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Abstract: We studied the emergence of the quantum spin Hall (QSH) states for the pseudo-gap (PG)
phase of Bi2212 bilayer system, assumed to be D-density wave (DDW) ordered, starting with a strong
Rashba spin-orbit coupling (SOC) armed, and the time reversal symmetry (TRS) complaint Bloch
Hamiltonian. The presence of strong SOC gives rise to non-trivial, spin-momentum locked spin
texture tunable by electric field. The emergence of quantum anomalous Hall effect with TRS broken
Chiral DDW Hamiltonian of Das Sarma et al. is found to be possible.

Keywords: Bloch Hamiltonian; pseudo-gap phase; spin-orbit coupling; spin-momentum locking;
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1. Introduction

The onset of the pseudo-gap (PG) in cuprates is defined by the opening of an anti-nodal
gap and the reduction of the large Fermi surface to Fermi arc [1–12], as in the Wyle/Dirac
semimetal. The exact nature of PG still remains an enigma [7–22]. According to some
investigators [1–11], it corresponds to a distinct phase akin to an unconventional metal
or a symmetry preserved/broken state. On the other hand, the competing hidden order
ideas, such as the dx2−y2-density wave (DDW), order in refs. [1–4] associated with the
pairing in particle–hole channel, portray pseudogap (PG) as a hidden order parameter
not detectable by usual s-wave probes by producing charge current, magnetic moment,
etc. Apart from this, some of the other formulations are given below: (i) The advocacy of
phase fluctuations and/or precursor but incoherent pairing correlations [11,12] for the PG
phase. (ii) The BCS-BEC crossover scenario [13,14] where there is no hidden symmetry
breaking or competing order. The same microscopic origin and the same symmetry are
shared by the complex superconducting gap and the real pseudo-gap. The latter is real,
due to the phase decoherence. (iii) The pseudo-gap arising from some instability, such as
spin or orbital current, charge ordering, not related to pairing [5,6,15]. (iv) The origin of PG
from a pair-density wave (PDW) [16,17], which is an unusual form of electron organization
involving electron pairing on the same side of the Fermi surface. It may be mentioned
that a PDW in Bi2212 was observed using a superconducting STM tip [18] in the absence
of magnetic field. (v) The entanglement of two kinds of preformed pairs in the particle–
particle and particle–hole channels [19], giving rise to the formation of PG. This theoretical
formulation regards PG formation as the one which corresponds to a phase transition, and
not a crossover.

In this paper we begin with a Bloch Hamiltonians with strong Rashba spin-orbit cou-
pling (RSOC) for the pseudo-gap (PG) phase of Bi2Sr2CaCu2O8+δ (Bi2212) bilayer system.
Apart from RSOC, the Hamiltonian involves DDW order [1–4] and therefore possesses
time-reversal symmetry (TRS). The Hamiltonian also involves a term accounting for the
effect of coupling between different CuO2 planes. The microscopic origin of RSOC lies in
the non-equivalence of two layers in the bilayer system. Whereas one Cu-O layer has Ca
ions above and Bi-O ions below, in the unit cell of the other layer, this situation is reversed.
This leads to a nonzero electric field E within the unit cell. We find spin-momentum locking
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(SML) in momentum space, which suggests the presence of a strong spin-orbit coupling
in Bi2212 like a topological insulator. A recent spin- and angle-resolved photoemission
spectroscopy measurement for Bi2Sr2CaCu2O8+δ had reported [6] a non-trivial spin texture,
which corresponds to a well-defined direction for each electron real spin depending on its
momentum. Since the origin of PG has been under heated debate [7–22] for the past three
decades, a relevant question is why identify PG phase of cuprates with the DDW order
when bewildering varieties of formulations [7–23] are present. The paramount reason is
that the entropy difference between the PG phase with DDW order and normal param-
agnetic states was found to be negative [4], leading to the establishment of PG formation
as the onset of the first order phase transition. However, the outcome of the torque mag-
netometry experiment [20] has recently figured out what is going on in PG phase on the
transition/crossover issue. This experiment has provided the thermodynamic evidence that
the pseudo-gap onset in cuprates, such as YBCO (barium copper yttrium oxide), BSCCO
(Bismuth strontium calcium copper oxide), and LSCO (Lanthanum strontium copper oxide),
which have a layered structure with charge carriers moving in the copper-oxide planes,
are associated with a second-order nematic phase transition. Nonetheless, we have opted
to associate PG state with DDW order apart from parity because, as well as translational
and rotational symmetry breaking, it exhibits some topological features [21]. Moreover,
if the DDW order is responsible for the PG phase, then the gap does not get affected by
magnetic field in the underdoped regime; the dependence springs up [22] as soon as the
gap vanishes in the over-doped regime. This is consistent with the experimental data [23].

We investigate the possibility of occurrence of the quantum spin Hall (QSH) effect
in Bi2212 in this paper. In general, having two quantum Hall insulating layers one over
the other leads to a trivial insulator. However, our band structure-based detailed analysis
in Section 2 has indicated that Bi2212 bilayer geometry will have access to QSH [24]
phase. The latter is ensured in a DDW order-based description of the semi-metallic PG
state, provided we have the invariance of TRS and strong spin-orbit (SO) coupling. In
contrast, Zhao et al. [24] recently have proposed two different experiment to show that
QSH upshot is possible through relativistically generated quantum spin Hall Hamiltonian
in 2D metals of Corbino geometry surrounding a solenoid in the absence of SOC. The stark
difference between this finding and that of ours highlights the fact that the Fermi surface
structure and the geometry are the two aspects which decide the requirements to access
QSH phase. On a quick side note, since an individual Corbino disk could be regarded as
a qubit, it was surmised by Zhao et al. [24] that a hexagonally packed array of thermally-
managed solenoids, each carrying stacks of thermally-managed 2D metallic Corbino disks
surrounding it, could then facilitate fault-tolerant quantum computation. In our case,
in principle, the osillatory magnetic field induced by the SO coupling can manipulate
electron spin. Furthermore, by means of gigahertz, electric field coherent manipulation
of individual electron spin is ideally possible by electron dipole spin resonance (EDSR)
technique, as in the case of a GaAs/AlGaAs gate defined quantum dots [25]. The EDSR
allows the orientation of the spin magnetic moment to flip using electro-magnetic radiations
at resonant frequencies. This leads to formation of SO qubits which, in turn, leads to clearing
the way for a computing architecture [26] that can scale up to meet increased workloads.
Although a topical issue, it is beyond the scope of the paper.

When TRS is broken in a 2D system, say, due to the presence of the magnetic impurities
(but no magnetic field), the system spontaneously crosses over to quantum anomalous
Hall (QAH) phase at low temperatures [27]. The dxy + i dx2−y2 (Chiral DDW) ordered
phase [5] also leads to broken TRS. Our contention is that, with or without proximity
to magnetic impurities, this state will display QAH effect. In Section 3 we discuss the
quantum anomalous Hall (QAH) effect, replacing the DDW order with CDDW order
and incorporating the strong RSOC. The imaginary part of the CDDW order parameter
Dk = (−χk + i∆k) breaks TRS. The functions (χk, ∆k) are given by [5] χk = −(χ0/2) sin(kxa)
sin(kya), ∆k = (∆0

(PG) (T)/2)(cos kxa − cos kya), and k =
(

kx, ky
)
. The ordering wave vector

Q is taken to be Q = (Q1 = ±π, Q2 = ±π). It is important to mention that the onset of
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CDDW ordering leads to a peak in the anomalous Nernst signal (ANS) [5]. The main
contribution to this chirality induced ANS comes from the points (±π(1 − ϕ), ±πϕ),(±πϕ,
±π(1 − ϕ)) with ϕ~0.2258 located roughly on the boundary of the Fermi pockets in
the momentum space (cf. ref. [5]). We take due care of this observation in Section 3.
A prominent indicator of QAH effect is the quantum transition in the transverse Hall
resistance accompanied by a considerable drop in longitudinal resistance. For a perfect
crystal, this effect is intrinsically quantum-mechanical as it involves the Berry-curvature,
which calls for Bloch state eigen wavefunction.

The paper is organized as follows. In Section 2 we derive an expression for the single-
particle excitation spectrum in PG state and discuss QSH effect. Additionally, random
disorder potential and mass term will be introduced to determine their effect on anti-
nodal/nodal gap. In Section 3, we carry out an investigation of the QAH effect. The paper
ends with a brief discussion and conclusions in Section 4.

2. Quantum Spin Hall Insulator

The cuprate Bi2212 consists of CuO2 layers separated by spacer layers as in Bi2212,
as shown in Figure 1. The total dispersion for non-interacting system, together with
the effect of coupling between different CuO2 planes, can be written as ε(k, kz) = εk +
εkz

(k), where εk = ek − µ, k and kz, respectively, denote the in-plane and out-of-plane

components of K = (k, kz). The term µ stands for the chemical potential of the fermion
number. The dispersion ek = −2t P1(k) + 4t′P2(k)− 2t′′P3(k)− 4t′′′ P4(k) including the
in-plane first (nearest neighbor abbreviated as NN below), the second, the third neighbor,
and the fourth neighbor hoppings. Here, P1(k) =

(
sx(a) + sy(a)

)
, P2(k) = sx(a)) sy(a),

P3(k) =
(

sx(2a) + sy(2a)
)
, and P4(k) =

(
sx(a)sy(2a) + sx(2a)sy(a)

)
. For the hole-doped

(electron-doped) materials, t1 > 0 (t1 < 0), and, in all cases, t1 < (t/2). The εkz
(k) term

accounts for the effect of coupling between different CuO2 planes, and possesses the
following form for bilayer Bi2212 [28,29]: εkz

(k) = −Υz(k, sz(c/2))[(sx(a) − sy(a))2/4 + a0],

where c denotes the lattice constant along the z-axis, and the term

Υz (k, sz(c/2)) = ±
[
tp

2 + 16 t2
ins2

x

( a
2

)
s2

y

( a
2

)
+ 8tptinsx

( a
2

)
sy

( a
2

)
sz

( c
2

)
]

1/2
.

Here, tp is an effective parameter for hopping within a single bilayer, i.e., it controls
the intracell bilayer splitting and sj(a) ≡ cos(kja) [28,29]. The compound Bi2212, however,
also involves intercell hopping (tin). The intra-layer coupling tp and the intercell coupling
tin are both quite substantial, as are the in-plane hopping terms beyond the NN term. The
plus (minus) sign refers to the bonding (anti-bonding) solution. The term cz arises because,
supposedly, we have an infinite number of stacked layers. Along the high symmetry
line X(π,0) – M(π,π), we have Υz = ±tp. This leads to a lack of kz-dispersion along this
high-symmetry line, for εkz

(k)→εkz

(
ky
)

= ±(1/4) tp [(1 + sy(a))2 + 4a0]. The additional

hopping a0 allows for the presence of a splitting at Γ(0,0). It is reported [30] that adequate
control of the interlayer spacing, albeit the interlayer hopping in Bi-based superconductors,
is possible through the intercalation of guest molecules between the layers. This could be a
way to tune the hopping parameter. All energies in our calculation below are expressed in
units of the first neighbor hopping as this corresponds to the kinetic energy and therefore
the most dominant; the second-neighbor hopping in the dispersion, which is known to be
important for cuprates [1–6], frustrates the kinetic energy of electrons. Therefore, in what
follows, we render the first to the fourth neighbor hoppings, the couplings tp and tin, the
quantities (χ0, ∆0

(PG)), and the terms to be introduced below, viz. the intra-layer Rashba
spin-orbit coupling, the disorder potential, and the mass term, dimensionless dividing by
the first neighbor hopping term. The exchange energy parameter in Section 3, which will
be denoted by the symbol M, will also be in the first neighbor hopping energy units.
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Figure 1. A caricature of the structural unit of Bi2212 comprising two structurally equivalent CuO2 
planes separated by a calcium (Ca) layer. Here, Cu atom is represented by bigger sphere in compar-
ison with O atom; both are lighter shades compared to the Ca atoms, which are darker. On the right-
hand side, there is a caricature of the momentum space spin pattern corresponding to two adjacent 
CuO2 layers as in ref. [7]. The Γ point is encircled by oppositely pointed spins, indicated by red 
arrows, in the two representations. The white patches correspond to the anti-nodal regions, while 
the blue patches correspond to the nodal region and the region around (±𝜋, ±𝜋). 

Our decision to associate DDW order of Chakravorty et al. [1–4] with PG state de-
mands that we need to consider the interaction Ux2−y2(k,k’) = U1 (coskxa − coskya)(cosk’xa − 
cosk’ya) for the formation of the pairing in the particle–hole channel. If we further assume 
that the order parameter in superconducting state has d-wave symmetry, we may sound 
like advocates of pre-formed Cooper pair formation [31,32]. This is not true, as has been 
explained in the second paragraph in Section 1. Additionally, motivated by the findings 
of Vishwanath et al. [7], we introduce the intralayer Rashba spin-orbit coupling (RSOC) 
as a special ingredient. Suppose now tht dk,σ (σ = ↑↓  for the real spin) corresponds to the 
fermion annihilation operator for the single-particle state {k = 𝑘 , 𝑘 ,σ} in a single layer 
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Figure 1. A caricature of the structural unit of Bi2212 comprising two structurally equivalent CuO2

planes separated by a calcium (Ca) layer. Here, Cu atom is represented by bigger sphere in comparison
with O atom; both are lighter shades compared to the Ca atoms, which are darker. On the right-hand
side, there is a caricature of the momentum space spin pattern corresponding to two adjacent CuO2

layers as in ref. [7]. The Γ point is encircled by oppositely pointed spins, indicated by red arrows,
in the two representations. The white patches correspond to the anti-nodal regions, while the blue
patches correspond to the nodal region and the region around (±π,±π).

Our decision to associate DDW order of Chakravorty et al. [1–4] with PG state demands
that we need to consider the interaction Ux2−y2(k,k′) = U1 (coskxa − coskya)(cosk′xa − cosk′ya)
for the formation of the pairing in the particle–hole channel. If we further assume that
the order parameter in superconducting state has d-wave symmetry, we may sound like
advocates of pre-formed Cooper pair formation [31,32]. This is not true, as has been
explained in the second paragraph in Section 1. Additionally, motivated by the findings
of Vishwanath et al. [7], we introduce the intralayer Rashba spin-orbit coupling (RSOC)
as a special ingredient. Suppose now tht dk,σ (σ = ↑↓ for the real spin) corresponds to the
fermion annihilation operator for the single-particle state {k=

(
kx, ky

)
,σ} in a single layer

of the system. In the basis (d†
k, ↑ d†

k,↓ d†
k+Q, ↑ d†

k+Q,↓)
T, we consider a 2 D momentum space

single-layer Hamiltonian.

H
(
kx, ky

)
=

(
H0
(
kx, ky

)
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The inversion symmetry implies Ω( )(𝑘) =  Ω( )(−𝑘), and TRS implies Ω( )(𝑘) =− Ω( )(−𝑘) . Thus, for a system which is both TRS and IS compliant, Ω( )(𝑘)  ≡  0. This 
means that in order to study the possible quantum anomalous Hall (QAH) effect starting 
from the present DDW ordered TRS (IS) compliant (noncompliant) system of Bi2212 bi-
layer we need to have broken TRS which yields non-zero Berry curvature (BC). A non-
zero BC is very much required to obtain anomalous Hall conductivity 𝜎  and to show 
that 𝜎  is quantized in the case of an insulator. Although the Dirac model approach has 
its limitations, it is nevertheless useful in understanding the topological properties of re-
alistic materials. Since the intrinsic QAH effect can be expressed in terms of BC, it is there-
fore an intrinsic quantum-mechanical property of a perfect crystal. An extrinsic mecha-
nism, skew scattering from disorder, tends to dominate the QAH effect in highly conduc-
tive ferromagnets. Since bands close to the Fermi level correspond to those of chiral/helical 
fermions (Dirac-like model), as already stated, we consider the following energy eigen-
values (derivable from (1) assuming long wavelength limit): 𝜖 ,  ≈𝜀  – 𝑀 + 𝛼 ((𝑎𝑘 ) + 𝑎𝑘 ) + 𝑂(Ϛ ), and  𝜖 ,  ≈  −ε  + 𝑀 + 𝛼 ((𝑎𝑥 + 𝑎𝑄 ) + (𝑎𝑦 + 𝑎𝑄 ) ) + 𝑂(Ϛ ),  
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Equation (13) we find the BC (Ω (𝑘)) as Ω (𝑘) =  ϒ , (𝑘) + ϒ , (𝑘) where 

ϒ , (𝑘) = ((  )  ) − ((  )  ) − 
{ }((  )  ) , (14)

and ϒ , =  ϒ , (𝜖 →  𝜖 , x → 𝑥 , 𝑦 → 𝑦 ).  The plots of BC, as a function of 
(𝑎𝑘 , 𝑎𝑘 ) with the chemical potential µ =  −0.5, are shown in Figure 6. In Figure 6a–f, the 
common feature is the spikes in certain regions of the Brilloin zone close to the nodal 
points. The parameter values in (a) M/t = 0.1, and = 0.5, (b)𝑀/𝑡 =  0.2, and = 0.5, (c) 
M/t = 0.3, and = 0.5, (d) =  0.5, and = 0.5, (e) =  0.3, and = 0.8, and (f) =

(
kx, ky

)
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∗(kx, ky
)

H0
(
kx + Q1, ky + Q2

) ) (1)

to describe the pseudo-gap phase of the system involving CDDW order given by the

matrix
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means that in order to study the possible quantum anomalous Hall (QAH) effect starting 
from the present DDW ordered TRS (IS) compliant (noncompliant) system of Bi2212 bi-
layer we need to have broken TRS which yields non-zero Berry curvature (BC). A non-
zero BC is very much required to obtain anomalous Hall conductivity 𝜎  and to show 
that 𝜎  is quantized in the case of an insulator. Although the Dirac model approach has 
its limitations, it is nevertheless useful in understanding the topological properties of re-
alistic materials. Since the intrinsic QAH effect can be expressed in terms of BC, it is there-
fore an intrinsic quantum-mechanical property of a perfect crystal. An extrinsic mecha-
nism, skew scattering from disorder, tends to dominate the QAH effect in highly conduc-
tive ferromagnets. Since bands close to the Fermi level correspond to those of chiral/helical 
fermions (Dirac-like model), as already stated, we consider the following energy eigen-
values (derivable from (1) assuming long wavelength limit): 𝜖 ,  ≈𝜀  – 𝑀 + 𝛼 ((𝑎𝑘 ) + 𝑎𝑘 ) + 𝑂(Ϛ ), and  𝜖 ,  ≈  −ε  + 𝑀 + 𝛼 ((𝑎𝑥 + 𝑎𝑄 ) + (𝑎𝑦 + 𝑎𝑄 ) ) + 𝑂(Ϛ ),  
where Ϛ = ( ) (𝑎𝑘 )(𝑎𝑘 ) + ( )∆0(PG) (T)((𝑎𝑘 ) + (𝑎𝑘 ) ). Upon using the formula in 
Equation (13) we find the BC (Ω (𝑘)) as Ω (𝑘) =  ϒ , (𝑘) + ϒ , (𝑘) where 

ϒ , (𝑘) = ((  )  ) − ((  )  ) − 
{ }((  )  ) , (14)

and ϒ , =  ϒ , (𝜖 →  𝜖 , x → 𝑥 , 𝑦 → 𝑦 ).  The plots of BC, as a function of 
(𝑎𝑘 , 𝑎𝑘 ) with the chemical potential µ =  −0.5, are shown in Figure 6. In Figure 6a–f, the 
common feature is the spikes in certain regions of the Brilloin zone close to the nodal 
points. The parameter values in (a) M/t = 0.1, and = 0.5, (b)𝑀/𝑡 =  0.2, and = 0.5, (c) 
M/t = 0.3, and = 0.5, (d) =  0.5, and = 0.5, (e) =  0.3, and = 0.8, and (f) =

(
kx, ky

)
=

(
D†

k 0
0 Dk

)
, where Dk = (−χk + i∆k) breaks the parity and the time
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reversal symmetry (TRS) of the normal state. The term εkz
(k) will be incorporated later

(see Equation (5)). The matrix

H0(k, µ) =

(
εk α

(
kx, ky

)
α∗
(
kx, ky

)
εk

)
(2)

where the intra-layer Rashba spin-orbit coupling (RSOC)α
(
kx, ky

)
= αk = α0(−isin(kxa)

− (kya)). That will not be all. Since α1(kx, kz) = α1(σz sin(kxax)− σx sin(kzaz))—a giant
anisotropic 3D Rashba-like inter-layer coupling (here σ are Pauli spin matrices and a is
the lattice constant) has been directly observed by spin-ARPES [33], we ideally need
to consider the effect of this term for the present quasi two-dimensional system. In
ref. [33], investigators observed emergence of large spin splitting at the M points of the
Brillouin zone instead of the Γ point, where Rashba type splitting is usually found. We
have not considered this interlayer RSOC (α1(kx, kz)) here, assuming it to be small com-
pared to the other terms in Ej(s, σ, k, kz). The quantity α0 is the RSO coupling strength,
which is proportional to the strength of the nonzero electric field E, mentioned in the
first paragraph of Section 1, assumed to be in the z = z ẑ direction. It is informative
to see how α

(
kx, ky

)
and α1(kx, kz) originate from the generalized SO coupling and es-

timate the electric field (Eα0) corresponding to SO coupling α
(
kx, ky

)
. The generalized

SO coupling Hamiltonian is Hz
so = α0 (σ× ak). ẑ =α0 σ·(ak× ẑ ). Introducing the mo-

mentum dependent Zeeman-like magnetic field Bα0(k) due to RSOC, one may also write

Hz
so =

(
1
2

)
µBg(σ·Bα0) where Bα0 =

(
2α0
gµB

)
(ak× ẑ ). The comparison of the two expres-

sions for Hso will lead to an expession for the momentum dependent electric field Eα0 as
Eα0(k) = (2cα0/gµB)(ak) in the z-direction. This is the electric field corresponding to the intra
− layer Rashba coupling. Here, µB = 9.27× 10−24 J/T is the Bohr magneton. The substi-
tution of the numerical values leads to a strong electric field of the order 104 V nm−1 at the
nodal and the anti-nodal regions. This can be tuned by gate voltage. Similarly, in view of the
generalized SO coupling above, one obtains Hx

so and Hy
so, where the latter is α1(σ× ak). ŷ =

α1 σ·(ak× ŷ ) = α1(σzkxax − σxkzaz) . As regards the e-e interactions, U ∑i d†
i↑ di↑ d†

i↓ di↓
is the onsite repulsion of d electrons, where the intra-layer d electrons are locally interacting
via a Hubbard-U repulsion. We have not considered this term, assuming the correlation
effect are marginally relevant. As noted above, the Hamiltonian (1) is suitable to investigate
the QAH state. For the QSH state, we have Dk = ∆k = (∆0

(PG) (T)/2)(cos kxa–cos kya), which
breaks the parity only. The investigation is expected to show spin-momentum locking in
some regions of BZ. Furthermore, we have not introduced random disorder potential and
mass term in the Hamiltonian in (1) here. These terms will be introduced in Section 2 to
determine their effect on anti-nodal/nodal gap.

The eigenvalues ∈j (s, σ, k), where j = 1,2,3,4, σ = ±1 is the spin index and s = ±1 is
the band-index, are derivable from the Hamiltonian (1), suitable to investigate QAH effect,
and are given by the quartic ∈j

4 + aA (k) ∈j
3 + bA(k) ∈j

2 +cA(k) ∈j+ dA(k) = 0. In view of the
Ferrari’s solution of a quartic equation, we find the roots as

∈j (s, σ, k) = σ

√
η0(k)

2
+ εk

U + s

(
b0(k)−

(
η0(k)

2

)
+ σ c0(k)

√
2

η0(k)

) 1
2

. (3)

Since the spin index σ appears twice in (3), the term σ

√
η0(k)

2 does not act like
Zeeman magnetic energy. The coefficients are aA(k) = −4εk

U , εk
U= (εk+ εk+Q)/2, bA(k)

=
{

4εk
U2

+ 2(εk εk+Q−
∣∣Dk

∣∣2)− ∣∣αk
∣∣2− ∣∣αk+Q

∣∣2}, cA(k) = −4εk
U(εk εk+Q−

∣∣Dk
∣∣2)−2εk+Q∣∣αk

∣∣2−2 εk
∣∣αk+Q

∣∣2, dA(k) = (εk εk+Q−|Dk |2)2 −ε2
k+Q |αk |2 − ε2

k |αk+Q |2 + |αk |2 |αk+Q |2

+F(kx, ky), where
∣∣∣Dk

∣∣∣2 =
(

χ2
k + ∆2

k

)
, αk = α0(−isin(kxa)− sin(kya)) and F

(
kx, ky

)
=

−2α2
0

(
χ2

k − ∆2
k

)
f
(
kx, ky

)
− 4α2

0(χk∆k) g
(
kx, ky

)
, f
(
kx, ky

)
= [ sin(kxa)sin(kxa + Q1) +
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sin(kya)sin(kya + Q2)], and g
(
kx, ky

)
= [ sin(kxa) sin (kya + Q2) − sin(kya)sin(kxa + Q1)]. The

functions appearing in (2) are given by

η0(k) =
2b0(k)

3
+ (∆1(k)− ∆0(k))

1
3 − (∆1(k) + ∆0(k))

1
3 , (4)

∆0(k) = (
b3

0(k)
27 −

b0(k)d0(k)
3 − c2

0(k)),

∆1(k) = ( 2
729 b6

0 +
4d2

0b2
0

27 + c4
0 −

d0b4
0

81 −
2b3

0
27 +

2c2
0b0d0
3 +

d3
0

27 )
1/2

,
(5)

b0(k) =
{

3a2
A(k)−8bA(k)

16

}
, c0(k) =

{
−a3

A (k)+4aA(k)bA (k)−8cA (k)
32

}
d0(k) =

−3a4
A (k)+256dA(k)−64aA(k)cA(k)+16a2

A(k)bA(k)
256 .

(6)

In order to investigate QSH effect, we need to have invariant TRS. Therefore, we have
to make the following substitutions: χk = 0,

∣∣∣Dk

∣∣∣2 = ∆2
k , and F(kx, ky) = 2α2

0 ∆2
k [sin(kxa

+Q1) sin(kxa ) + sin(kya) sin(kya + Q2)]. For the bilayer system, the energy eigenvalues are
given by Ej(s, σ, k, kz) = ∈j (s, σ, k)± εkz

(k) for the bonding as well as the anti-bonding.

The plots of energy bands ∈j (s, σ, k) in (3) in the QSH case belonging to the nodal
and anti-nodal regions, as well as at Γpoint, are shown in Figure 2. We have also shown
the calculated Fermi surfaces (FS), including the near-neighbor hopping and RSOC, in
the absence of DDW order (Figure 2a) and in the presence of it (Figure 2b). Here, the
Fermi surfaces are hole-like surfaces. In Figure 2a, the reduced Brillouin zone (BZ) is
shown in red, and constant-energy contours are shown in blue. In Figure 2b, we have
the calculated FS with electron pockets in red and hole pockets in black. The dispersion
now has the periodicity of BZ. The numerical values of the parameters to be used in the
calculation/graphical representation are t = 1, t′/t = −0.28 (hole-doping), t′′/t = 0.1, t′′′/t =
0.06, tp/t = 0.10, tin/t = 0.10, α0

t = 0.30, a0
t = 0.20, ckz = 2.3, and ∆0

(PG) (T)/t = 0.50. The state
dispersion is perfectly nested with the ordering wave vector Q = (Q1 = ±π, Q2 = ±π). The
reason for taking ckz = 2.3 is that, in the 2D-plot of the z-direction dispersion as a function
of the dimensionless wave number ckz at the nodal (akx = π

2 , aky = π
2 ) point, we find

that the dispersion attains the maximum value at ckz = 2.3 (see Section 4). Throughout the
whole paper, we choose t to be the unit of energy, as already stated. Effectively, it means all
the quantities involved in the system Hamiltonian are made dimensionless, dividing by
t. On a quick sidenote, we envisage a situation in which the chemical potential or Fermi
energy EF of a potential QSH system intersects a band either an even or odd pair number
of times in the same BZ. If there is an odd number of pair intersections at time-reversal-
invariant-momenta (TRIMs) (which guarantees the time reversal invariance), the system
state is topologically non-trivial (strong topological insulator), and disorder or correlations
cannot remove pairs of such surface state crossings (SSC) by pushing the surface bands
entirely above or below the Fermi energy EF. This has been checked by assigning different
values to the chemical potential (see Figure 2c,d). We notice that the number of paired SSCs
in each of the figures in Figure 2 is odd (one). We also notice that aktrim =

(
3, π

2
)
,
(
1, π

2
)
,

(2,π), (1,0) in Figure 2c, d, e and f respectively. The vertical lines are the indicators of time
reversal invariant momenta (TRIM). Amongst the pair of TRI momentum (K, −K), the
relation −K = K + G is satisfied. When there are even number of pairs of surface state
crossings, the surface states are topologically trivial (weak TI or conventional insulator)
for disorder, or correlations can remove pairs of such crossings, insulator, or a strong
topological insulator. The material band structures are characterized by Kane–Mele index
Z2 = +1 (ν0 = 0) and Z2 = −1 (ν0 = 1). The former corresponds to weak TI, while the
latter corresponds to strong TI. In the Appendix A, we calculate the topological invariant
ν0 to characterize the present TRS preserving system in a similar manner, as formulated
by Fu and Kane [34,35], helped by the graphics in Figure 2. The help is required, as
the inclusion of the Rashba coupling leads to non-conservation of spin [34] (see the note
above Equation (8)). As ν0 turns out to be 1 (see the Appendix A), we find the system
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Hilbert space to be twisted [34,35]. The physical consequence of the nontriviality is the
appearance of topologically-protected surface states. The Bi2212 layer, therefore, comprises
of ‘helical liquids’ [36] in the monolayer (2D) geometry in the long wavelength limit. In this

limit, sin
(
ajk j
)
→ ajk j and cos

(
ajk j
)
and cos(ajk j)→

(
1−

a2
j k2

j
2

)
where j = (x, y, z), and

aj is the lattice constant along j direction. The helicity is one of the most unique properties
of a topologically protected surface. These lead to the conclusion that the system considered
is a strong TI or a QSH material. A recent report of a spin-signal on the surface by the
inverse Edelstein effect [37] has confirmed the helical spin-structure.

A spin version of quantum Hall effect is called QSH effect. As we have stated, a
QSH system possesses a twisted Hilbert space, leading to a pair of helical edge states
with opposite spins propagating in opposite directions. Such non-trivial states with spin-
momentum locking gives rise to two-dimensional topological insulator. In what follows, we
provide the outline of a method to determine the effect of non-magnetic, random disorder
potential and a mass term on the anti-nodal/nodal gap of the present system. We apply a
novel technique published by Katsura and Koma [38,39]. The exercise is also motivated by
the works in the refs. [40,41] in the context of metal-insulator transition in semiconductors.
In the basis (d†

k, ↑ d†
k,↓d

†
k+Q, ↑d

†
k+Q,↓ )

†, the starting Hamiltonian in Equation (1), together
with the Rashba coupling term in the DDW ordered phase (for the ordering vector Q = (Q1
= ±π, Q2 = ±π), may be written in a compact form as

H
(
kx, ky

)
= (εk + W0) τ3 ⊗ s0 + Dk τ1 ⊗ s0+(∆− g1) τ3 ⊗ s1 + g2 τ3 ⊗ s2 (7)

where the additional terms introduced are W0 and ∆. The term W0 corresponds to a RDP,
which has continuous uniform distribution in the interval [−W/2, W/2] with a positive
parameter W. If a uniform distribution is continuous (discrete), it has an infinite (finite)
number of equally likely measurable values. The symbol ∆ stands for the mass term. We
shall treat this model below in the long wave-length limit. The matrices τj and sj (j = x, y, x)
are Pauli matrices for the orbital and the spin, respectively. Additionally, g1 = α0 sin(kya)
and g2 = α0 sin(kxa). These terms correspond to RSOC. Upon recalling that spin component

∑j =

(
sj 0
0 sj

)
, we find that the commutator [(∆− g1)τ3 ⊗ s1 + g2τ3 ⊗ s2, ∑z 6= 0]. This

means, due to the presence of RSOC, the spin sz is not conserved. For the CDDW order, the
corresponding Hamiltonian with random disorder potential and mass term will appear as

H
(
kx, ky

)
=
(

1
2

)
εkτ0 ⊗( s0 + sz) +

(
1
2

)
εk+Qτ0 ⊗ ( s0 − sz) + W0 τ3 ⊗ s0 +

(
1
2

)
D†

k τ1

⊗(s0 + sz) +
(

1
2

)
Dkτ1 ⊗ (s0 − sz) + (∆− g1)τ3 ⊗ s1 + g2 τ3 ⊗ s2.

(8)

The details are to be reported shortly in a separate communication. We show below
that this method has distinct advantages over other methods, viz. the index is determined
here by the discrete spectrum of a supersymmetric structure endowed operator, which
enables one to estimate the index graphically.
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contours are shown by thin blue lines. (b) The calculated Fermi surface in DDW state. Here,
the electron pockets (anti-nodes) around (±π, 0) and ( 0,±π) are red, while the hole pockets
(nodes) around

(
±π

2 ,±π
2
)

are light yellow. (c–f) The dimensionless quasi-particle energy dis-
persion spectrum ∈j (s, σ, k) are given by (3) in DDW state (QSH phase) as a function of
the dimensionless wave number akx without the interlayer tunneling. The plots at (c,d) fea-
ture the dispersion at the nodal region(the values of aky = π

2 , and akz = 2.3) with µ
t =

−0.0 and µ
t = −0.5, respectively, w hereas the plot at (e) features the dispersion at the anti-

nodal region
(

the values of aky = π, akz = 2.3, and µ/t = −0.5
)
, the plot at (f) at the region around

Γ point(the value of µ = −0.0). The chemical potential µ of fermion number is represented by solid,
horizontal line. In figures (c–f), the common feature is that the chemical potential intersects the layer
band ∈j (s = −1, σ = +1, k) in (3), indicated by vertical lines in the same BZ, an odd (one) number of
times. The lines correspond to time reversal invariant momenta (TRIM) where aktrim =

(
3, π

2
)
,
(
1, π

2
)
,

(2,π), (1,0) in (c–f), respectively. The parameter values are t = 1, t′/t = −0.28 (hole-doping), t′′/t = 0.1,
t′′′/t = 0.06, tp/t = 0.10, tin/t = 0.10, α0

t = 0.30, a0
t = 0.20, ckz = 2.3, and ∆ 0

(PG) (T) = 0.50. The state
dispersion is perfectly nested with the ordering wave vector Q = (Q1 = ±π, Q2 = ±π).

As in ref. [38,39], in two dimensions (2D), let PF be the projection operator onto the
states below the Fermi energy EF for infinite volume. We approximate this operator by
the corresponding Fermi projection PF

(Λ) in the finite region Λ, where the matrix PF
(Λ) =

∑En≤EF
| u(n)(k)〉〈u(n)(k) | and | u(n)(k)

〉
are eigenstates of the Hamiltonian H

(
kx, ky

)
on Λ corresponding to the eigenvalues En. We find that En = (E1, E2) where

E1 = −
√
[{(εk + W)2 + D2

k +
(

g1 − ∆)2 + g2
2
}
+δ2

]
,

E2 =

√
[{(εk + W)2 + D2

k +
(

g1 − ∆)2 + g2
2
}
−δ2

]
,

δ2 =
√
[4(εk + W)2

(
g1 − ∆)2 + g2

2
)
+ D4

k .

The spectral gap is G = E2 −E1 and the corresponding eigenvectors, in the long
wave-length limit, are

∣∣∣u(1)(k)
〉
=


1

ψ(1)(k)
0
0

, and
∣∣∣u(2)(k)

〉
=


1

ψ(2)(k)
0
0

 (9)

where ψ(β)(k) = α0(iakx − aky +
(

∆
α0

)
)/F

β
, β = 1, 2, and

F
β
=
[(

Eβ + εk + W)
{

E2
β − (εk + W)2 − D2

k

}
+
(
Eβ − εk −W

)
×
{
(α0aky − ∆)2 +

(
α0akx)

2
}]

/H2
β,

H2
β = [(Eβ + εk + W)2 −

{
(α0aky − ∆)2 +

(
α0akx)

2
}
+ D2

k

]
. (10)

Equations (9) and (10), in the long wave-length limit, yield the 4 × 4 matrix PF
(Λ) =(

M2×2 0
0 0

)
where

M2×2 =

(
2

(
−α0aky + ∆

)
− i(α0akx)/F(

−α0aky + ∆
)
+ i(α0akx)/F [

{
(α0aky − ∆)2

}
+
{(

α0akx)2}]/G2

)
,

F = F1F2/(F1 + F2), G2 = F2
1 F2

2 /
(

F2
1 + F2

2 ). (11)
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We find the eigenvalues of M2×2 as v1 = 2 and v2(k, ∆, W) ≈ ψ∗(2)(k, ∆, W) ψ(2)(k, ∆, W).
However, the eigenvalue ν1 = 0 specified in mod 2, a plot of v2, as a function of the mass the
strength W of the disorder potential and the mass term∆ for the nodal region in Figure 3a,
show that v2(k, ∆, W) ≈ 1 when the random disorder potential is much less than one
(W/t � 1) for almost all values of ∆/t; this corresponds to the hot region. The nodal
quasiparticle (QP) spectral gap Gnodal has an interesting feature: it is zero, as shown in
Figure 3c. However, when the disorder is moderately high, i.e., (W/t∼ 0.5), the system
slides down to the state where the eigenvalue v2(k, ∆, W) ≈ 0 with 0 ≤ ∆

t ≤ 0.6 . This
corresponds to the yellowish green region in Figure 3a. The eigenvalue v2 is negative
in the blue region in Figure 3a with non-zero nodal spectral gap, as shown in Figure 3c.
Although the anti-nodal region plot in Figure 3b has similarity with that in Figure 3a,
albeit a little more spread of the region W/t < 1 (for almost all values of ∆/t), the spectral
gap Ganti-nodal here remains non-zero everywhere, as shown in Figure 3d. Thus, the anti-
nodal plot is different. The other parameter values are t = 1, t′/t = −0.28 (hole-doping),
t′′/t = 0.1, t′′′/t = 0.00, α0

t = 0.01, ∆0
(PG) (T) = 0.02, µ= −0.0, and χ0 = 0.0. The state

dispersion is perfectly nested with the ordering wave vector Q = (Q1 = ±π, Q2 = ±π). The
anti-nodal QP spectral gap Ganti-nodal is mainly due to the non-zero DDW order parameter.
Of course, the mass term and the SO coupling terms will also contribute. The finite
gap forbids access to conducting state. The moderately high disorder potential (and SO
coupling) create a spectral gap in the nodal region when ν2 ≤ 0. To summarize, for

(
W
t

)
�

1(or v2 ≈ 1) and for all values of ∆
t , the Bi2212 pseudo-gap state nodal region QPs have

access to conduction , while for
(

W
t

)
≈ 1, no conduction is possible. For the anti-nodal

region, there is no scope of conduction in either of the limits due to the finite gap, as can be
seen from Figure 3d. In other words, with the introduction of random disorder potential
and mass term at zero temperature, the quasiparticles (nodal) with wave vector make
roughly an angle of 45◦, relative to the Cu-O bond undergo quantum phase transition
from the QSH phrase to insulating phase as the disorder evolves from mild to moderately
strong values for a given value of the mass term. However, the insulating property of
quasiparticles (anti-nodal) with wave vector parallel to the Cu-O bond remains robust. A
similar analysis, carried out for the QAH phase, yields qualitatively similar result. The
transition is occurring at zero temperature, hence this may be termed as the disorder driven
quantum phase transition (QPT). On the basis of this interpretation, one can say that the
red regions in Figure 3a,b are quantum critical region. A TRS breaking perturbations, such
as the presence of the magnetic impurities, are expected to destroy topological surface state.
Quite surprisingly, contrary to this expectation, we find that the surface state conduction
in Bi2212 is sensitive to the random disorder potential W/t∼ 1. This behavior is definitely
not an isolated one. Kim et al. [42] have found that when the impurity concentration
is moderately high, the surface state of SmB6 can be altered, even with non-magnetic
impurities. In the next section, we discuss a quantum anomalous Hall (QAH) effect under
uniform exchange field when two bands close to Fermi energy are occupied.
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for the (a) nodal ( akx ∼ π
2 , aky ∼ π

2 ) and (b) anti-nodal ( akx ∼ π, aky ∼ 0) regions. The contour
plots of the nodal and the anti-nodal quasiparticle (QP) spectral gaps are shown in (c,d), respectively.
The chemical potential is µ∼ 0. In figure (a), when the random disorder potential W/t � 1, the
eigenvalue ν2 is close to one, for almost all values of ∆/t; this corresponds to the hot region. The nodal
QP spectral gap is zero, as shown in figure (c) in this region. However, for the disorder potential
W/t∼ 0.5, the eigenvalue v2 ∼ 0 with 0 ≤ ∆

t ≤ 0.6 corresponds to the yellowish green region. The
eigenvalue v2 is negative in the blue region in (a), with non-zero nodal spectral gap as shown in (c).
The red region corresponds to quantum criticality, as will be explained in the text. However, the
antinodal region plot in (b) has similarity with that in (a), albeit a little more spread of the region W/t
< 1 (for almost all values of ∆/t), and the spectral gap remains non-zero everywhere, as shown in
(d). The other parameter values are, t = 1, t′/t = −0.28 (hole-doping), t′′/t = 0.1, α0

t = 0.01, ∆ 0
(PG)

(T) = 0.02, µ= −0.0, and χ0 = 0.0. The state dispersion is perfectly nested with the ordering wave
vector Q = (Q1 = ±π, Q2 = ±π).

3. Quantum Anomalous Hall Effect

As already stated in Section 1, the dxy + i dx2−y2 (Chiral DDW) orderded phase [5]
leads to broken TRS. We assume that the momentum dependence of the quasi-particle
pairing interactions required for this kind of ordering is given by the functions of the
form Ux2−y2(k,k′) = U1 (coskxa–coskya)(cosk′xa–cosk′ya), Uxy(k,k′) = U2sin(kxa) sin(kya) sin(k′x
a) sin(k′ya), where U1 and U2 are the coupling strengths, and (kx, ky) belong to the first
Brillouin zone (BZ). Assuming that the system has magnetic impurities, we model the
required interaction between an impurity moment and the itinerant (conduction) electrons
in the system with coupling term (J/t1) ∑m Sm·sm, where Smis the mth-site impurity spin,
sm =

(
1
2

)
d†

mσ σz dmσ, dmσ is the fermion annihilation operator at site-m and spin-state
σ (=↑,↓) and σz is the z-component of the Pauli matrices. We make the approximation of
treating the impurity spins as classical vectors. The latter is valid for |S| > 1. Absorbing
the magnitude of the impurity spin into the coupling constant J (M = | J ||S|/t), it follows
that the exchange field term, in the basis (d†

k, ↑ d†
k,↓ d†

k+Q, ↑ d†
k+Q,↓ )

† in the momentum
space, appears as {ζz ⊗M (τ0 + τz)/2}, where τ0 and τz, respectively, are the identity and
the z-component of Pauli matrix for the pseudo-spin orbital indices. We thus obtain the
dimensionless contribution [M ∑ k,σ sgn(σ) d†

k,σ dk,σ] to the momentum space Hamiltonian
in Equation (1) above.

We now turn our attention to the CDDW state. The reasons for our choice of the
CDDW order are that (i) it offers a theoretical explanation [5,6] of the non-zero polar Kerr
effect observed by Kapitulnik et al. [43], and (ii) it has been suggested that there is freezing
of anti-nodal quasiparticles (QPs), owing to strong interaction with the lattice, or induced
by correlation [44], resulting in non-dispersive bands. Interestingly, upon calculating the
group velocity ∂∈n(s,σ,k)

∂k in the CDDW state at the anti-nodal and nodal regions in the long
wavelength limit, we find, while in the anti-nodal region, the quasi-particles (QPs) are
localized, and that in the nodal region the group velocity of QPs is non-zero. The former
type of QPs correspond to the elementary excitations, with wave vector nearly parallel
to the Cu-O bonds and the latter to those with wave vector, making a rough angle of 45◦

relative to the Cu-O bond. Apart from a justification of the choice of CDDW order, this
provides us with some insight into how QPs disperse close to the nodes and the anti-nodes.

Since (i) broken TRS and (ii) strong RSOC are the requirements for the access of
a QAH state which are very well fulfilled by the CDDW ordered (d + id) Hamiltonian
in (1), we may surmise that the CDDW state is associated with QAH effect. A generic
feature of all the QAH systems is that the bands close to the Fermi level correspond to
those of chiral/helical fermions (Dirac-like model) in the long wavelength limit. Moreover,
the chiral edge states around boundary in a QAH system give rise to quantized Hall
conductance even in the absence of external magnetic field. We shall use these as a
launch-pad for our discussion. The plots of bands in Ej(s, σ, k, kz) in (4) in the d + id
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case belonging to the nodal and anti-nodal regions, as well as at Γ point, are shown
in Figure 4. The spin-momentum locking displayed here sets the stage for the further
discussion of QAH effect. The numerical values of the parameters to be used in the
calculation are t = 1, t′/t =−0.28 (hole-doping), t′′/t = 0.1, t′′′/t = 0.06, tp/t = 0.3, tin/t = 0.1,
α0
t = 0.30, a0/t = 0.20, µ/t= −0.0, ∆0

(PG) (T)/t = 0.50, χ0
t = 0.1, M = 0, Q1 = 0.7742 π,

Q2 = 0.2258 π, and ckz = 2.33. The state dispersion is imperfectly nested with the ordering
wave vector Q = (Q1 = ±0.7742 π, Q2 = ± 0.2258 π), and (Q1 = ±0.2258 π, Q2 = ±0.7742
π). We notice that around Γ point (Figure 4a) spin-up quasi-particles (QPs) are conducting,
whereas in the anti-nodal/nodal region (Figure 4c,d) spin-down QPs are conducting. The
reason for these observations is that the corresponding bands are partially empty. A change
in the value of the chemical potential µ by doping does not affect these features as shown
in (e) and (f), where µ/t = −0.2 and −0.1, respectively. This is an indicator of the robustness
of the system. In Figure 4b, we have contour-plotted the band corresponding to the spin-up
QPs in Figure 4a. Thus, the spin-momentum locking is evident. While the nodal region of
the momentum space can give rise to a spin- down hole current, the region around the Γ
point can give rise to spin-up electron current. The quasiparticle states of opposite spin
are to be found in different parts of the Brillouin zone. On the experimental front, recently
Vishwanath et al. [7] discovered that Bi2212 has a nontrivial spin texture with the spin-
momentum locking. They used a spin- and angle-resolved photoemission spectroscopic
technique to unravel this fact. These authors also developed a model to show how this
complex pattern could emerge in real and momentum spaces. The key feature is that the
layered structure of Bi2212 allows for a spin-momentum locking (SML) in one Cu-O layer
of the unit cell that is matched by the opposite spin texture in the other Cu-O layer of
the unit cell through the Γ point encirclement in the momentum space representation (see
Figure 1 and ref. [7]). This suggests the presence of a strong spin-orbit coupling in Bi2212
like a topological insulator. We shall briefly discuss the encirclement feature below.
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Figure 4. The plots of energy bands Ej(s, σ, k, kz) in (4) in the d + id (QAH) case belonging to the
nodal and anti-nodal regions, as well as at Γ point, are shown in Figure 4. The numerical values of the
parameters to be used in the calculation are t = 1, t′/t = − 0.28 (hole-doping), t′′/t = 0.1, t′′′/t = 0.06,
tp/t = 0.3, tin/t = 0.1, α0

t = 0.30, a0/t = 0.20, µ/t= −0.0, ∆ 0
(PG) (T)/t = 0.50, χ0 = 0.1, M = 0,

Q1 = 0.7742 π, Q2 = 0.225 π, and ckz = 2.33. The chemical potential µ of fermion number is
represented by a solid, horizontal line. The state dispersion is imperfectly nested. (a) Around the
Γ point, spin-up quasi-particles (QPs) are conducting, whereas in (b), we have contour-plotted the
band corresponding to the spin-up QPs in (a). In (c,d), corresponding to the anti-nodal (nodal) region,
spin-down QPs are conducting. The reason for these observations is that the corresponding bands
are partially empty. A change in the value of the chemical potential µ does not affect these features as
shown in (e,f), where µ/t = −0.2 and −0.1, respectively.
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The spin texture s(n,k) is defined as the expectation value of a vector operator com-
ponents Sj = I2× 2 ⊗ σj where σj are Pauli matrices on a two dimensional k-grid and
⊗ stands for the tensor product. At k for the state n (or nth band), it is defined as an
expectation value sj(n,k) = 〈Sj〉(n) = 〈n|Sj|n〉. To calculate sj(n,k), we need eigenvectors
of the Hamiltonian matrix for the eigenvalues Ej(s, σ, k, kz) = ∈j (s, σ, k)± εkz

(k) where

∈j (s, σ, k) is given by Equation (3) and εkz
(k) = −Υz(k, sz(c/2))[(sx(a) − sy(a))2/4 + a0].

These eigenvectors are

∣∣Ψj
〉
=
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We have calculated expectation value sj(n,k) considering the eigenvalue Ej(s = −1,
σ = +1, k) corresponding to the bonding case. The anti-bonding case yields a similar result.
The 2D plots of the expectation values are shown in Figure 5. We find that unfailingly, near
the nodal point, the expectation values of sz(n,k) show peaks when the numerical values of
the parameter α0

t = 0.1/0.2/0.3 and tin/t = 0.1/0.15/0.20. Here, the red curve corresponds
to the expectation value of sz(n,k), while the blue (green) curves to the expectation value
of sx(n,k) (sy(n,k)). The broken (blue) line corresponds to the expectation value of (sx(n,k)
− sy(n,k)). The numerical values of the additional parameters used in the plots are t = 1,
t′/t = −0.28 (hole-doping), t′′/t = 0.1, t′′′/t = 0.06, tp/t = 0.3, a0

t = 0.40, µ
t = −0.0, ∆0

(PG)

(T)/t = 0.02, χ0
t = 0.02, Q1 = 0.7742 π, Q2 = 0.2258 π, and c kz = 2.33. As shown in the

3D plot of sz(n,k) in Figure 5f,g, the spike in this quantity is broadly confined to the nodal
region. The peaks refer to the highest expectation value of the operator component I2X2 ⊗ σz.
This simply means that the maximum spin polarization is possible in the nodal region. The
Figure 5a–c show that, when the interlayer tunneling tin is kept fixed, the quantity sz(n,k) is
an increasing function of the RSOC coefficient α0

t . On the other hand, Figure 5a,d,e show
that a fixed α0

t , sz(n,k) is a decreasing function of the interlayer tunneling tin. The origin of
this tunability is as follows: A consequence of the so-called inversion symmetry breaking
in the direction perpendicular to the two-dimensional plane of the Bi2212 monolayer is
the Rashba spin-orbit coupling (RSOC). This can be tuned by gate voltage. As shown in
Figure 5g (where we find that the texture almost disappears when RSOC tends towards
zero), we notice that the non-trivial spin texture in k-space (spike in the nodal region)
is a consequence of RSOC. The texture, therefore, should be tunable by electric field
(α0 is electric field dependent) and intercalation (conjecturally, this will affect the interlayer
tunneling). This is precisely what we find above. Thus, in a large region of the Brillouin
zone, the tunable spin textures demonstrate a momentum-selective spin polarization due
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to RSOC. This has a strong implication for spintronic applications. However, there is a
severe hindrance to the potential elbow room of SML to provide resilience in the design
of spintronic devices. To explain, we note that in the present system, the spin orientation
is regulated by the electron momentum direction. Seemingly, there is a possibility of spin
generation and/or detection by controlling the flow of charge or spin currents. In other
systems [45,46], where the spin orientation is forced to align perpendicularly to the electron
momentum, these have been made in the past. The important point is the manipulation
of the spin orientation under the drift, and diffusion makes the task extremely difficult.
The synthetic spin-orbit coupling (s-SOC) [47–50], arising due to Zeeman Hamiltonian
involving the position-dependent magnetic field (B0), may prove to be useful for the spin
manipulation. It must be noted that while s-SOC breaks time reversal symmetry (TRS),
the intrinsic spin-orbit coupling (i-SOC) comprising of the Rashba and Dresselhaus SOCs
(where the former is due to structural inversion asymmetry and the latter is due to bulk
inversion asymmetry) are time-reversal symmetric.
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Figure 5. (a–e) The plots of the spin texture (the expectation value of the spin operator Sz) as a
function of momentum. The numerical values of the parameters are t = 1, t′/t = −0.28 (hole-doping),
t′′/t = 0.1, t′′′/t = 0.06, tp/t = 0.3, a0
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t = −0.0, ∆ 0

(PG) (T)/t = 0.02, χ0
t = 0.02, Q1 = 0.7742

π, Q2 = 0.2258 π, and c kz = 2.33. The additional parameter values are α0
t = 0.1/0.2/0.3 and

tin/t = 0.1/0.15/0.20. Here, the red curve corresponds to the expectation value of sz(n,k), while the
blue (green) curve to expectation value of sx(n,k) ((sy(n,k)). The broken (blue) line corresponds to
the expectation value of (sx(n,k) − sy(n,k)). (f) The 3D plots of spin textures sz (n, k) with ordering
wave vector Q. The parameter values used are t = 1, t′/t = −0.28, t′′/t = 0.10, t′′′/t = 0.06, tb/t = 0.30,

tz/t = 0.10, α0
t = 0.70, α1

t = 0, χ0
t =0.44, ∆PG

0
t = 0.20, µ = −0.00, and a0

t = 0.20. (g) The 3D plot
of the spin texture shows disappearing spikes in the nodal region. The numerical values of the
parameters used are t = 1, t′/t = −0.28 (hole-doping), t′′/t = 0.10, t′′′/t = 0.06, tb/t = 0.30, tz/t = 0.10,
α0
t = 0.01, χ0

t = 0.44, ∆PG
0
t = 0.20, and a0 = 0.40.

We have considered a Bloch Hamiltonian H(k) to describe our system. The Hamiltonian
we start with is nearly the same as that put forward by Das Sarma et al. [5,6] when we do
not consider RSOC. Two important symmetries one needs to consider here are time reversal
symmetry (TRS) and inversion symmetry (IS). The Das Sarma Hamiltonian is TRS broken.
The IS is protected as long as the ordering wave vector Q = (±π, ±π). For Q 6= (±π, ±π),
the IS protection is lost, even in the absence of the Rashba term. Suppose the eigenvectors
corresponding to the energy eigenvalues of H(k) are denoted by u(n)(k), where n is a band
index. Suppose u(n)(k) is a Bloch state eigen wavefunction. The Berry curvature (BC) is
defined as

Ω(n)
xy (k) = i

〈
∂kx u(n)(k)

∣∣∣∂ky u(n)(k)
〉
− i
〈

∂ky u(n)(k)
∣∣∣∂kx u(n)(k)

〉
(13)
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The inversion symmetry implies Ω(n)
xy (k) = Ω(n)

xy (−k), and TRS implies Ω(n)
xy (k) =

−Ω(n)
xy (−k) . Thus, for a system which is both TRS and IS compliant, Ω(n)

xy (k) ≡ 0. This
means that in order to study the possible quantum anomalous Hall (QAH) effect starting
from the present DDW ordered TRS (IS) compliant (noncompliant) system of Bi2212 bilayer
we need to have broken TRS which yields non-zero Berry curvature (BC). A non-zero BC is
very much required to obtain anomalous Hall conductivity

(
σxy
)

and to show that σxy is
quantized in the case of an insulator. Although the Dirac model approach has its limitations,
it is nevertheless useful in understanding the topological properties of realistic materials.
Since the intrinsic QAH effect can be expressed in terms of BC, it is therefore an intrinsic
quantum-mechanical property of a perfect crystal. An extrinsic mechanism, skew scattering
from disorder, tends to dominate the QAH effect in highly conductive ferromagnets. Since
bands close to the Fermi level correspond to those of chiral/helical fermions (Dirac-like
model), as already stated, we consider the following energy eigenvalues (derivable from (1)

assuming long wavelength limit): εk,1 ≈ εk –
√

M2 + α2
0((akx)

2 +
(
aky)2

)
+ O

(
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ϒ , (𝑘) = ((  )  ) − ((  )  ) − 
{ }((  )  ) , (14)

and ϒ , =  ϒ , (𝜖 →  𝜖 , x → 𝑥 , 𝑦 → 𝑦 ).  The plots of BC, as a function of 
(𝑎𝑘 , 𝑎𝑘 ) with the chemical potential µ =  −0.5, are shown in Figure 6. In Figure 6a–f, the 
common feature is the spikes in certain regions of the Brilloin zone close to the nodal 
points. The parameter values in (a) M/t = 0.1, and = 0.5, (b)𝑀/𝑡 =  0.2, and = 0.5, (c) 
M/t = 0.3, and = 0.5, (d) =  0.5, and = 0.5, (e) =  0.3, and = 0.8, and (f) =

2
)

, and

εk,2 ≈ −εk +

√
M2 + α2

0((ax + aQ1)
2 + (ay + aQ2)

2) + O
(
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the chemical potential µ = −0.5, are shown in Figure 6. In Figure 6a–f, the common feature
is the spikes in certain regions of the Brilloin zone close to the nodal points. The parameter
values in (a) M/t = 0.1, and α0

t = 0.5, (b)M/t = 0.2, and α0
t = 0.5, (c) M/t = 0.3, and α0

t =

0.5, (d)M
t = 0.5, and α0

t = 0.5, (e)M
t = 0.3, and α0

t = 0.8, and (f)M
t = 0.5, and α0

t = 0.8.
The other parameter values are t = 1, t′/t = −0.28 (hole-doping), t′′/t = 0.1, t′′′/t = 0.06, tp/t
= 0.30, tm/t = 0.10, ∆0

(PG) (T)/t = 0.40, a0
t = 0.20, χ0

t = 0.1, and ckz = 2.33. As the colorbars
suggest, at a given α0

t = 0.5, as the exchange field increases, the peaks in BC increases form
value of O(108) to value of O(1013). However, for α0

t = 0.8, not only do the peaks value of
O(107) for M/t = 0.3 go to a higher order of magnitude for the increase in M/t, there is the
proliferation of spikes, as well with the increase in the exchange field. These are tentative
conclusions, as we have not dealt with a large number of cases. In order to explain what
these peaks signify, we refer to the Chern number C (TKNN invariant) we shall encounter
below in the calculation of Hall conductivity. The invariant, in fact, allows us to properly
define the electric polarization as a topological quantity (see Appendix A). The Berry phase
is given by this invariant. As regards the Berry connection An and Berry curvature Ω(n)(k)
(where ∇k× An(k) = Ω(n)(k)), they can be viewed as a local gauge potential and gauge
field associated with the Berry phase (or geometric phase, or Pancharatnam phase), respec-
tively. The peaks therefore signify spiking values of the gauge field associated with the
Pancharatnam phase.
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the Brilloin zone close to the nodal points. The parameter values are (a) M/t = 0.1, and
α0
t = 0.5, (b)M

t = 0.2, and α0
t = 0.5, (c) M/t = 0.3, and α0

t = 0.5, (d) M
t = 0.5, and α0

t = 0.5, (e) M
t =

0.3, and α0
t = 0.8, and (f) M/t = 0.5, and α0

t = 0.8. The other parameter values are t = 1,
t′/t = −0.28 (hole-doping), t′′/t = 0.1, t′′′/t = 0.06, tp/t = 0.30, tm/t = 0.10, ∆ 0

(PG) (T)/t =
0.40, a0

t = 0.20, χ0
t = 0.1, and ckz = 2.33. As the colorbars suggest, at a given α0

t = 0.5, as
the exchange field increases the peakes in BC increase form value of O(108) to value of O(1013).
However, for α0

t = 0.8, the peaks value of O(107) do not only go to higher order of magnitude with
the increase in the exchange field, as there is also the proliferation of spikes.

The Chern number C, which is an integer, is given by C = 2
∫ ∫

BZΣn Ω(n)
xy (k) d2k

(2π)2 .

Here, Ω(n)
xy (k) is the Berry− curvature (BC) component along z direction,

∫ ∫
BZ denotes

an integral over the entire Brillouin zone (BZ), and the sum is over occupied bands. The
Hall conductivity σxy in a band insulator is related to the Chern number C by σxy = (e2/2h)
C. The sign of the Hall contribution is determined by the relative signs of BCs. In the case
when the system is insulator (that is, when the chemical potential lies within the band gap),
C =

(
1

2π

) ∮
Σndk· An is an integer. The closed loop corresponds to the encirclement of the

Brillouin zone boundary. The anomalous Hall conductivity is then quantized. The reason
is because of the single-valued nature of the wave function, and its change in the phase
factor after encircling the Brillouin zone boundary can only be an integer multiple of 2π or
2 π m, which means C can only assume an integer value. Hence, σxy is quantized to integer
multiples of e2/h. The TKNN invariant plays the role of the topological invariant of the
quantum Hall system.

Upon referring to Figure 4, we find that the fermi energy does not lie within the band
gap. Therefore, we need to calculate C analytically and examine how close is it to an integer.
This quantity C or the Hall conductivity itself, in a semi-classical approach, is given by

σxy =
∫ ( e2

}

)
∑n

d2k

(2π)2 fn(k) Ω(n)
xy (k) (15)

where fn(k) is the Fermi occupation function and Ω(n)
xy (k) is the z-component of the BC.

In fact, most of the conventional approaches to the electronic transport in solids are
based on the very general linear response theory of Kubo [51]. The Kubo formula for the



Symmetry 2022, 14, 1746 23 of 30

anomalous Hall conductivity (AHC) in the static limit for disorder-free non-interacting
electrons is given by the v̂ which is the velocity operator, and ∈n (k) which are the eigen-
values of the surface state Hamiltonian Ĥ in QAH state. In momentum eigen basis, the
velocity operator is given by v̂ =

(
1
}

)
∂Ĥ
∂k . The Kubo approach also leads to the same

expression as (15). We have already calculated BC, in the long wavelength limit, in Equa-
tion (14). The limit ensures that bands close to the Fermi level correspond to those of
chiral/helical fermions (Dirac-like model). As one can see from (15), to obtain the Hall
conductivity, momentum space integration is necessary. For this purpose, we have used the
Matlab package. Here, we first divide the Brillouin zone into finite number of rectangular
patches. We next determine the numerical values corresponding to each of these patches
of the momentum-dependent density and sum these values. The sum is then divided by
the number of patches. We find, for example with M/t = 0.5, C = 0.7488 sgn(M/t). This
is quite satisfactory. The reason for not obtaining an integer, as we surmise, rests upon
the following: The Hall conductivity σxy cannot be determined as such from the 2D Dirac
model, since (15) requires an integral over the whole BZ, as we have seen above. The
integral is outside the Dirac model’s range of validity. To circumvent the problem, one
may possibly choose a momentum space cut-off small compared to the size of BZ and large
enough to capture nearly all the contributions to BC integral. This will be within the range
of validity of the 2D Dirac model.

4. Discussion

We have added in the Rashba term by hand. Here, we provide a sufficiently strong
supporting argument from band structure calculation as follows. In fact, there is a lack
of evidence of the spin-momentum locking when the Rashba coupling is totally absent.
This necessitates its inclusion. To justify this statement, we show the plots of the energy
eigen-values in Equation (1) in the nodal and anti-nodal regions, which are shown in
Figure 7b–d above in the absence of the Rashba coupling. The numerical values of the
parameters used are t = 1, t′/t = −0.28 (hole-doping), t′′/t = 0.1, t′′′/t = 0.06, tb/t = 0.3, tz/t

= 0.1, α0
t = 0, α1

t = 0, χ0
t = 0.44, ∆PG

0
t = 0.2, and a0 = 0.4. In Figure 7a, we have a plot of

quasi-particle excitation (QP) spectrum in z-direction given by εkz
(k) = −Υz(k, sz(c/2))[(sx(a)

− sy(a))2/4 + a0], given above as a function of dimensionless momentum akz at the nodal
point. In Figure 7b–d, we have plots of the excitation spectrum in the CDDW state as a
function of akx with akz = 2.3. In Figure 7b, the plot is for aky = π

2 . We find that only
the spin-down valence band is partially empty. In Figure 7c,d, respectively, the plot is
for aky = π and aky = 0. We find that only the spin-up conduction band is completely
full, whereas the rest of them are partially empty. Thus, while the nodal region of the
momentum space can give rise to a spin-down hole current, no other region can give rise
to spin-polarization or spin-current. We conclude that the spin-momentum locking (SML)
is not evident in the absence of the Rashba coupling in Bi2212 bilayer system. This is a
very strong argument in favor of the inclusion of the Rashba coupling for the problem in
hand. The coupling has novel upshot as discovered by Gotlieb et al. [7]. They found that
Bi2212 has a nontrivial spin texture with the spin-momentum locking. They used spin-
and angle-resolved photoemission spectroscopic (SARPES) technology to unravel this fact.
They also developed a model to show how this complex pattern could emerge in real and
momentum spaces. The key feature is that the layered structure of Bi2212 allows for a
spin-momentum locking in one Cu-O layer of the unit cell that is matched by the opposite
spin texture in the other Cu-O layer of the unit cell, as shown in Figure 1, through the
Γ point encirclement in momentum space representation. This type of spin-momentum
ordering is hidden from other experimental techniques, except SARPES [7]. A similar figure
is also displayed in Figure 5f. As shown in the plot of the texture sz(n,k) in this figure, the
spike in sz(n,k) is broadly confined to the nodal region, and there is encirclement of Γ point.

The Rashba spin-orbit coupling (RSOC), which can be tuned by gate voltage (or,
electrostatic doping), is a consequence of the so-called structural inversion symmetry. On
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the other hand, SOC linked to the bulk inversion symmetry is referred to as the Dresselhaus
coupling (D-SOC). Here, both k-linear and k-cubed terms are involved [52]. The linear
term is given by: β0 (σx sin (kxa) − σy sin (kya)) where β0 is the Dresselhauss spin-orbit
coefficient [53,54]. The cubic term, on the other hand, is γ0 (σx (kya)2 (kxa) − σy (kxa)2

(kya)), where γ0 is the Dresselhauss spin-orbit coefficient. It is well-known [53,54] that
the coexistence of Rashba and Dresselhaus contributions is possible in a two-dimensional
spin-orbit coupled system without inversion symmetry. Therefore, one needs to include the
D-SOC term in the Hamiltonian to observe the effects of cubic term in SML, QSH, and QAH
effects. In fact, much remains to be understood and explored in this field. The model one
wishes to consider might be realized with cold atoms. The Rashba and Dresselhaus spin-
orbit coupling can be realized in cold atoms [55,56] in an optical lattice experimentally. We
have addressed above the question of “what is the necessity of breaking inversion symmetry
(IS)”. In this context, one may note further that in their seminal work, Zhang et al. [57] have
demonstrated that the lack of the local inversion symmetry at atomic sites leads to hidden
spin polarization completely determined by the site-dependent orbital angular momentum,
even in centrosymmetric crystals. This was an outcome of the first-principles calculations
by the authors. Usually, the reason behind this is the orbital magnetization being more
important than the spin magnetization, i.e., the spin–orbit coupling (SOC) is weak, such
as in a transition metal dichalcogenide (TMD) MoS2. Additionally, Baidya et al. [58] had
also explored the important role of orbital polarization in QAH phases. A comparison with
DFT calculation led these authors to the conclusion that the effect of such terms is smaller.

The QSH effect shown by the Bi2212 bilayer system under consideration is related to
the formation of the Moir’e patterns [59,60] under a relative rotation between the two CuO2
layers in the bilayer system. To explain, as the creation of the Moir’e landscape gives rise to
the realizations of an external non-Abelian gauge field, which couples the motional states
of the particles to their spins (internal degree of freedom), the field can be regarded as an
extension of RSOC in some sense. The quantum spin Hall effect is, therefore, tunable by this
field. However, since the Moir’e electron system is generally described by (massless) Dirac
fermions on each layer, coupled with a position-dependent interlayer hopping amplitude,
the access to this tuneability does not seem to be possible. As discussed in Appendix A,
our system comprises of ‘helical (massive) liquids’ in the quasi-2D geometry. Nonetheless,
the problem needs a close inspection before concluding that the ‘mass’ factor excludes the
formation of the Moir’e patterns [59,60].
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In summary, we have, possibly for the first time, found that a DDW ordered [1–4] PG
state model of Bi2212 bilayer, which involves the Rashba spin-orbit coupling, can display
QSH effect. On a quick side note, it may be mentioned that the classical counterpart of
QSH effect is accessible in optical systems [61]. For example, Kapitanova et al. [62] have
experimentally shown that, based on the optical spin-orbit locking phenomenon, photonic
spin Hall effect is possible in hyperbolic meta materials (HMM). This important class
of artificial anisotropic materials have a unique ability to control interactions between
electromagnetic waves and matter. Upon coming back to our model Hamiltonian with
DDW/CDDW order, we note that the model with DDW order [1–4] describes the low
energy physics of a class of helical fermionic liquid in our spin-orbit system. We also
predict the existence of QAH effect in the context of an extension of the DDW model, viz.
chiral DDW ordered state [5,6] with magnetic impurities. The issue of the robustness of
QSH and QAH systems with change in the chemical potential is addressed graphically
in Figures 2c,d and 4e,f, respectively. The robustness of the existence of the edge state
and tunnelling between edge states in a SO coupled system is an important part of the
problem. We write: The surface of the system has states, which come in an odd number
of Kramers’ doublets, as in Figure 2. Macroscopically, these counter-clockwise/clockwise
circling states are carrying spin down/up, or vice versa, depending on the orientation of
the magnetic field Bα0 =

(
2α0
gµB

)
(ak× ẑ ) that enters the spin-orbit interaction. The edge

states appear as a consequence of the cyclotron orbits induced by the magnetic field, which
are naturally truncated at the physical boundary of the sample. The energy levels of the
counter-propagating edge state bands cross at particular points in the Brillouin zone due
to TRS, and the spectrum cannot be continuously deformed into that of an ordinary band
insulator. In this sense, an insulator realizes a topologically nontrivial state of matter. The
QSH and QAH systems have potential technological applications in spintronics. There are
plenty of future challenges and opportunities in this rapidly evolving area.
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Appendix A

In order to calculate the topological invariant ν0, we require the eigenvectors cor-
responding to the energy eigenvalues ∈j (s, σ, k) in Equation (3). These are Bloch states
given by
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(A1)

The Hamiltonian H(k) in Equation (1) satisfies [H(k),Θ] = 0. This means H(k) sat-
isfies Θ−1H (−k) Θ = H(k). Here, the time reversal (TR) operator Θ for a spin 1/2 par-
ticle takes the simple form Θ = I⊗σy
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The Hamiltonian H(k) in Equation (1) satisfies [H(k),Θ] = 0. This means H(k) satisfies 
Θ−1H (−k) Θ = H(k). Here, the time reversal (TR) operator Θ for a spin 1/2 particle takes the 
simple form Θ = I⨂𝜎 Ⱳ. The 𝜎  are Pauli matrices on two dimensional 𝑘 -space. The opera-
tor Ⱳ is for the complex conjugation. Now, we consider a matrix representation of the TR 
operator in the Bloch wave function basis. The representation is 𝜗  (k)  =𝑢( )(−𝑘) 𝛩 𝑢( )(𝑘) , where α and β are band indices. Upon using (A1), one can easily 
show that 𝜗  (k) is a unitary matrix. We also find that it has the property: 𝜗  (−𝑘) = 𝑖 −𝜑∗ (−𝑘) + 𝜑∗ (𝑘) − 𝜑∗ (−𝑘) 𝜑 ∗ (𝑘) + 𝜑 ∗ (−𝑘) 𝜑∗ (𝑘)  = −𝜗  (k). (A2)

. The σj are Pauli matrices on two dimensional k -
space. The operator
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The Hamiltonian H(k) in Equation (1) satisfies [H(k),Θ] = 0. This means H(k) satisfies 
Θ−1H (−k) Θ = H(k). Here, the time reversal (TR) operator Θ for a spin 1/2 particle takes the 
simple form Θ = I⨂𝜎 Ⱳ. The 𝜎  are Pauli matrices on two dimensional 𝑘 -space. The opera-
tor Ⱳ is for the complex conjugation. Now, we consider a matrix representation of the TR 
operator in the Bloch wave function basis. The representation is 𝜗  (k)  =𝑢( )(−𝑘) 𝛩 𝑢( )(𝑘) , where α and β are band indices. Upon using (A1), one can easily 
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is for the complex conjugation. Now, we consider a matrix rep-
resentation of the TR operator in the Bloch wave function basis. The representation is
ϑαβ (k)= 〈u(α)(−k)

∣∣∣Θ∣∣∣u(β)(k) 〉, where α and β are band indices. Upon using (A1), one can
easily show that ϑαβ (k) is a unitary matrix. We also find that it has the property:

ϑαβ (−k) = i
[
−ϕ
∗β
2 (−k) + ϕ∗ α

2 (k)− ϕ
∗ β
4 (−k) ϕ3

∗α(k) + ϕ3
∗β(−k) ϕ∗ α

4 (k)
]
= −ϑβα (k). (A2)

This implies that at a TRIM ktrim we have ϑαβ (ktrim) = −ϑβα (ktrim), i.e., the matrix
ϑαβ (ktrim) becomes anti-symmetric.

Upon taking the time-dependence for granted, we assume that parameters in the
bands in Figure 2c–f return to the original values at t = T, i.e., H[t + T] = H[t]. Furthermore,
suppose the condition H[−t] = ΘH[t]Θ−1 is satisfied. We now consider, in particular,
the green (spin-down) and red bands (spin-up) in Figure 2c and denote their Bloch wave
functions, respectively, as | u(2)(k, t)

〉
and | (u(3)(k, t)

〉
. The charge polarization P can be

calculated by integrating the Berry connection of the occupied states over the BZ. In the
present case of the two-band system, P may be written as P = P2 + P3, where the Berry
connections

{
−i
〈

u(j)(k)
∣∣∣∇k

∣∣∣ u(j)(k)
〉
}are given by cjj(k) (j = 2, 3) and

P2 =

π∫
−π

dk
2π

c22(k), P3 =

π∫
−π

dk
2π

c33(k). (A3)

The charge polarization is calculated here by integrating the Berry connection of the
occupied states over the BZ. We have considered 1D scenario. The Berry curvature is given
by Ωj (k) = ∇k ×cjj(k). The total polarization density C(k) = c22(k)+ c33(k). The charge po-
larization difference between the spin-up and the spin-down quasiparticle bands is defined
as Ptr = P2 − P3 = 2P2 − P. Furthermore, the time-reversed version of | (u(3)(k)

〉
, i.e., Θ

| (u(3)(k)
〉

, is equal to | u(2)(−k)
〉

, except for a phase factor. Hence, at t = 0 and t = T/2

one may write Θ | u(3)(k)
〉

= e−iρ(k)〉
∣∣∣u(2)(−k)

〉
and Θ | u(2)(k)

〉
= −e−iρ(−k)

∣∣∣u(3)(−k) 〉. It

is not difficult to see that the matrix ϑ(k) will now be given as ϑ(k) =

(
0 e−iρ(k)

−e−iρ(k) 0

)
,

and the Berry connections satisfy c22(−k) = c33(k)− ∂
∂k ρ(k). These lead us to the charge

polarization P2 as P2 =
∫ π

0
dk
2π C(k)− i

2π [ρ(π)− ρ(0)]. Since ρ(k) = i log ϑ23(k), and C(k) =
tr(c(k)), after a little algebra, we find



Symmetry 2022, 14, 1746 28 of 30

Ptr = i
∫ π

0

dk
2π

∂

∂k
log(det[ ϑ(k)])− i

π
log

ϑ23(π)

ϑ23(0)
=

i
π
· 1

2
log

det[ϑ(π)]

det[ϑ(0)]
− i

π
log

ϑ23(π)

ϑ23(0)
.

Ptr =
1

iπ
log

(√
ϑ23(0)2

ϑ23(0)
· ϑ23(π)√

ϑ23(π)2

)
. (A4)

Obviously enough, the argument of the logarithm is +1 or −1. Furthermore, since log(−1)
= iπ, one can see that Ptr is 0 or 1 (mod 2). Physically, of course, the two values of Ptr
correspond to two different polarization states which the system can take at t = 0 and
t = T/2. The Bloch functions | u(n)(k, t)

〉
introduced above correspond to maps from the

2D phase space (k, t) to the Hilbert space. As in ref. [36], the Hilbert space could be separated
into two parts depending on the difference in Ptr between t = 0 and t = T/2. This leads to
an introduction of a quantity v0, specified only in mod 2, defined as (Ptr (T/2)− Ptr (0)).
The Hilbert space is trivial if v0 = 0, while for v0 = 1 it is nontrivial (twisted). In our case,
upon using Equation (A4), we obtain

(−1)v0 = ∏j
ϑ
(ak(j)

trim)

23√
ϑ23

(ak(j)
trim)

2 . (A5)

We have found aktrim =
(
3, π

2
)
,
(
1, π

2
)
, (2,π), (1,0) in Figure 2c–f, respectively. A fairly

straightforward calculation using Equation (A2) convinces us ϑ
(aktrim)
23 = −ϑ

(aktrim)
32 . The

square root of the square of the former is ϑ
(aktrim)
32 . Thus, as ν0 turns out to be 1 (or Z2 = −1),

we find the Hilbert space to be twisted. The physical consequence of this nontriviality is
the appearance of topologically-protected surface states.
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