Sumudu transform on h0(t) and h1(t) in Equation (11), we obtain

H0(u) = St[h0(t)],

H1(u) = St[h1(t)].

Substituting B = −1, L( f (x, t)) = f (x, t), z(x, t) = 0, n = 2, m = 1 and the functions
G0(s), H0(s), H1(s) in the general formula in Equation (8), after simple computations,
we obtain

f (x, t) = G−1
x S−1

t

[
1

Asα − u−β + C

(
Asα H0(u) + A sα−1H1(u)− u−βG0(s)

)]
. (12)

Example 1. Consider the heat diffusion equation

fxx(x, t)− Dβ
t f (x, t) = 0, 0 < β ≤ 1, (13)

with the IC
f (x, 0) = sin x, (14)

and the BCs
f (0, t) = 0, fx(0, t) = Eβ

(
−tβ

)
. (15)

Solution. Putting A = 1, C = 0, α = 2, G0(s) = s
s2+1 , H0(u) = 0 and H1(u) = 1

1+uβ in
Equation (12), we obtain the solution of (13) as follows

f (x, t) = G−1
x S−1

t

[
s

(s2 + 1)
(
1 + uβ

)] = sin xEβ

(
−tβ

)
.

Figure 1 represent the solution f (x, t) of the heat diffusion Equation (13) with the IC
(14) and the BCs (15).
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Example 2. Consider the fractional advection–diffusion equation 

Figure 1. The surface graph of the solution f (x, t) for the heat diffusion equation at α = 1 for the
problem in Example 1.

5.2. Fractional Advection–Diffusion Equation

Consider the fractional advection–diffusion equation

A Dα
x f (x, t)− Dβ

t f (x, t) + C fx(x, t) = 0, 1 < α ≤ 2, 0 < β ≤ 1, (16)

with the IC
f (x, 0) = g0(x), (17)

and the BCs
f (0, t) = h0(t), fx(0, t) = h1(t). (18)

Applying the single ARA transform on g0(x) in Equation (17), we obtain

G0(s) = Gx[g0(x)].

Applying the single Sumudu transform on h0(t) and h1(t) in Equation (18), we obtain

H0(u) = St[h0(t)],

H1(u) = St[h1(t)].

Substituting B = −1, L[ f (x, t)] = fx(x, t), z(x, t) = 0, n = 2, m = 1 and the functions
G0(s), H0(u), H1 (u) in the general formula in Equation (8) and after simple computations,
we obtain

f (x, t) = G−1
x S−1

t [ 1
Asα−u−β+Cs

(Asα H0(u) + A sα−1H1(u)− u−βG0(s)
+CsH0(u))].

(19)

Example 2. Consider the fractional advection–diffusion equation

fxx(x, t)− Dβ
t f (x, t)− fx(x, t) = 0, 0 < β ≤ 1, (20)

with the IC
f (x, 0) = e−x, (21)

and the BCs
f (0, t) = Eβ

(
2tβ
)

, fx(0, t) = −Eβ

(
2tβ
)

. (22)
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Solution. Putting A = 1, α = 2, C = −1, G0(s) = s
s+1 , H0(u) = 1

1−2uβ and H1(u) = −1
1−2uβ

in Equation (19), we obtain the solution of (20) as follows

f (x, t) = G−1
x S−1

t

[
u2

s2−u−β−s

(
s2

1−2uβ − s
1−2uβ − u−β s

s+1 −
s

1−2uβ

)]
= G−1

x S−1
t

[
1

s2−u−β−s

(
s(s2−u−β−s)
(s+1)(1−2uβ)

)]
= G−1

x S−1
t

[
s

(s+1)(1−2uβ)

]
= e−xEβ

(
2tβ
)
.

Figure 2 represent the solution f (x, t) of the advection–diffusion Equation (20) with
the IC (21) and the BCs (22).
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5.3. Fractional Telegraph Equation

Consider the fractional telegraph equation

A Dα
x f (x, t) + BDβ

t f (x, t) + C0 f (x, t) + C1 ft(x, t) = 0, 1 < α, β ≤ 2, (23)

with the ICs
f (x, 0) = g0(x), ft(x, 0) = g1(x) (24)

and the BCs
f (0, t) = h0(t), fx(0, t) = h1(t). (25)

Applying the single ARA transform on g0(x) and g1(x) in Equation (24), we obtain

G0(s) = Gx[g0(x)],

G1(s) = Gx[g1(x)].

Applying the single Sumudu transform on h0(t) and h1(t) in Equation (25), we obtain

H0(u) = St[h0(t)],

H1(u) = St[h1(t)].
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Substituting L[ f (x, t)] = C0 f (x, t) + C1 ft(x, t) = 0, z(x, t) = 0, n = m = 2, and the
functions G0(s), G1 (s), H0(u), H1 (u) in the general formula in Equation (8) and after
simple computations, we obtain

f (x, t) = G−1
x S−1

t [ 1
Asα+Bu−β+C0+C1u−1 (Asα H0(u) + A sα−1H1(u)

−Bu−βG0(s) + Bu−β+1G1(s) + C1u−1G0(s))].
(26)

Example 3. Consider the telegraph equation

Dα
x(x, t)− ftt(x, t)− ft(x, t)− f (x, t) = 0, 1 < α ≤ 2, (27)

with the ICs

f (x, 0) = Eα(xα) + xEα,2(xα), ft(x, 0) = −Eα(xα)− xEα,2(xα) (28)

and the BCs
f (0, t) = e−t, fx(0, t) = e−t. (29)

Solution. Putting A = 1, B = −1, β = 2, C0 = −1, C1 = −1, G0(s) =
(

1 + 1
s

)
sα

sα−1 ,

G1(s) = −
(

1 + 1
s

)
sα

sα−1 , H0(u) = 1
1+u and H1(u) = 1

1+u in Equation (26), we obtain the
solution of (27) as follows

f (x, t) = G−1
x S−1

t

[
u2

sα−u2−u−1

(
sα

1+u + sα−1

1+u + u−2
(

1 + 1
s

)
sα

sα−1

)]
= G−1

x S−1
t

[(
1

1+u

)(
1 + 1

s

)(
sα

sα−1

)]
= e−t(Eα(xα) + xEα,2(xα)).

Figure 3 represent the solution f (x, t) of the telegraph Equation (27) with the ICs (28)
and the BCs (29).
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Figure 3. The surface graph of the solution f (x, t) for the telegraph equation at α = 1 for the problem
in Example 3.

5.4. Fractional Wave Equation

Consider the fractional wave equation

A Dα
x f (x, t)− Dβ

t f (x, t) = 0, 1 < α, β ≤ 2, (30)
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with the ICs
f (x, 0) = g0(x), ft(x, 0) = g1(x) (31)

and the BCs
f (0, t) = h0(t), fx(0, t) = h1(t). (32)

Applying the single ARA transform on g0(x) and g1(x) in Equation (31), we obtain

G0(s) = Gx[g0(x)],

G1(s) = Gx[g1(x)].

Applying the single Sumudu transform on h0(t) and h1(t) in Equation (32), we obtain

H0(u) = St[h0(t)],

H1(u) = St[h1(t)].

Substituting B = −1, C = 0, z(x, t) = 0, n = m = 2, and the functions G0(s),
G1 (s), H0(u), H1 (u) in the general formula in Equation (8) and after simple computations,
we obtain

f (x, t) = G−1
x S−1

t [ 1
Asα−u−β (Asα H0(u) + A sα−1H1(u)− u−βG0(s)

−u−β+1G1(s))].
(33)

5.5. Fractional Klein–Gordon Equation

Consider the fractional Klein–Gordon equation

Dα
x f (x, t)− Dβ

t f (x, t) + C f (x, t) = z(x, t), 1 < α, β ≤ 2, (34)

with the ICs
f (x, 0) = g0(x), ft(x, 0) = g1(x) (35)

and the BCs
f (0, t) = h0(t), fx(0, t) = h1(t). (36)

Applying the single ARA transform on g0(x) and g1(x) in Equation (35), we obtain

G0(s) = Gx[g0(x)],

G1(s) = Gx[g1(x)].

Applying the single Sumudu transform on h0(t) and h1(t) in Equation (36), we obtain

H0(u) = St[h0(t)],

H1(u) = St[h1(t)].

Substituting A = 1, B = −1, L[ f (x, t)] = f (x, t), n = m = 2, and the functions G0(s),
G1 (s), H0(u), H1 (u) in the general formula in Equation (8) and after simple computations,
we obtain

f (x, t) = G−1
x S−1

t [ 1
sα−u−β+C

(sα H0(u) + sα−1H1(u)− u−βG0(s)
−u−β+1G1(s) + Z(s, u))].

(37)

Example 4. Consider the fractional Klein–Gordon equation

fxx(x, t)− Dβ
t f (x, t) + f (x, t) = 0, 1 < β ≤ 2, (38)
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with the ICs
f (x, 0) = sin x + 1, ft(x, 0) = 0, (39)

and the BCs
f (0, t) = Eβ

(
tβ
)

, fx(0, t) = 1. (40)

Solution. Putting C = 1, α = 2, z(x, t) = 0, G0(s) = s
s2+1 + 1, G1 (s) = 0, H0(u) = 1

1−uβ ,
H1 (u) = 1 in Equation (37), we obtain

f (x, t) = G−1
x S−1

t

[
1

s2−u−β+1

(
sα

1−uβ + s− u−βs
s2+1 − u−β

)]
= G−1

x S−1
t

[
s−suβ+s2+1
(s2+1)(1−uβ)

]
= G−1

x S−1
t

[
s

s2+1 + 1
1−uβ

]
= sin x + Eβ

(
tβ
)
.

(41)

Figure 4 represent the solution f (x, t) of the Klein–Gordon (38) with the ICs (39) and
the BCs (40).

Symmetry 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

𝑓(𝑥, 𝑡) = 𝒢௫ି ଵ𝑆௧ି ଵ ൤ 1𝑠ఈ − 𝑢ିఉ + 𝐶 ൫𝑠ఈ𝐻଴(𝑢) + 𝑠ఈିଵ𝐻ଵ(𝑢) − 𝑢ିఉ𝐺଴(𝑠)− 𝑢ିఉାଵ𝐺ଵ(𝑠) + 𝑍(𝑠, 𝑢)൯൨. (37)

Example 4. Consider the fractional Klein–Gordon equation 𝑓௫௫(𝑥, 𝑡) − 𝐷௧ఉ𝑓(𝑥, 𝑡) + 𝑓(𝑥, 𝑡) = 0, 1 < 𝛽 ≤ 2, (38)

with the ICs 𝑓(𝑥, 0) = sin 𝑥 + 1, 𝑓௧(𝑥, 0) = 0, (39)

and the BCs 𝑓(0, 𝑡) = 𝐸ఉ൫𝑡ఉ൯, 𝑓௫(0, 𝑡) = 1. (40)

Solution. Putting 𝐶 = 1, 𝛼 = 2, 𝑧(𝑥, 𝑡) = 0 , 𝐺଴(𝑠) = ௦௦మାଵ + 1 , 𝐺ଵ (𝑠) = 0 , 𝐻଴(𝑢) = ଵଵି௨ഁ , 𝐻ଵ (𝑢) = 1 in Equation (37), we obtain 𝑓(𝑥, 𝑡) = 𝒢௫ି ଵ𝑆௧ି ଵ ቈ 1𝑠ଶ − 𝑢ିఉ + 1 ቆ 𝑠ఈ1 − 𝑢ఉ +  𝑠 − 𝑢ିఉ𝑠𝑠ଶ + 1 − 𝑢ିఉቇ቉= 𝒢௫ି ଵ𝑆௧ି ଵ ቈ𝑠 − 𝑠𝑢ఉ + 𝑠ଶ + 1(𝑠ଶ + 1)(1 − 𝑢ఉ)቉ = 𝒢௫ି ଵ𝑆௧ି ଵ ൤ 𝑠𝑠ଶ + 1 + 11 − 𝑢ఉ൨= sin 𝑥 + 𝐸ఉ൫𝑡ఉ൯. (41)

Figure 4 represent the solution 𝑓(𝑥, 𝑡) of the Klein–Gordon (38) with the ICs (39) and 
the BCs (40). 

 
Figure 4. The surface graph of the solution 𝑓(𝑥, 𝑡) for the Klein–Gordon equation at 𝛼 = 1 for the 
problem in Example 4. 

5.6. Fractional Fokker–Planck Equation 
Consider the fractional Fokker–Planck equation 𝐷௫ఈ𝑓(𝑥, 𝑡) − 𝐷௧ఉ𝑓(𝑥, 𝑡) + 𝑓௫(𝑥, 𝑡) = 0, 1 < 𝛼 ≤ 2, 0 < 𝛽 ≤ 1, (42)

with the IC 𝑓(𝑥, 0) = 𝑔଴(𝑥), (43)

and the BCs 𝑓(0, 𝑡) = ℎ଴(𝑡), 𝑓௫(0, 𝑡) = ℎଵ(𝑡). (44)

Applying the single ARA transform on 𝑔଴(𝑥) in Equation (43), we obtain 

Figure 4. The surface graph of the solution f (x, t) for the Klein–Gordon equation at α = 1 for the
problem in Example 4.

5.6. Fractional Fokker–Planck Equation

Consider the fractional Fokker–Planck equation

Dα
x f (x, t)− Dβ

t f (x, t) + fx(x, t) = 0, 1 < α ≤ 2, 0 < β ≤ 1, (42)

with the IC
f (x, 0) = g0(x), (43)

and the BCs
f (0, t) = h0(t), fx(0, t) = h1(t). (44)

Applying the single ARA transform on g0(x) in Equation (43), we obtain

G0(s) = Gx[g0(x)].

Applying the single Sumudu transform on h0(t) and h1(t) in Equation (44), we obtain

H0(u) = St[h0(t)],

H1(u) = St[h1(t)].
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Substituting A = 1, B = −1, C = 1, L[ f (x, t)] = fx(x, t), z(x, t) = 0, n = 2, m =1,
and the functions G0(s), H0(u), H1 (u) in the general formula in Equation (8) and after
simple computations, we obtain

f (x, t) = G−1
x S−1

t [ 1
sα−u−β+s

(sαH0(u) + sα−1H1(u)− u−βG0(s)
+sH0(u))].

(45)

Example 5. Consider the fractional Fokker–Planck equation

fxx(x, t)− Dβ
t f (x, t) + fx(x, t) = 0, 0 < β ≤ 1, (46)

with the IC
f (x, 0) = x, (47)

and the BCs

f (0, t) =
tβ

Γ(1 + β)
, fx(0, t) = 1. (48)

Solution. Putting α = 2, G0(s) = 1
s , H0(u) = uβ, H1 (u) = 1 in Equation (45), we obtain

the solution of (46) as follows

f (x, t) = G−1
x S−1

t

[
1

s2−u−β+s

(
s2uβ + s− u−β

s + suβ
)]

= G−1
x S−1

t

[
1

s2−u−β+s

((
s2 − u−β + s

)( 1
s + uβ

))]
= G−1

x S−1
t

[
1
s + uβ

]
= x + tβ

Γ(1+β)
.

(49)

Figure 5 represent the solution f (x, t) of the Fokker–Planck (46) with the IC (47) and
the BCs (48).
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Figure 5. The surface graph of the solution f (x, t) for the Fokker–Planck equation at α = 1 for the
problem in Example 5.

6. Numerical Simulations

In this section, we illustrate the numerical evaluation of the solutions obtained by
solving the given FPDEs. We also discuss the numerical behavior of the results when
solving FPDEs, then we compare it with the solution of the equation of integer order.

The solutions of Examples 1, 2 and 5 are simply computed when β = 1. We examine
the numerical solutions of different values of β = 0.95, 0.85 and 0.75. As a result, we
notice that, with choosing different values of β, the obtained fractional solutions are in
coordination with the closed form of the solution when β = 1, as illustrated in Figure 6.
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Moreover, it clearly implies that as β approaches 1, the obtained solutions of the FPDEs
approach the exact solutions obtained in the integer case.
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Figure 6. (a) Plots of the exact solution when β = 1 and different values of β = 0.95, 0.85 and 0.75 of
Examples 1. (b) Plots of the exact solution when β = 1 and different values of β = 0.95, 0.85 and 0.75
of Examples 2. (c) Plots of the exact solution when β = 1 and different values of β = 0.95, 0.85 and
0.75 of Examples 5.

The solution of Example 3 when α = 2 and the solution of Example 4 when β = 2
are simply computed. We examine the numerical solutions of different values of α =
1.75, 1.85, 1.95 in Example 3 and β = 1.75, 1.85, 1.95 in Example 4. As a result, we note
that, with choosing different values of α and β, the obtained fractional solutions are in
coordination with the closed forms of the solutions when α = 2 and β = 2, as illustrated in
Figure 7.



Symmetry 2022, 14, 1817 16 of 17Symmetry 2022, 14, x FOR PEER REVIEW 16 of 17 
 

 

  

  
(a) (b) 

Figure 7. (a) Plots of the exact solution when 𝛼 = 2 and different values of 𝛼 = 1.95, 1.85 and 1.75 of 
Example 3. (b) Plots of the exact solution when 𝛽 = 2 and different values of 𝛽 = 1.95, 1.85 and 1.75 
of Example 4. 

Moreover, we mention that as 𝛼 and 𝛽 approach the close integer orders, the ob-
tained solutions of the FPDEs approach the exact solutions in the integer case. 

7. Conclusions 
In this research, DARA-ST is applied to the Caputo fractional derivative to obtain a 

new interesting formula, that is implemented to solve families of FPDEs. We have pre-
sented a new method to obtain exact solutions of these equations. We show the reliability 
and efficiency of the proposed method by presenting some interesting physical applica-
tions. In the future, we will pair DARA-ST with some iteration methods to solve nonlinear 
FPDEs, such as nonlinear telegraph equation, nonlinear wave equation, nonlinear Klein–
Gordon and nonlinear Fokker–Planck. In addition, researchers can use new definitions of 
FC such as the generalized fractional derivative and others to search and obtain new re-
sults on transformations. 

Author Contributions: Data curation, R.S., A.B., R.K. and A.Q.; Formal analysis, A.B., R.S., A.Q. and 
R.K.; Investigation, A.B., R.S., A.Q. and R.K.; Methodology, A.B., R.S., A.Q. and R.K.; Project admin-
istration, A.Q., R.S., R.K. and A.B.; Resources, A.B., R.S., R.K. and A.Q.; Writing—Original draft, 
A.Q., R.S., R.K. and A.B.; Writing—Review and editing, A.Q., A.B., R.S. and R.K. All authors have 
read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: Not applicable. 

Acknowledgments: The authors express their gratitude to the dear referees, who wish to remain 
anonymous, and the editor for their helpful suggestions, which improved the final version of this 
paper. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Agarwal, P.; Agarwal, R.P.; Ruzhansky, M. Special Functions and Analysis of Differential Equations; Chapman and Hall: London, 

UK; CRC: New York, NY, USA, 2020. 
2. Caputo, M.; Fabrizio, M. A new Definition of Fractional Derivative without Singular Kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. 
3. Algahtani, O.J.J. Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model. 

Chaos Solitons Fractals. Nonlinear Dyn. Complex. 2016, 89, 552–559. 

Figure 7. (a) Plots of the exact solution when α = 2 and different values of α = 1.95, 1.85 and 1.75 of
Example 3. (b) Plots of the exact solution when β = 2 and different values of β = 1.95, 1.85 and 1.75
of Example 4.

Moreover, we mention that as α and β approach the close integer orders, the obtained
solutions of the FPDEs approach the exact solutions in the integer case.

7. Conclusions

In this research, DARA-ST is applied to the Caputo fractional derivative to obtain a
new interesting formula, that is implemented to solve families of FPDEs. We have presented
a new method to obtain exact solutions of these equations. We show the reliability and
efficiency of the proposed method by presenting some interesting physical applications. In
the future, we will pair DARA-ST with some iteration methods to solve nonlinear FPDEs,
such as nonlinear telegraph equation, nonlinear wave equation, nonlinear Klein–Gordon
and nonlinear Fokker–Planck. In addition, researchers can use new definitions of FC
such as the generalized fractional derivative and others to search and obtain new results
on transformations.
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