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Abstract: The local growth global reset (LGGR) dynamical model is reviewed and its performance in
describing the hadron energy spectra in relativistic collisions is demonstrated. It is shown that even
for dynamical processes a temperature-like quantity can be defined and distributions resembling
statistical equilibrium can be reached. With appropriate growth and reset rates the LGGR model is
capable of describing the right energy spectra. These findings draw a certain picture of quark–gluon
plasma development with random hadronization and re-swallowing steps and signals the fact that
observing an exponential spectrum does not necessarily prove thermal equilibrium in the experiment.

Keywords: quark–gluon plasma; hadronization; Tsallis–Pareto distribution; LGGR model; thermody-
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1. Introduction

The local growth global reset (LGGR) model is a special master equation: it deals
with local, small-step increases with some transition rate and a reset to the fiducial “zero”
state by one big step. Its continuous version looks similar to a “square-rooted” diffusion
problem, containing only a first-order space derivative and a reset term proportional with
the probability density in describing the evolution of distributions. Its stationary solution
can be analytically written and even its approach to the stationary distribution can be
studied. Such a model was successfully applied to describing the appearance of power-law
tailed stationary distributions by simple dynamical rules [1–5].

Similar mathematical models and their analogies can well be used in the description
of the hadronization process of a quark–gluon plasma (QGP). The dynamical models are
to be preferred before the equilibrium ones, since a proton–proton or even a heavy-ion
collision system is transient and relatively small (for a review please consult [6]) Forming a
QGP, hadronizing it, and occasionally re-swallowing some of the hadrons is the picture
underlying our present discussion [7]. Such processes on the statistical level call for a
random dynamics with smart rates: a bigger QGP may give birth to more hadrons during
the same time interval than a small one. Furthermore when re-swallowing happens, even
if rarely, it clears (almost) all hadrons. This gives rise to a reset to the “zero hadrons
state”. Meanwhile continuously hadronizing pushed by QCD dynamics can be comprised
into a growth rate—possibly also depending on how many hadrons are already there;
therefore, we think that an LGGR approach can be applicable also to the statistical QGP
hadronization problem.

In the recent past, we have analyzed individual hadron energy distributions, observed
in high energy experiments. The spectra can be well described, both at low and high
transverse momenta, by a single model predicting a Tsallis–Pareto distribution [8–11].

In this paper version of the talk given at the Austro-Croatian-Hungarian Triangle
(ACHT) Meeting, Zagreb, 2021, we would like to summarize important mathematical back-
ground steps for the results concerning particle spectra in the QGP hadronization problem.
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First, the LGGR type model is introduced and some references are made to its success
in recent interdisciplinary applications. Then, a rough analysis of phase space and fluctuat-
ing total number effects on the individual energy spectra is presented. We demonstrate
that while non-exponential distributions of energy can be statistically generated, not all
exponential-like distributions are born from equilibrium. As a result, we conclude that even
observing an exponential spectrum does not prove thermal equilibrium in an experiment.

2. The LGGR Model

The local growth and global reset (LGGR) model is a special master equation, recently
introduced for modeling various distributions frequently encountered in complex systems.
In order to present this model in brief, let us consider a system with identical entities,
where the states of the constituents are identified by the amount of quanta they possess.
Let Pn(t) be the probability that one entity posses n quanta at time moment t (naturally
∑{n} Pn(t) = 1). Two types of processes are considered in the dynamics of the system. First,
each entity can increase the number of possessed quanta from a state with n quanta to a
state with n + 1 quanta, with a state-dependent growth rate µn. The second process, which
allows the convergence to an equilibrium configuration is a reset to the ground state with
zero quanta (n = 0), governed by the γn state-dependent reset rate. The master equation
for such a process with discrete states writes as:

dPn(t)
dt

= µn−1Pn−1(t)− µnPn(t)− γnPn(t) + δn,0〈γ〉(t). (1)

The last term in this evolution equation guarantees the normalization of Pn(t) by
refeeding the system at the state n = 0 if needed:

〈γ〉(t) = ∑
j

γjPj(t). (2)

For discrete n states, the stationary distribution can be given in form of a product

Qn =
µ0Q0

µn

n

∏
j=1

µj

µj + γj
, (3)

where Q0 can be determined from the normalization condition. The convergence to the
stationary state was discussed in several recent works [12,13]. For constant growth rate,
µ, and constant reset rate, γ, it is found that the convergence is faster than exp(−γ t).
For constant reset rate, γ, and linearly increasing growth rate, µ = σ(n+ b), the convergence
is faster than exp(−(σ + µ) t). The reset rate can be either positive for all states (illustrated
in Figure 1a) meaning an actual reset to the zero state, or can change its sign from negative
to positive values at state r. This means that elements that reset at n > r states re-enter the
system at states n < r (illustrated in Figure 1b).

Considering discrete states has the drawback however, that the product in (3) has a
compact analytical solution for just a few cases [14].

The growth and reset scenario of the dynamical Equation (1) can be generalized to
continuous states by converting it into a partial differential equation with continuous
growth and reset rates (µn → µ(x), γn → γ(x)) [1]:

∂ρ(x, t)
∂t

= − ∂

∂x
[µ(x)ρ(x, t)]− γ(x)ρ(x, t) + 〈γ(x)〉(t)δ(x). (4)

Here ρ(x, t) is the normalized probability density (
∫
{x} ρ(x, t)dx = 1) for an element

possessing x amount of quanta at time moment t. The feeding term at x = 0 ensures the
conservation of probability:

〈γ(x)〉(t) =
∫
{x}

γ(x)ρ(x, t)dx (5)
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The steady-state of the growth and reset process, ρs(x), has a compact solution:

ρs(x) =
µ(0)ρs(0)

µ(x)
e
−

x∫
0

γ(u)
µ(u) du

, (6)

By correctly choosing the µ(w) growth- and γ(w) reset rates, the LGGR model will
lead to ρs(w) distributions that are frequently encountered in complex systems [1].

Figure 1. Schematic illustration of the growth and reset process: (a) The general mechanism of
the process when all reset rates are positive; (b) the case when the reset rate can be both positive
and negative.

3. A Simple Approach to Hadronization Statistics
3.1. General Framework

In non-thermal ensembles a kinetic definition of a temperature-like quantity is pos-
sible, usually as T = E/〈n〉. This assumes a given total energy (microcanonical non-
equilibrium approach), but a fluctuating number of particles, n, as it is typical for the results
of hadronization processes in high energy collisions. Our aim is to prove the possibility of
such temperature definition for a particle ensemble subjected to the LGGR dynamics.

Let us consider a relativistic hadron collision experiment, and we assume for the newly
created particles an ensemble, where the total energy of the produced hadrons equals to E,
the total initial kinetic energy invested into the collision. This resembles a microcanonical
ensemble in the classical statistical physics.We are asking for the occurrence frequency of a
given individual (or subsystem) energy of a created hadron, ε ∈ (0, E]. Assuming that every
phase-space element has the same probability, we can approach this probability density as:

ρ(ε) =

〈
Γ1(ε)Γn(E− ε)

Γn+1(E)

〉
n

(7)

Denoting by Ωn(E) the hyper-volume of the phase-space for n particles, so that their total
energy (composed solely by the kinetic energy) is smaller or equal E. Correspondingly the
energy shell, Γn(E) denotes the size, where the total energy of the ensemble is fixed to E,

Γn(E) =
dΩn(E)

dE
(8)

A statistics over several events, where the number of hadrons, n, is random according to a
distribution Pn(E) will lead to:

ρ(ε) =
∞

∑
n=0

Γ1(ε)Γn(E− ε)

Γn+1(E)
Pn(E). (9)
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This simple approach actually delivers the characteristic PDF function for the hadron
energies produced in collision experiments.

3.2. Phase Space Volumes

In a non-intersecting particle picture phase space is over momenta. Individual energies
are functions of momenta according to the corresponding dispersion relation. A number of
such relations look similar to a power of the absolute value, so they can be comprised into
an Lp-norm: (

n

∑
i=1
|pi|p

)1/p

≤ R(E) (10)

with pi individual momentum components, all-together n-dimension in phase space and E
total energy. The R(E) function also reflects the dispersion relation.

For extreme relativistic particles p = 1, and R(E) = E measures the volume satisfying

n

∑
i=1
|pi| ≤ E. (11)

The general formula reads as

Ω(p)
n (R) =

Γ(1/p + 1)n

Γ(n/p + 1)
(2R)n. (12)

For the p = 1, R(E) = E case considered here:

Ωn(E) =
(2E)n

n!
(13)

and Ω0(E) = 1.
The corresponding microcanonical constrained energy shell size is:

Γn(E) =
2nEn−1

(n− 1)!
= 2Ωn−1(E). (14)

3.3. Calculating the PDF for a Single Particle

The above consideration leads us to the statistical weights in the summation from
Equation (9). Using the computed hyper-volume and hyper-surface approximations, we obtain

ρ(ε) =
∞

∑
n=0

n
E

(
1− ε

E

)n−1
Pn(E). (15)

Since the statistical weights are normalized, i.e.,∫ E

0

Γ1(ε)Γn(E− ε)

Γn+1(E)
dε =

∫ E

0

n
E

(
1− ε

E

)n−1
= 1, (16)

by imposing
∞
∑
0

Pn(E) = 1, we will have:

∫ ∞

0
ρ(ε)dε = 1 (17)
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4. LGGR Scenario for Hadronization

In this section, we flash a few examples for possible mechanisms of non-thermal
exponential and Tsallis–Pareto energy distributions in the view of the LGGR type dynamics
applied for the hadronization process. Let us discuss simple, but enlightening cases for the
Pn(E) distribution, that are derived from some simple LGGR mechanism.

4.1. Constant Growth and Reset Rates

First, we consider that both the γ and µ rates are state independent constants. In such
cases the LGGR model [12] leads to:

Pn(E) ≡ Qn(γ, µ) =
1

1 + µ
γ

(
1 +

γ

µ

)−n
(18)

The average number of quanta 〈n〉 related to the total E energy can be immediately ob-
tained as:

〈n〉 =
∞

∑
n=0

n Qn =
µ

γ
. (19)

Using the average number of particles, 〈n〉, this simple growth and reset phenomena
leads to:

ρ(ε) =
∞

∑
n=0

n
E

(
1− ε

E

)n−1
Qn(〈n〉) =

〈n〉
E

1(
1 + ε 〈n〉

E

)2 (20)

The normalization of ρ(ε) leads to

ρ(ε) =
〈n〉+ 1

E
1(

1 + ε 〈n〉
E

)2 (21)

For the 〈n〉ε/E << 1 limit we obtain:

ρ(ε) ≈ 〈n〉+ 1
E

(
1− 2

〈n〉ε
E

+ 3
(
〈n〉ε

E

)2

+ O[〈n〉ε/E]3
)

(22)

4.2. Preferential Growth and Reset Rates

We consider now a more complex, but still analytically tractable approach for the
hadronization process: Having already n hadrons, a new hadron is created with the state
dependent probability rate µn, and a collective re-melting into the prehadron stage is
considered with rate γn. We conjecture that there is a certain number of newly made
hadrons, 〈n〉, for which the re-melting does not occur. Less hadrons than this number
will likely to be created from a zero number state. This is quantified with negative γn
rates for n < 〈n〉 leading to a yield proportional with Pn. For n > 〈n〉 the hadrons will be
re-melted with a positive γn rate. A reset rate describing this scenario is γn = σ(n− 〈n〉).
For the growth rate, we assume an independent preferential growth: µn = σ(n/k + 1)〈n〉.
Certainly, already at n = 0, in the state with no hadrons, there is a probability rate to create
one, µ0 = σ〈n〉 hadrons. Having already n hadrons accelerates the process, most of the
hadrons to be made are light bosons, mainly pions. The σ proportionality factor in the reset
rate is used to ensure γ0 + µ0 = 0. For all the other n > 0 states one will have γn + µn > 0.

Accepting the above assumptions for the µn growth rates and γn reset rates we obtain:

Qn =

(
n + k− 1

n

)
(〈n〉/k)n

(1 + 〈n〉/k)k+n (23)

With the used parametrization of the growth and reset rates, the first moment is
exactly 〈n〉. As it is shown in [1], the hadron multiplicity data from the PHENIX experiment
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at the RHIC from Brookhaven [15] are in agreement with the obtained hadron number
distribution. The sub-Poissonian nature of such distributions is shown also in a recent
work using the data from the ATLAS experiment at the LHC [16]. The above particle
number distribution leads to the stationary probability density for the energy in the form
of a Tsallis–Pareto distribution [17]:

ρ(ε) =
∞

∑
n=0

n
E

(
1− ε

E

)n−1
Qn(〈n〉, k) =

〈n〉
E

(
1 +

〈n〉
k

ε

E

)−k−1
(24)

After normalization we obtain:

ρ(ε) =
〈n〉
E

1

1−
(

1 + 〈n〉
k

)−k

(
1 +

〈n〉
k

ε

E

)−k−1
(25)

As it is shown in the masters thesis of Gábor Biró [18], the experimental results confirm such
a distribution. Many other research groups reached similar conclusions for experiments
performed at RHIC and LHC [19–22].

In the 〈n〉ε/k E << 1 limit, up to second-order terms we have:

ρ(ε) ≈ 〈n〉

E
(

1−
(

1 + 〈n〉
k

)−k
)(1− k + 1

k
〈n〉ε

E
+

1
2
(k + 1)(k + 2)

k2

(
〈n〉ε

E

)2

+ O[〈n〉ε/E k]3
)

(26)

We note by passing that the k→ ∞ limit of the above cited negative binomial distribu-
tion is Poissonian, leading to an exponential energy distribution in this limit:

ρ(ε) =
〈n〉
E

e−〈n〉ε/E. (27)

4.3. A Non-LGGR Approach

Outside of the framework of the LGGR dynamics, one also could consider a simple
probabilistic approximation based on the random distribution of a large number of particles,
N, in a large number of cells, K. Let us assume that we are looking for a space-volume with
k cells. If we denote by 〈n〉 = kN/K the expected number of particles in these k cells, the
probability to obtain n number of particles in this volume has a Poisson distribution in the
n→ ∞, K → ∞, but N/K finite limit.

Pn(E) = e−〈n〉
〈n〉n

n!
(28)

This leads to a Boltzmann–Gibbs type exponential distribution for ε. The distribution
normalized on the (0, E] interval:

ρ(ε) =
〈n〉

E
(
1− e−〈n〉

) e−〈n〉
ε
E (29)

5. Equilibrium Thermodynamics Consideration

We consider now the equilibrium thermodynamics approach, assuming a canonical
distribution for the hadrons ε energy. Assuming a T thermodynamic temperature for the
system and the available energies in the (0, E] interval, we obtaining:

ρT(ε) =
1

T
(
1− e−E/T

) e−
ε
T (30)
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In the E→ ∞, T finite limit it is again Boltzmannian

ρ(ε) =
1
T

e−ε/T . (31)

For ε/T << 1 we obtain:

ρT(ε) ≈
1

T (1− e−E/T)

(
1− ε

T
+

1
2

( ε

T

)2
+ O[ε/T]3

)
(32)

We are able now to compare this result, with the one from the considered dynamic
processes and identify the corresponding equilibrium thermodynamics quantities.

The very simple LGGR approach with a constant growth and reset rate leads for
an expression of ρ(ε) that is identical with the one expected in the thermodynamical
equilibrium only up to the zeroth order. In this order, we obtain the expected temperature
definition: T = E/〈n〉

Considering however the LGGR dynamics with a preferential growth rate, in the limit
of large reset rates relative to the growth rate, the expression of ρ(ε) becomes identical with
the one expected in the equilibrium approach: ρT(ε). When 〈n〉/k << 1 we write:

(
1 +
〈n〉
k

)−k
=

(
1 +
〈n〉
k

)− k
〈n〉 〈n〉

≈ e−〈n〉 (33)

In addition, if one considers k >> 1, we have (k + 1)/k ≈ (k + 1)(k + 2)/k2 ≈ 1. Taking
all these into account, we are led now to a consistent definition of temperature: T = E/〈n〉.
We should not be surprised however that in the k >> 1 limit the results are consistent
with the one expected in the equilibrium statistical physics. In this limit, the Tsallis–Pareto
distribution converges to an exponential distribution, hence this obvious result.

As it is naturally expected in case of the Poisson-like hadron number distribution,
linked to the entropic fluctuation of particle number in a fixed volume, the exact form of
ρT(ε) is observed with T = E/〈n〉.

6. Summary

The main message of this contribution is to emphasize and prove again that there
are exponential-like energy distributions in the physical world, which are not thermal.
More specifically, we considered the case of the LGGR dynamics, and we have shown that
in the dynamical stationarity, the expected particle energy spectra follows a distribution
that in some cases is similar with the one expected from equilibrium statistical physics.
For preferential growth and constant reset rates the stationary limit of the dynamics leads
to similar energy spectra as the one observed in equilibrium systems. This allows us to
define a temperature as: T = E/〈n〉. In contrast with this result, we observed that by
considering constant growth and reset rates the stationary dynamics will not lead to an
energy spectra that can be considered thermal, and therefore one cannot use a consistent
definition for the thermodynamic temperature in general.
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