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Abstract: Symmetric cryptography allows faster and more secure communication between two
entities using the identical pre-established secret key. However, identifying the honest entity with
the same secret key before initiating symmetric encryption is vital since the communication may
be impersonated. Tea and Ariffin, in 2014, proposed a new identification (ID) scheme based on the
Bivariate Function Hard Problem (BFHP) that proved secure against impersonation under passive,
active and concurrent attacks via the BFHP-hardness assumption. In this paper, we upgrade the ID
scheme and improve some of its settings. Next, we provide the security proof against impersonation
under active and concurrent attacks in the random oracle model via the hardness assumption of the
One-More BFHP. Finally, we include an additional discussion about the computational efficiency of
the upgraded ID scheme based on BFHP and present its comparison with other selected ID schemes.

Keywords: active and concurrent attacks; Bivariate Function Hard Problem; identification scheme;
provable security; symmetric encryption

1. Introduction

Symmetric cryptography allows users to perform encryption and decryption using the
identical pre-established secret key. It enables simpler and quicker encryption since users
do not have to authenticate the agreed secret key from any authority like those in public-key
cryptography. Current practical symmetric-key algorithms include the Data Encryption
Standard (DES) such as 3DES and the widely used Advanced Encryption System (AES)
such as AES-128, AES-192, and AES-256, which target block ciphers. In contrast, RC4 deals
with stream cipher in its symmetric encryption. Besides having a faster encryption speed,
AES-256, in particular, is considered to be quantum resistant. Although faster and having a
more secure encryption than public-key cryptography, identifying the honest users over
the virtual network is crucial prior to initiating the encryption. As impersonation by an
unauthorized entity may occur during the communication, both users should identify and
prove to each other that they possess the same secret key before the encryption begins.

The main objective of an identification (ID) scheme is to enable an entity to prove and
verify that it knows a secret to another entity without having to reveal it during the interaction.
The protocol commonly begins with the commitment initiated by the prover that binds the
interaction. Next, a challenge issuance by the verifier to the prover. Finally, a prover’s
responses to the challenge, followed by the verification and decision output by the verifier.

The first ID scheme [1] utilized the quadratic residuosity (QR) or square root modulo
as their fundamental primitive. Its security rests on the difficulty of solving the integer
factorization problem (IFP). Later, ref. [2] presented an ID scheme using the RSA encryption
technique in the protocol with underlying security associated with the hardness of solving
the eth-root of RSA. In the subsequent year, another novel ID scheme [3] featured the
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utilization of the discrete logarithm problem (DLP) in the design. However, the concrete
proof of security in cryptography was formally described only after 2000s. Many ID schemes
were then proposed based on various primitives and their variants surrounding IFP and
DLP. For example, the elliptic curve discrete logarithm (ECDLP) in [4] and the bilinear
Diffie-Hellman (BDH) problem in [5] with their security proofs in the standard model.

Besides number-theoretic problems, there are non-number-theoretic problems from
the NP-class were utilized in designing ID schemes, such as in [6–8], to name a few.
Furthermore, some of the design proposals from these problems are categorized as post-
quantum candidates. For instance, the multivariate quadratic (MQ) polynomial as in [9]
relies on the intractability of the MQ polynomial. On the other hand, the lattice-based
identification schemes proposed, respectively, [10,11] consider the hardness of solving the
shortest vector problem (SVP) in lattices. The recently proposed code-based ID scheme
by [12] features the hardness assumption of solving a variant of a syndrome decoding
(SD) problem.

Ref. [13] in 2013 proposed an ID scheme based on the Diophantine Equation Hard
Problem (DEHP), which claimed to be secure against impersonation under passive attack
via the hardness assumption of DEHP. However, by carefully choosing the correct interval
of the solutions of DEHP, successful impersonation is possible even without knowing
the secret parameters, which results in acceptance with non-negligible probability. Later,
ref. [14] proposed a new ID scheme based on the Bivariate Function Hard Problem (BFHP),
a specific problem of two variables derived from DEHP [15]. With the hardness assumption
of solving the BFHP to obtain the preferred private solution, the proposed ID scheme was
proven secure against impersonation under passive, active and concurrent attacks.

In this paper, we upgrade the ID scheme based on BFHP from [14]. First, we refine
the definition of the Bivariate Function Hard Problem (BFHP) and its underlying hardness
assumption of One-More BFHP. Next, we present the upgraded ID scheme and the corre-
sponding security proof against impersonation under active and concurrent attacks in the
random oracle model via the difficulty of solving the One-More BFHP. Finally, we add on
some efficiency analyses about our upgraded ID scheme.

The layout of the paper is as follows. Section 2 reviews preliminaries related to the ID
scheme and its security model. Next, we outline the upgraded ID scheme based on BFHP, and
formally describes the security proof of our ID scheme against impersonation under active and
concurrent attacks in the random oracle model in Section 3. Section 4 includes a discussion
about the efficiency of ID schemes. Lastly, we draw our conclusion in Section 5.

2. Preliminaries
2.1. Mathematical Background

This section reviews the Bivariate Function Hard Problem (BFHP) and all the related
essential works to our proposal. We begin with the famous theorem due to Minkowski and
its implication for the solution of modular linear equations [16].

Theorem 1. (Minkowski). In an ω-dimensional lattice L, there exists a non-zero vector υ with

‖ υ ‖≤
√

ω det(L)
1
ω .

Ref. [16] addressed the problem of solving modular linear equation

f (x1, x2, . . . , xm) = a1x1 + a2x2 + · · · + amxm ≡ 0 (mod N)

for some N with unknown factorization. Although such an equation has infinitely many
solutions of (y1, y2, . . . , ym) ∈ Zm

N , one can expect a unique solution if ∏m
i Xi ≤ N, where Xi

is the upper bound of each solution |yi| < Xi for i = 1, . . . , m. This unique solution yi can
be recovered heuristically by computing the shortest vector in an m-dimensional lattice. In
addition, if in turn ∏m

i Xi > N1+ε, then the linear equation has Nε many solutions, which
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are exponential in the bit-size of N, and one has no hope of improving the bound in general.
That is, there exists no efficient algorithm to output all the roots in polynomial time.

Next, we lay out the definition of BFHP from the previous work in [14], and further
refine the hardness of the bivariate function and its corresponding assumption. We firstly
review the proper analytic description related to BFHP.

Proposition 1. Let F(x1, x2, . . . , xn) be a multiplicative one-way function that maps F : Z →(
2m−1, 2m − 1

)
for some m ∈ Z. Let F1 and F2 be such functions (either identical or non-identical)

such that A1 = F1(x1, x2, . . . , xn), A2 = F2(x1, x2, . . . , xn) and gcd(A1, A2) = 1. Let {u, v} ∈(
2n−1, 2n − 1

)
. Let F(x, y) = A1x + A2y. Let k = n−m− 1 where 2k is exponentially large for

any probabilistic polynomial time (PPT) adversary to sieve through all possible answers, then it is
infeasible to determine {u, v} over Z from F(u, v).

Proof. To prove that solving the Diophantine equation given by F(u, v) is infeasible, con-
sider the general solution for F(x, y) = A1x + A2y given by x = x0 + A2 j and y = y0 − A1 j
for any j ∈ Z, where x0 and y0 are initial solutions for the linear Diophantine equation
F(x, y). Then F(u, v) is said to be solved when the private preferred solution pair {u, v}
is found within the stipulated interval {u, v} ∈

(
2n−1, 2n − 1

)
. In other words, one must

search for specific integer j such that 2n−1 < u < 2n − 1 holds, that is u = x0 + A2 j. This

gives, 2n−1−x0
A2

< j < 2n−1−x0
A2

.
Then the difference between the upper and the lower bounds of j is approximately

2n−m−2. Since k = n−m− 1 where 2k is exponentially large for any probabilistic polynomial
time (PPT) adversary to sieve through all possible answers. We conclude that the difference
is very large, and finding the correct j is infeasible. This applies to the case of v too.

We put forward an example to demonstrate the hardness of finding the preferred
private solution from the exponentially many choices of j.

Example 1. Let A1 = 191 and A2 = 229. Let u = 41,234 and v = 52,167, then F(u, v) = 19,821,937.
Here we take m = 8 and n = 16. We now construct the parametric solutions for this BFHP. The
initial points are u0 = 118,931,622 and v0 = −99,109,685. Then general parametric solutions are
u = u0 + A2 j and v = v0 − A1 j. There are approximately 286 ≈ 29, about

(
216

229

)
values of j to try

(i.e., the difference between upper and lower bounds), while at minimum, the value of j ≈ 216. In
fact, the correct value is j = 519,172 ≈ 219.

Definition 1. (Bivariate Function Hard Problem (BFHP)). Let F(x, y) = A1x + A2y be a bivari-
ate function where x, y are unknown integers of n-bits, A1, A2 are public m-bits integers with
gcd(A1, A2) = 1 and 2k is exponentially large for k = n−m− 1. Given F(u, v) = A1u + A2v, the
BFHP is the problem in identifying the unique solution pair F(u, v) which is known as the preferred
private solution.

Definition 2. (BFHP Assumption). Suppose a BFHP experiment BFHPA,G(n) with parameter
generator G, algorithm A and security parameter 1n (i.e., security parameter of length n written in
unary [17]) is defined as follows:

1. Runs G(1n) to obtain F(x, y) = A1x + A2y.
2. Choose F∗ such that F∗ = A1u + A2v.
3. A is given (F(x, y), F∗) and outputs {u, v} ∈

(
2n−1, 2n − 1

)
.

4. The output of the experiment is defined to be 1, i.e., [BFHPA,G(n) = 1] if F(u, v) = F∗ with
correct preferred private solution pair {u, v}. Otherwise defined to be 0.

Then the BFHP is hard relative to G if for all probabilistic polynomial-time algorithm A, there
exists a negligible function negl(n) such that,

Pr[BFHPA,G(n) = 1] ≤ negl(n).
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Definition 3. (One-More BFHP). Let F(x, y) = A1x + A2y be a bivariate function with
{A1, A2} ∈

(
2m−1, 2m − 1

)
such that gcd(A1, A2) = 1 and {x, y} ∈

(
2n−1, 2n − 1

)
. An adver-

sary is given a challenge oracle Ocha that produces a random integer Fi ∈
(
2m+n−1, 2m+n − 1

)
when queried and BFHP oracle OBFHP that provides the preferred private primitives {xi , yi} corre-
spond to the query Fi = A1x + A2. The adversary is said to win if after i queries toOcha, it can solve
all the i challenges with strictly at most i− 1 queries to the OBFHP. Take note that Fi = F(xi , yi).

2.2. Identification Scheme and Security Model

An ID scheme comprises triple probabilistic polynomial-time algorithms, described
as a series of challenge-and-response interactions between two entities: the Prover and
the Verifier.

1. Setup: On input of security parameter 1n, the algorithm generates public system and
secret parameters. On termination, it publicizes the public system parameters and
keeps the secrets securely.

2. Prove: A probabilistic algorithm that firstly outputs a random commitment (Cmt) to
bind the interaction and subsequently replies to the challenge via a response (Rsp).

3. Verify: A probabilistic algorithm that firstly outputs a random challenge (Cha) to the
bound commitment and next output decision based on the received response.

The security of an ID scheme lies in the advantage of an adversary (impersonator)
being accepted after a certain number of interactions, either passively or actively. This is
often described as a two-phase impersonation game between adversary and simulator. We
outline the model to define an adversary’s advantage in the security game.

1. Setup: A simulator takes in the security parameter 1n and generates random pub-
lic system and secret parameters. The public system parameters are given to the
adversary while secrets are kept securely.

2. Phase 1 (Training): The adversary undergoes training based on different attackers’
environments: (i) Passive: Adversary queries to the simulator, returned with valid
conversation transcripts containing information about commitment, challenge, and
response. (ii) Active and concurrent: Adversary takes the role of the cheating verifier
and requests the simulator to prove itself. This environment works exactly like in the
ID protocol.

3. Phase 2 (Impersonation): The adversary now acts as a cheating prover. It outputs a
commitment that it wishes to impersonate. The impersonation is said to be successful
if the adversary can convince the simulator and results in acceptance of the decision.

Definition 4. An ID scheme is defined to be (t, qt, ε)-secure against impersonation under passive,
active or concurrent attacks if an adversary A who runs the ID protocol in time t and makes at most
qt queries has the negligible advantage such that

Advimp-pa/aa/ca
A (n) ≤ ε(n),

where Advimp-pa/aa/c
A (n) = Pr[A success impersonates].

Lastly, we address the Reset Lemma by [18], which provides a better bound and
simpler proof in relating two probabilities in the security game of an ID scheme. Under
resetting the challenge by the verifier, the cheating prover yields two valid conversation
transcripts that convince the verifier to accept him.

Lemma 1. (Reset Lemma). Let P be a prover in a canonical ID protocol with V a verifier represented
by (ChaSet, Dec), and (P , V) be inputs for the prover P and verifier V, respectively. Let acc(P , V)
be the probability that V accepts in its interaction with P, i.e.,

acc(P , V) = Pr[DecV(Cmt, Cha, Rsp) = 1]
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and res(P , V) be the probability that V accepts its interaction with P in the reset game, i.e.,

res(P , V) = Pr

 DecV(Cmt, Cha1, Rsp1) = 1 ∧
DecV(Cmt, Cha2, Rsp2) = 1 ∧

(Cha1 6= Cha2)

.

Then,

acc(P , V) ≤
√

res(P , V) +
1

|ChaSetV |
,

where Cha ∈ ChaSetV .

Proof. See [18].

3. Results: The Design and Security Analysis
3.1. Efficient Identification Scheme Based on BFHP

This section presents the ID scheme based on BFHP by [14] with some upgrades to
improve the setting. Two new hash functions are introduced in the Algorithm 1, with one
used to mask the secret, and the other used for integrity check purposes.

Algorithm 1 Modified ID Scheme Based on BFHP.

Input: Security parameter 1n.
Output: System parameters {H1, H2, v1, v2, v3, x, e, f }.

Setup:

1: On input of security parameter 1n, generates secret parameters of {v1, v2, x} ∈(
2n−1, 2n − 1

)
2: Generates the following hash functions such that:

(a) H1 : {0, 1}n → {0, 1}n,
(b) H2 : {0, 1}2n → {0, 1}2n,

3: Computes the following parameters:
(a) e = v1 + v2
(b) X = H1(x),
(c) v3 ≡ (1− X)−1 (mod e),
(d) f = v3 − v1.

4: Publicize {H1, H2, e, f } as public system parameters and keep {v1, v2, v3, x} as secrets.

Identification Protocol:
1: Prover P picks a random integer y ∈

(
2n−1, 2n − 1

)
and computes Y = y + v2. Sends Y

as a commitment to Verifier V.
2: V picks a random challenge c ∈ {0, 1} and sends it to P.
3: Upon receiving challenge c, P responds V with:

(a) z = v3Xc − y− v3x,
(b) σ = H2(v3x).

4: V computes and verifies if one of the following holds:
(a) For c = 0, if V ≡ f − z−Y (mod e) and H2(V) = σ,
(b) For c = 1, if V ≡ f − z−Y (mod e) and H2(V − 1) = σ,
then accept P. Otherwise, reject P.
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Proof of correctness.

V = f − z−Y

= (v3 − v1)− (v3Xc − y− v3x)− (y + v2)

= v3 − v1 − v3Xc + y + v3x− y− v2

= v3 − v3Xc − v1 − v2 + v3x

= v3(1− Xc)− (v1 + v2) + v3x

≡ v3(1− Xc) + v3x (mod e)

≡
{

v3
(
1− X0) + v3x (mod e); for c = 0,

v3
(
1− X1) + v3x (mod e); for c = 1,

≡
{

v3(1− 1) + v3x (mod e); for c = 0,
v3(1− X) + v3x (mod e); for c = 1,

≡
{

v3x (mod e); for c = 0,
1 + v3x (mod e); for c = 1.

Since v1 + v2 = e and v1 + v2 ≡ 0 (mod e), it is easy to verify for c = 0, the resulting
V ≡ v3x (mod e) produces a valid H2(V) = σ. For the case of c = 1, since
v3 ≡ (1− X)−1(mod e) from Setup: 3(c), we have

V = v3(1− X) + v3x

= (1− X)−1(1− X) + v3x

≡ 1 + v3x (mod e)

that produces a valid H2(V − 1) = σ.

Remark 1. The public system parameters {e, f } are protected by Theorem 1 since the sizes of
v1, v2, v3, e, f are of 2n and the product v1 · v2 > e and v1 · v3 > f . This results infinitely many
solutions to the linear equation in which finding the correct preferred private solutions of {v1, v2}
and {v1, v3} are infeasible. This is indeed the BFHP defined in Definition 1

Remark 2. It is the prover’s main objective to prove that he knows the secret x (i.e., step 3 in
the identification protocol) without relaying it to the verifier. Since the published public system
parameters {e, f } contain secret parameters of {v1, v2, v3}, it should be infeasible for an adversary
to extract {v1, v2, v3} from {e, f }. Observe that from Setup:

e = v1 + v2

f = v3 − v1,

each individual equation has the secret parameters protected by the BFHP with three unknown
variables {v1, v2, v3}. If these secret variables are solved from the public system parameters, then
the preferred private solution is found.

Remark 3. In this case, one can treat all (or part of) the secret parameters {v1, v2, v3, x} as the
agreed symmetric keys (cipher keys) between two users. Once both users succeed in identifying
each other that they acquired the identical secret keys, they can next perform encryption using some
practical symmetric encryption available.

3.2. Security Proof of The Identification Scheme Based on BFHP

In this section, we construct the security proof of the upgraded ID scheme based on BFHP
with the refined One-More BFHP assumption (Definition 3). We considers the security against
impersonation under active and concurrent attacks as this is a more relevant and stronger
security notion. In addition, we refer to the Reset Lemma [18] for the probability analysis.
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Theorem 2. Let ε = Advimp-aa/ca
I (n) be the advantage of impersonation under active and con-

current attacks by impersonator I , and ε′ = AdvOne-More BFHP
A′ (n) be the advantage of algorithm

A′ solving the One-More BFHP. Then the identification scheme based on BFHP is (t, qI , ε)-secure
against impersonation under active and concurrent attacks in the random oracle model if solving the
One-More BFHP is (t, qI , ε′)-hard where:

ε ≤ 1
2

+

√(
ε′ − 1

2n−2

)
·
(

2n−2

2n−2 − qI

)
,

with qI denotes the number of identification queries.

Proof. We assume that if there exists an Impersonator I who can (t, qI , ε)-break the scheme,
then there exists an efficient probabilistic polynomial-time algorithm A′ that can (t, qI , ε′)-
solve the One-More BFHP. A′ attempts to simulate a challenger for I .

1. Setup: A′ firstly access to OCha which output the following initial challenge set:

X = H1(x)
e0 = v0,1 + v2

v3 ≡ (1− X)−1 (mod e0). (1)

f = v3 − v0,1

together with two hash functions H1 : {0, 1}n → {0, 1}n and H2 : {0, 1}2n → {0, 1}2n.
The public system parameters {H1, H2, e0, f } is passed to A′. These {H1, H2, e0, f } is
then sent to I , with H1 and H2 modeled as random oracles controlled by A′. Note
that A′ does not know the secret parameters of {v0,1, v2, v3, x, X}.

2. Query phase: The interaction between A′ and I involves the simulation of random
oracles and identification queries.

(a) Random oracle query: A′ initially prepare two empty lists of H1-list and H2-list,
which function to receive and reply queries from I .

i. H1-list: This list has the form of 〈xi , H1(xi)〉. When I queries xi, A′
checks whether such H1(xi) is in the list. If it does, it replies it to I .
Otherwise, A′ randomly samples H1(xi)← {0, 1}n and replies it to I .
Lastly, A′ stores the new pair of 〈xi , H1(xi)〉 into H1-list.

ii. H2-list: This list is in the form of 〈xi , H2(xi)〉. When I queries xi, A′
checks if such H2(xi) exists. If it does, it replies it to I . Otherwise,
A′ randomly chooses H2(xi) ← {0, 1}2n and replies it to I . A′ lastly
stores the new pair of 〈xi , H2(xi)〉 into H2-list.

Notice that A′ simulates the above two random oracle queries perfectly, as
both the replied answers are uniformly distributed.

(b) Identification query: I acts as cheating verifier and requests A′ to prove itself:

i. Commitment: Upon query by I , A′ query OCha for random challenge
of ek = vk,1 + v2 and replies to I .

ii. Challenge: I outputs a random challenge ck ∈ {0, 1} upon receiving ek
and sends it to A′.

iii. Response: After receiving the challenge c from I , A′ queries ( f − ek −
ck − xk) such that xk ←R {0, 1}2n to the OBFHP which replied with a
response zk = v3(H1(x))ck − vk,1 − xk and σk = H2(xk). This (zk , σk) is
then sent to I . A′ next increases k by 1.

Referring to the Response query above, the ( f − ek − ck − xk) queried by A′ can be
re-expressed as



Symmetry 2022, 14, 1784 8 of 12

( f − ek − ck − xk) = (v3 − v0,1)− (vk,1 + v2)− ck − xk

= v3 − vk,1 − (v0,1 + v2)− ck − xk

= v3 − vk,1 − e0 − ck − xk +
(
v3(H1(x))ck − v3(H1(x))ck

)
=

(
v3 − v3(H1(x))ck

)
+
(
v3(H1(x))ck − vk,1

)
− e0 − ck − xk

≡
(
v3 − v3(H1(x))ck

)
+
(
v3(H1(x))ck − vk,1

)
− ck − xk (mod e0)

Since ck ∈ {0, 1}, there are two possible cases, i.e.,(
v3 − v3(H1(x))ck

)
+
(
v3(H1(x))ck − vk,1

)
− ck − xk

=
{

(v3 − v3) + (v3 − vk,1)− 0− xk ; for ck = 0,
(v3 − v3(H1(x))) + (v3X− vk,1)− 1− xk ; for ck = 1.

(2)

=
{

v3 − vk,1 − xk ; for ck = 0,
(v3 − v3(H1(x))) + (v3X− vk,1)− 1− xk ; for ck = 1.

(3)

≡
{

v3 − vk,1 − xk (mod e0); for ck = 0,
v3X− vk,1 − xk (mod e0); for ck = 1.

(4)

From (1), v3 ≡ (1− (H1(x)))−1 (mod e0) can be rewritten as v3 − v3(H1(x)) ≡
1 (mod e0), which is then used to simplify further from (3) to (4) for ck = 1. Therefore,
it implies that zk = v3(H1(x))ck − vk,1− xk and σk = H2(xk) output byOBFHP is a valid
response. This query phase is carried out for some time t until I readies to terminate
and enter the impersonation phase.

3. Impersonation phase: Now, I behaves as cheating prover and tries to convince A′ to
accept it.

(a) Commitment: I sends commitment Y∗ in which he wishes to impersonate toA′.
(b) Challenge: A′ checks if Y∗ 6∈ {e1, . . . , et}, then it outputs a random challenge

c∗ ∈ {0, 1} to I . Otherwise, it aborts.
(c) Response: I replies the challenge with response z∗ and its corresponding

signature σ∗ to A′. A′ checks V∗ = f − z∗ − Y∗ (mod e0) and verifies the
correctness of signature σ∗.

Via resetting I to two different challenges c1 and c2,A′ then obtains two valid transcripts
of {Y∗, c∗1 , z∗1 , σ∗1 } and {Y∗, c∗2 , z∗2 , σ∗2 }. The validity of the received transcripts can be
verified through the protocol,A′ next search through the H2-list for the xi that produced
the valid signature σ∗j for j = 1, 2. If such xi is found, then A′ proceed to search the
H1-list for the corresponding H1(xi). This enables A′ to extract the secret X = H1(xi)

which has the probability at least
(

ε− 1
2

)2
following the Reset Lemma [18].

This further enables A′ to compute v0,1, v2, v3 which finally used to solve all vk,1 for
1 ≤ k ≤ t, i.e.,

v3 ≡ (1− X)−1 (mod e0)

v0,1 = v3 − f

v2 = e0 − v0,1

vk,1 = ek − v2.

From this point, A′ has successfully output all the solutions to (t + 1) challenges
of {v0,1, v1,1, . . . , vt,1} by querying only t queries of ek to OBFHP. This completes
the simulation.

4. Probability study: The probability for the ID scheme against impersonation under
active and concurrent attacks rests on A′ winning the game, i.e., the successful imper-
sonation by I that yield in acceptance which enablesA′ to extract the secret. Consider
the following possible scenarios:
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(a) Regardless of whether the game aborts, A′ guesses the correct X = H1(x) from
the interval of

(
2n−1, 2n − 1

)
that output the solutions to the One-More BFHP.

The corresponding probability to such an event is therefore

Pr
[
A′ solves One−More BFHP

]
= Pr

[
A′ solves e0 via guessing H1(x)

]
=

1
2n − 1− 2n−1

≈ 1
2n−2 .

(b) The game does not abort, and A′ found the corresponding secret H1(x) from
the queried H1-list that solves the One-More BFHP. This implies that A′ suc-
cessfully found the solution to the One-More BFHP with strictly less queries to
OBFHP than to OCha. Via Reset Lemma,

Pr
[
A′ solves One−More BFHP

]
= Pr

[
A′ solves e0 via extracting H1(x) ∧ ¬Abort

]
= Pr

[
A′ solves e0 via extracting H1(x) | ¬Abort

]
· Pr[¬Abort]

≥
(

ε− 1
2

)2
·
(

2n−2 − qI

2n−2

)
.

Since Pr[A′ wins] = AdvOne-More BFHP
A′ (n) = ε′, putting everything mathematically,

we have

Pr
[
A′ wins

]
= Pr

[
A′ solves One−More BFHP

]
= Pr

[
A′ solves e0 via guessing H1(x)

]
+ Pr

[
A′ solves e0 via extracting H1(x) | ¬Abort

]
· Pr[¬Abort]

≥ 1
2n−2 +

(
ε− 1

2

)2
·
(

2n−2 − qI

2n−2

)
In other words, we have

1
2n−2 +

(
ε− 1

2

)2
·
(

2n−2 − qI

2n−2

)
≤ ε′,

and that (
ε− 1

2

)2
≤

(
ε′ − 1

2n−2

)
·
(

2n−2

2n−2 − qI

)

ε− 1
2
≤

√(
ε′ − 1

2n−2

)
·
(

2n−2

2n−2 − qI

)

ε ≤ 1
2

+

√(
ε′ − 1

2n−2

)
·
(

2n−2

2n−2 − qI

)
.

This completes the security proof of the upgraded ID scheme.

4. Discussion
4.1. Computational Cost of The Efficient Identification Scheme Based on BFHP

We analyze the efficiency of the ID scheme based on BFHP, considering the compu-
tational cost and its asymptotic complexity order. As the ID scheme mainly consists of
simple arithmetic and modular addition and multiplication operations, Table 1 shows
the corresponding computational costs for each algorithm. The scheme does not involve
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modular exponentiation operation, and hence its asymptotic complexity order is bounded
only by O

(
n2), due to modular multiplication and inversion operations.

Table 1. Computational cost of the upgraded ID scheme based on BFHP.

Operation Addition/
Subtraction Multiplication

Modular
Addition/

Subtraction

Modular
Multiplication/

Inversion
Hashing

Setup 2 0 1 1 1
Prove 3 2 0 0 1
Verify 1 0 2 0 1

4.2. Comparative Analysis

We next compare our ID scheme with the five selected well-known ID schemes
by [1–3,9,10]. Our choice is that the former three ID schemes were among the pioneered
ID schemes that are number-theoretic based, i.e., quadratic residuosity, eth-the root of
RSA, and discrete logarithm problem, respectively. The latter two featured post-quantum
primitives of non-number theoretic type, i.e., shortest vector problem (SVP) in lattice and
multivariate quadratic (MQ) polynomial. To simplify the comparison, we tabulated all the
abovementioned ID schemes by considering total computational costs and their asymptotic
complexity orders in Table 2.

Table 2. Comparative analysis of selected ID schemes for selected aspects.

ID
Schemes

Computational
Cost

Particular
Parameter

Characteristic

Asymptotic
Complexity

Order

Underlying
Security

Assumption

Data
Size

Transmitted

[1] 1M, 1MMod, 3EMod N = pq O
(
n3)

where n = log N
QR 2n

[2] 1M, 1MMod, 3EMod
ed ≡ 1 (mod φ(N))

where N = pq
O
(
n3)

where n = log N
eth-root

RSA
2n

[3] 1AMod, 1MMod, 3EMod p ≥ 2140, q ≥ 2512

such that q|p− 1
O
(
n3)

where n = log q
DLP n

3-pass [9] 2APoly, 6SPoly MQ(84, 80,F2) N/A MQ Polynomial 29,640

5-pass [9] 1APoly, 6SPoly, 4MScl MQ(45, 30,F24 ) N/A MQ Polynomial 26,565

[10] 1AMtx, 3MMtx m = d4n log ne O(d4n log ne log n) SVP d4n log ne

Our ID Scheme 2A, 4S, 2M,
3SMod, 1IMod, 3H

Group
Z(2n−1 ,2n−1)

O
(
n2) BFHP 2n

Legends: (i) A = Addition, (ii) S = Subtraction, (iii) M = Multiplication, (iv) AMod = Modular Addition,
(v) SMod = Modular Subtraction, (vi) MMod = Modular Multiplication, (vii) IMod = Modular Inversion,
(viii) EMod = Modular Exponentiation, (ix) H = Hashing, (x) AMtx = Matrix Addition, (xi) MMtx =
Matrix Multiplication, (xii) MScl = Scalar Multiplication, (xiii) APoly = Polynomial Addition, (xiv) SPoly =
Polynomial Subtraction, (xv) m = Matrix Dimension.

As the reader may notice from Table 2, we do not include asymptotic complexity
orders for the ID scheme by [9] as its efficiencies rely on the system parameters, such as
the size of public-private keys and the number of rounds performed. Readers may refer to
Section 5.2 [9] for a detailed discussion.

Each of the selected ID schemes in our comparative analysis has its strengths and practical
value. The first three ID schemes [1–3] based on number-theoretic hard problems are well-
established. In comparison, the subsequent two ID schemes [9,10] are constructed using
well-agreed post-quantum primitives, which have recently gained much attention in the
field. While the primitive used in our ID scheme based on BFHP is immature in that it
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is not widely studied, it can nevertheless be practical if more research is conducted on it
in the future. One benefit of considering BFHP is that it allows two secrets in a single
mathematical equation, i.e., e = v1 + v2 and f = v3− v1 with many possible solutions, different
from the conventional mathematical hard problems that permit only single and unique
solution. Furthermore, the simpler mathematical structure comprising only modular additions
and multiplications significantly reduces the computation time compared to those involving
modular exponentiation operations. Hence, besides utilizing it in public-key cryptography (the
proposed ID scheme in this paper), such secrets can be used in symmetric encryption schemes.

5. Conclusions

In this paper, we upgraded the ID scheme based on BFHP by [14]. We proved the
security of the upgraded ID scheme against impersonation under active and concurrent
attacks via the assumption that solving the One-More BFHP is difficult. In addition, the
upgraded ID scheme is efficient as it does not involve mathematical operations with higher
computational complexity. This is evident in the significant speed-up of the algorithm
vis-à-vis the data size transmitted and the simplicity of the mathematical structure for
practical deployment, which would give better efficient throughput over the bandwidth.
This is clearly explained in Table 2. Once the fundamental security is proven to be secure
with desirable characteristics for practical deployment, the next natural way forward would
be to analyze physical attacks such as timing attacks, power analysis, power consumption
attacks, side-channel analysis, and other directions.
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The following abbreviations are used in this manuscript:

BDH Bilinear Diffie-Hellman
BFHP Bivariate Function Hard Problem
Cha Challenge
Cmt Commitment
DEHP Diophantine Equation Hard Problem
(EC)DLP (Elliptic Curve) Discrete Logarithm Problem
ID Identification
IFP Integer Factorization Problem
imp-aa/ca Impersonation under active attack/concurrent attack
MQ Multivariate Quadratic
NP Nondeterministic Polynomial
QR Quadratic Residuosity
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RSA Rivest-Shamir-Adleman
SD Syndrome Decoding
SVP Shortest Vector Problem
Rsp Response
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