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Abstract: The challenge of developing observers for classical integer-order systems that are both
resilient and non-fragile has received a lot of attention in the literature. However, only a few articles
have addressed the topic of developing observers for Fractional-Order (FO) systems that are both
H-infinity (H∞) and non-fragile. The current work handles the Caputo fractional-order systems as
the first work, to our knowledge, which treats such problems. The authors provide a novel result for
building non-fragile and robust observers for nonlinear Caputo fractional-order systems. For this,
the H∞ performance method is utilized. Simulations for a numerical example confirm the efficacy of
the suggested technique. The primary advantage of the current work is that it is the first to address
the Caputo fractional-order system problem.

Keywords: H∞ performance; non-fragile; fractional-order calculus; Caputo derivative; observer;
Lipschitz condition

1. Introduction

A Fractional-Order System (FOS) is one among nonlinear systems that may be char-
acterized utilizing a non-integer derivative [1]. Such systems are referred to as fractional
dynamics. Derivatives and integrals of fractional-order systems are utilized to depict
events that may be investigated in a variety of ways, for example, power-law long-range
dependence, power-law nonlocality [2], or fractal features. Many areas, including biology,
physics, viscoelasticity, electrochemistry, and chaotic systems, have employed fractional-
order calculus to explore system dynamics [1]. In recent decades, advances in science,
mathematics [3], and engineering have boosted the use of fractional calculus in many
areas of control theory, such as stability [4], finite-time stability (FTS) [5], stabilization [6],
observer design, and fault estimation [7].

In systems engineering, observers are the crucial component for generating system
states, either totally (complete observers) or substantially (reduced-order observers). Re-
searchers have utilized these structures for additional reasons besides predicting states, such
as identifying defects [8] and solving control issues [8,9]. Typically, data from real-world
applications have two types of distributions: symmetric and asymmetric. For instance,
social networks and protein networks frequently exhibit symmetric relationships. In other
words, there is a clear asymmetry between the probability distributions of accidents and
typical scenarios in traffic statistics. Consequently, it is necessary to examine symmetry and
asymmetry issues while analyzing incomplete huge data. By removing physical sensors
and replacing them with software sensors, the inclusion of the observer in symmetric
and asymmetric distributions may minimize the complexity of networks and improve the
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efficiency of certain calculations. In this situation, the usage of observers can be a useful
tool for resolving several issues, for example [10,11].

On the other hand, a state observer is used to rebuild the states of a dynamic system
and has numerous essential applications, including feedback control implementation,
system supervision, gas-fired furnace systems, and fault detection. A notion for non-fragile
control is presented as a solution to the dilemma of how to build a feedback control that is
insensitive to errors in its gains. The relevance of this method relative to others lies in the
fact that the error system has a higher margin of stability than the classical system, allowing
the observer to achieve favorable performance. It should be noted that spectators come in
a variety of shapes and sizes. Non-fragile observers are one of these categories, and they
have a positive impact on performance. The estimation is non-fragile if the error does not
diverge when the observer gain is affected by an external disturbing element. Alternatively,
whenever the system under investigation includes a perturbation vector, the design of the
observer is ineffective at quickly reconstructing the states, mandating the use of special
techniques. The H∞ observer is one of these approaches.

H∞ and/or non-fragile approaches for classical systems have been a topic of consid-
erable research for decades. The construction of such methods for delayed time—variant
switching systems was the subject of [12]. Another work [13] focuses on developing an
observer-based control which is non-fragile. On the other hand, the authors proposed
in [14] a sliding mode discrete time-delay H∞ observer. Subsequently in [15], for lin-
ear systems with unknown inputs, certain experts developed an integrated H∞ observer.
A further noteworthy article [16] offered a H∞ observer technique for linear parameter
varying systems with uncertainties and validated their findings for a battery-powered
wheeled vehicle.

It is worth noting that integer-order calculation is inadequate for examining a wide ar-
ray of different systems whose behaviors are better described by fractional order. Fractional-
order calculus, for example, has been effectively used to simulate electrochemical sys-
tems [17] and heat transfer systems [18]. In a related vein, in recent years, the application
of fractional-order equations in stability theory has increased dramatically [19,20]. For
fractional-order systems, dealing with non-fragility and/or H∞ observer development
is a significant topic of inquiry compared to the integer-order situation. In fact, scholars
have only published a few papers in this area. Furthermore, only a few publications have
addressed the problem of constructing observers for fractional-order systems that are both
H∞ and non-fragile [21,22].

This approach estimates the states of nonlinear fractional-order systems using the Ca-
puto derivative. The results are surprising. It is possible to employ the non-fragile observer
framework in an effort to allow a system-modeling approach adaptable to possible observer
gain in an input disturbance-free and input disturbance-dependent scenario, included in a
generalized theorem. An H∞ performance is supplied when the system description incor-
porates unknown input disturbances, and the H∞ observer is demonstrated to properly
predict the states.

Based on the above discussions, the novelty and implications of this research can be
listed as follows.

• As stated above, only a few papers have addressed the issue of designing H∞ and
non-fragile observers for FO systems. The key benefit of the current study is that it is
the first to address the problem of the Caputo fractional-order system.

• The suggested strategy exploits a variety of mathematical properties and unique
situations. The authors feel that this increases the value and significance of the
current work.

The rest of the paper is generally divided into three categories. Preliminaries and
fundamental principles of the FO calculus are provided in Section 2. The paper’s core
challenge is then mathematically stated. The non-fragile state estimate technique is shown
in Section 3. The disturbance-free as well as the disturbance-dependent cases are also
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discussed. Finally, in Section 4, a numerical simulation investigation is carried out to
corroborate the findings.

2. Some Preliminaries and a Description of the Problem
2.1. Preliminaries

This section reviews numerous essential concepts and lemmas in fractional calculus.
We begin with the following definition of the fractional integral of Riemann–Liouville.

Definition 1 ([1]). Let us say that we have [a, b] ⊂ R. A fractional integral of Riemann–
Liouville of a function x ∈ L1([a, b]) with order α > 0 is described this way:

Iα
a x(t) =

1
Γ(α)

∫ t

a
(t− τ)α−1x(τ)dτ, t ∈ [a, b]

A generalizing factorial for non-integer parameters is represented by the Gamma function
Γ(α) =

∫ +∞
0 e−ttα−1dt.

The Caputo fractional derivative is defined as follows:

Definition 2 ([1]). For x(t) an absolutely continuous function and 0 < α < 1, the Caputo
fractional derivative is defined as:

CDα
a,tx(t) =

1
Γ(1− α)

∫ t

a
(t− τ)−α d

dτ
x(τ)dτ

The definition that follows describes a commonly used function in the solution of fractional-
order problems. This function may be thought of as a broadening of the exponential function.

Definition 3 describes the Mittag-Leffler function.

Definition 3 ([1]). The two-parameter Mittag-Leffler function is given as:

Eα,µ(ξ) =
+∞

∑
k=0

ξk

Γ(kα + µ)
,

with α > 0, µ > 0, ξ ∈ C. When µ = 1, one has Eα(ξ) = Eα,1(ξ); in addition, E1,1(ξ) = eξ .

In what follows, an important Lemma is used to demonstrate the stability of fractional-
order systems.

Lemma 1 ([23]). Let P ∈ Rn×n be a constant symmetric and positive definite matrix and ∈ [0, 1].
As a result, the following link exists:

1
2

CDα
t0,t

(
xT(t)Px(t)

)
≤ xT(t)PCDα

t0,tx(t).

The authors use a Caputo derivative order to solve a system of fractional differential
equations when 0 < α ≤ 1:

CDα
t0,tx(t) = ψ(t, x) ; t > t0x(t0) = x0 (1)

where x ∈ Rn, ψ : R+ ×Rn → Rn is a smooth nonlinear function such that we have the
existence and uniqueness of the global solution, and ψ is supposed to satisfy ψ(t, 0) = 0
for every t ≥ 0.

The following theorem is essential for the Mittag-Leffler global stability of Caputo
fractional order systems.
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Theorem 1 ([24]). Assume that x = 0 is the equilibrium of system (1):
Assume that V : [0,+∞)×Rn → R is locally Lipschitz with respect to x and a continuously

differentiable function and such that:

µ1 ||x ||c ≤ V(t, x) ≤ µ2 ||x ||cd,
CDα

t0,tV(t, x) ≤ µ3 ||x ||cd,

where t ≥ t0, x ∈ Rn, α ∈ (0, 1), and µ1, µ2, µ3, c and d consist of arbitrarily positive numbers.
Then, x = 0 is globally Mittag-Leffler stable.

The below Lemma is used as a tool for the proof of the main results, named the Schur
complement Lemma.

Lemma 2 ([25]). Consider a set of constant matrices M, N, andQ, of appropriate dimensions,
where MandQare symmetric, then:{

Q > 0
M + NTQ−1N < 0

if and only if
[

M NT

N −Q

]
< 0

2.2. Problem Statement

Consider the following nonlinear Caputo fractional-order system with ∈ [0, 1]:{CDα
t0,tx(t) = Ax(t) + ϕ(x, u) + ω(t)

y(t) = Cx(t),
(2)

where ω ∈ Rn is an input disturbance vector, y ∈ Rm is the output vector, u ∈ Rq is the
input vector, and x ∈ Rn is the state vector. C ∈ Rm×nand A ∈ Rn×n are two known
constant matrices and ϕ(x, u) is the nonlinearity in system (2). The input disturbance ω(t)
is considered such that the following condition (3) is satisfied:

+∞∫
t0

ωT(t)ω(t)dt < +∞ (3)

Define the non-fragile Caputo fractional-order observer, given by (4):{CDα
t0,t x̂(t) = Ax̂(t) + ϕ(x̂, u) + (L− ∆L(t))(y(t)− ŷ(t))

ŷ(t) = Cx̂(t),
(4)

where L is the observer gain matrix, ŷ(t) is the output vector estimation, x̂(t) is the state
estimate vector, and the term ∆L(t) denotes a supplementary perturbation on the gain
of the observer. Let e(t) = x(t) − x̂(t) be the estimation error. The following formula
therefore governs the error dynamics:

CDα
t0,te(t) = (A− LC)e(t) + ∆L(t)Ce(t) + ∆ϕ(t) + ω(t) (5)

where ∆ϕ(t) = ϕ(x, u)− ϕ(x̂, u). The authors define the H∞ performance metric for system
(5), given a positive scalar, as:

J∞ =

+∞∫
t0

(
e(t)Te(t)− γ

2
ω(t)Tω(t)

)
dt, (6)

where γ is a positive constant.
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To proceed with the development of the main result, we define the H∞ performance
criteria by the following definition.

Definition 4. System (5) is Mittag-Leffler stable under an H∞ performance γ, if it is Mittag-Leffler
stable as long as ω = 0, as well as fulfilling

∫ +∞
t0

eT(t)e(t)dt < γ
∫ +∞

t0
ωT(t)ω(t)dt, when the

initial condition equals to zero.

In the present paper, the following two conditions are taken as assumptions:

Assumption 1. The function ϕ(x, u) is Lipschitz in Rn, if v ∈ R+\{0} exists such that,
∀x1, x2 ∈ Rn:

||ϕ(x1, u)− ϕ(x2, u)|| ≤ v||x1 − x2||, (7)

Assumption 2. The disturbance ∆L(t) fulfills the following conditions: ∆L(t) = El Fl(t)Hl where
El , Hl are known real constant matrices and Fl(t) is an unknown real time-varying matrix where
Fl(t)T Fl(t) ≤ I, with I as the identity matrix.

3. Estimation of Non-Fragile States

Theorem 2 is developed to establish a required hypothesis for the state estimate error
origin e = 0 to be Mittag-Leffler stable.

Theorem 2. Taking into consideration systems (2) and (4), in terms of circumstances (Assumption
1), (3), and (Assumption 2). If there exists X and P = PT > 0 and scalars ε1 > 0 and ε2 > 0 in
a such way that the LMI (8) is feasible, so the origins of the error e = 0 is globally Mittag-Leffler
stable, with H∞ performance γ > 0.

δ2
∗

PEl
−ε1 I

P 0
0 0

∗ ∗ − 1
β+ε2

−1 I 0

∗ ∗ ∗ (ε2 − γ
2 )I

 < 0 (8)

where δ2 = PA + AT P− XC− CTXT +
(

v2

β + 1
)

I + ε1CT Hl
T HlC and X = PL.

Proof. We consider
V(e) = eT Pe

Using Lemma 1, we have:

CDα
t0,tV(e) ≤ 2eT PTα

t0
e≤ eT

(
(A− LC)T P + P(A− LC)

)
e + 2eT PEl Fl(t)HlCe + 2eT P∆ϕ + 2eT Pω (9)

The following property, which is true for all scalars β > 0, can be used:

2eT P∆ϕ ≤ βeT PPe +
1
β

∆ϕT∆ϕ

One has (C1) as a starting point:

∆ϕT∆ϕ ≤ v2eTe (10)

For each positive scalar ε > 0, it is true:

2eT PEl Fl(t)HlCe ≤ ε−1eT PElEl
T Pe + εeTCT Hl

T HlCe (11)

For each positive scalar ε2 > 0, it is true:

2eT Pω ≤ ε2
−1eT PPe + ε2ωTω (12)
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• Case 1 (ω(t) = 0):

From (9) through (11), we get:

CDα
t0,tV ≤ eTδe (13)

where δ = (A− LC)T P + P(A− LC) + εCT Hl
T HlC + ε−1PElEl

T P + βPP + v2

β I.
Lemma (Lemma 2) may be used to show that δ < 0 is equivalent to:δ1 PEl P

∗ −εI 0
∗ ∗ −β−1 I

 < 0 (14)

where δ1 = PA + AT P− XC− CTXT + v2

β I + εCT Hl
T HlC and X = PL.

Now condition (14) ensures that CDα
t0,tV(t, e(t)) ≤ −µ3e2 with µ3 = λmin(δ). So, by

applying Theorem 1, it may be demonstrated that e = 0 is globally Mittag-Leffler stable.

• Case 2 (ω(t) 6= 0):

Taking (9), (10), (11), and (12) into account, the following upper bound may be obtained
for CDα

t0,tV(e):

CDα
t0,tV(e) ≤ eT

[
(A− LC)T P + P(A− LC) + βPP + v2

β I
+ε1

−1PElEl
T P + ε1CT Hl

T HlC + ε2
−1PP

]
e + ε2ωTω

(15)

As a result, we may write the following inequality:

CDα
t0,tV(e) + eTe− γ

2
ωTω ≤ ξTΨξ, (16)

where ξT =
[
eTωT], Ψ =

(
ψ1 0
∗

(
ε2 − γ

2
)

I

)
with:

ψ1 = (A− LC)T P + P(A− LC) +
(

β + ε2
−1)PP +

(
v2

β + 1
)

I
+ε1CT Hl

T HlC + ε1
−1PElEl

T P

Let us now consider the situation:

Ψ ≤ 0, (17)

So:
CDα

t0,tV(e) + eTe− γ

2
ωTω ≤ 0

And when it has been integrated, it maintains that:

I1
t0

CDα
t0,tV(e) + I1

t0
eT(t)e(t)− γ

2
I1
t0

ωT(t)ω(t) ≤ 0, (18)

Now, based on the work of [23], and using the following property:

I1
t0

CDα
t0,tV(e) = I1−α

t0
Iα
t0

CDα
t0,tV(e)

One gets:
I1
t0

CDα
t0,tV(e) = I1−α

t0
(V(e(t))−V(e(t0)))

Using the initial condition of zero, one obtains V(e(t0)) = 0, and then:

I1
t0

CDα
t0,tV(e) = I1−α

t0
(V(e(t))) (19)
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Now, since V(e(t)) ≥ 0 for any t ≥ t0, then from (19), we get: I1
t0

CDα
t0,tV(e(t)) ≥ 0

for any t ≥ t0. Then, using (18), one can write, for any t ≥ t0:

t∫
t0

(
eT(t)e(t)− γ

2
ωT(t)ω(t)

)
ds ≤ 0

Letting t→ +∞ , we obtain:

J∞ =

+∞∫
t0

(
eT(t)e(t)− γ

2
ωT(t)ω(t)

)
dt ≤ 0,

Hence,
∫ +∞

t0
eT(t)e(t)dt < γ

∫ +∞
t0

ωT(t)ω(t)dt. As a result of applying Definition 4, it
is possible to deduce that system (5) is Mittag-Leffler stable under a H∞ performance γ > 0.
Using Lemma 2, we can see that (17) Equation (8). The proof is now complete. �

Remark 1. The article [26] makes a similar development in the context of conformable fractional
order systems.

4. Numerical Illustration

This section applies the suggested non-fragile state estimation method to the numerical
system (2) using the following configuration:

A =

−4 0 −5
1 −5 0
−1 0 −2

, B =

 0
1
0

, ϕ(x, u) =
1
6

sin(x2) sin(u)
sin(x1)
cos(x3)

, C =

 1
0
0

T

,

The fractional-order derivative is taken as α = 0.7. Regarding (7), the situation is
satisfactory at v = 1

6 . The following ∆L(t) = El Fl(t)Hl is the structure of the disturbance
on the gain of the observer ∆L(t) as demonstrated by the condition (C2), with:

El =

 0.1
0.3
0.1

, Fl(t) = cos t, Hl = 0.3

This simulation part looks at both of the instances discussed in the preceding section
(disturbance-free and disturbance-dependent).

4.1. Case 1 (ω(t) = 0)

Solving Equation (14) provides:

ε = β = 0.998, X =

 −0.7525
0.1153
−1.8247

 and P =

 0.3306 −0.001 −0.0236
−0.001 0.1071 0.0004
−0.0236 0.0004 0.3134


On the other hand, the observer gain matrix is calculated:

L =

 −2.7028
1.0766
−6.0263

. u = cos t is used to excite the system to implement the simulation.

The evolution of the state estimation errors e1, e2, and e3 is depicted in Figure 1.
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Figure 1. State estimation errors in the disturbance-free case.

As shown in Figure 1, the suggested non-fragile observer’s effectiveness in the situa-
tion of no disturbances may be validated. e1 = 0, e2 = 0 and e3 = 0 have a Mittag-Leffler
stability that is clearly apparent.

4.2. Case 2 (ω(t) 6= 0)

In this part, the authors want to show Mittag-Leffler stability with an H∞ effectiveness
when the system is subjected to a perturbation vector that fulfills specific requirements (3).
To create the simulation, the authors identify the following perturbation:

ω(t) = 0.1


sin t
t2+1
cos t
t2+1
sin t
t2+1

 (20)

ε1 = 0.8201, β = 0.8236, ε2 = 1.25, γ = 0.8236, X =

 0.0264
0.2082
−1.8899

 and

P =

0.2486 0.0002 0.0876
0.0002 0.2092 −0.0005
0.0876 −0.0005 0.2884

 are obtained by solving Equation (8) using the

MATLAB LMI control toolbox. The observer gain matrix may then be calculated:

L =

 2.7047
0.9743
−7.3738


e = 0 is Mittag-Leffler stable with γ = 0.8236. For the simulation model to work,

u = cos t is applied to the system. e1, e2, and e3 are shown in Figure 2.
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Figure 2. State estimation errors in the presence of disturbance ω(t).

As shown in Figure 2, the non-fragile observer’s performance may be validated in
the presence of a disturbance ω(t). On the contrary, the Mittag-Leffler stability of the error
origins with H∞ performance may be clearly shown.

5. Conclusions

The authors of this work have built a non-fragile observer for non-linear fractional-
order systems using the Caputo fractional-order derivative concept. A general theorem
has been established. This theorem considers both the disturbance-free and disturbance
situations. The H∞ theory was used to compensate for the influence of the input distur-
bance on the state estimation process; a H∞ performance was developed, and the global
Mittag-Leffler stability of the error origin, with a H∞ performance γ > 0, was proven.
At the end of the paper, a simulation analysis for a numerical example is presented to
corroborate the theoretical conclusions and illustrate the usefulness of the recommended
system. The current work is unique in that it is the first to address the problem of the
Caputo fractional-order system.
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