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Abstract: Fixed point theory provides an important structure for the study of symmetry in mathe-
matics. In this article, a new iterative method (general Picard–Mann) to approximate fixed points of
nonexpansive mappings is introduced and studied. We study the stability of this newly established
method which we find to be summably almost stable for contractive mappings. A number of weak
and strong convergence theorems of such iterative methods are established in the setting of Banach
spaces under certain geometrical assumptions. Finally, we present a number of applications to
address various important problems (zero of an accretive operator, mixed equilibrium problem,
convex optimization problem, split feasibility problem, periodic solution of a nonlinear evolution
equation) appearing in the field of nonlinear analysis.
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1. Introduction

Let K be a nonempty subset of Banach space M. A mapping T : K → K is said
to be nonexpansive if ‖T($)− T(ν)‖ ≤ ‖$− ν‖ for all $, ν ∈ K. A point $† ∈ K is said
to be a fixed point of T if T($†) = $†. To reckon fixed points of nonlinear mappings,
various iterative methods have been used by several mathematicians. The simplest and
most popular iterative method was developed by Charles Emile Picard (1856–1941) and is
defined as: {

$1 = $ ∈ K
$n+1 = T($n), n ∈ N,

(1)

and is known as Picard iterative method [1]. It is mostly used to obtain fixed points of
contractive mappings. In general, the contractive condition is strong enough, not only to
guarantee the existence of a unique fixed point, but also to approximate that fixed point by
the Picard method. However, for nonexpansive mappings, the Picard iterative method need
not converge to a fixed point. This can be seen by considering an anti-clockwise rotation
of the unit disc of R2 about the origin through an angle of, say, π

4 . This is a nonexpansive
symmetric mapping which has the origin as the unique fixed point. However, the sequence
fails to converge with any initial guess other than the original.

Krasnosel’skiı̆ [2] resolved this problem and considered a new method known as the
Krasnosel’skiı̆ iterative method. Schaefer [3] improved the Krasnosel’skiı̆ iterative method
by introducing a parameter as a controlling object. Mann [4] proposed a more general
iterative method to approximate fixed points of nonexpansive mappings. He considered
the sequence of parameters as controlling objects. Many well-known algorithms in signal
processing and image recovery are iterative in nature. For particular choices of nonexpasive
mappings, a wide variety of iteration algorithms used in signal processing and image
recovery among others are special cases of the Krasnosel’skiı̆ and Mann methods (cf. [5–12]).
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In the last two decades, a number of iterative methods (from one step to four steps)
have been considered and studied by researchers in order to improve the speed of con-
vergence; see [4,13–22]. Motivated by these results, we consider a new iterative method
(general Picard–Mann, in short GPM) to approximate fixed points of nonexpansive map-
pings in the setting of Banach spaces. It turns out that this method is highly efficient and an
improvement over many other methods reported in the literature. Some new algorithms are
suggested to find zeros of accretive operators, constrained convex optimization problems,
generalized mixed equilibrium problems, split feasibility problems and periodic solutions
of nonlinear evolution equations.

The rest of the paper is organized as follows: In Section 2, we present some existing
results from the literature which are utilized in the rest part of paper. In Section 3, we
define a general Picard–Mann iterative method. Moreover, we present stability results
for the GPM iterative method and show that this method is summably almost stable for
contractive mappings. Section 4 is devoted to weak and strong convergence results. We
show that the sequence defined by GPM converges weakly and strongly to fixed points
of nonexpansive mappings under different geometric conditions on Banach spaces. In
Section 5, we discuss some applications.

2. Preliminaries

→ denotes strong convergence, ⇀ denotes weak convergence and ωw($n) denotes the
cluster points (ω-limit) of a sequence {$n}, that is, ωw($n) := {$ : ∃ $nk ⇀ $}. LetM be a
Banach space withM∗ its dual. The value of f ∈ M∗ at $ ∈ M is denoted by 〈$, f 〉. The
normalized duality mapping J :M→ 2M

∗
is defined as

J($) := { f ∈ M∗ : 〈$, f 〉 = ‖$‖2 = ‖ f ‖2}.

A Banach spaceM is called smooth if, for every $, ν ∈ S := {$ ∈ M : ‖$‖ = 1},
the limit

lim
s→0

‖$ + sν‖ − ‖$‖
s

(2)

exists. The norm ofM is a Fréchet differentiable norm if, for every $ ∈ S , the limit (2) exists
and is attained uniformly for ν ∈ S . A Banach spaceM has the Kadec-–Klee property
(or, KK-property) if, for any sequence {wn}, we have the following:

wn ⇀ w and ‖wn‖ → ‖w‖ imply wn → w.

In [23], (Remark 1) it is proved that if a reflexive Banach space M has a Fréchet
differentiable norm, then the dual space ofM has the KK-property.

The definition of a uniformly convex Banach space (in short, UCBS) can be found in [24].
A Banach spaceM has the Opial property [25] if, for every weakly convergent se-

quence, {$n} inM with a weak limit w,

lim inf
n→∞

‖$n − w‖ < lim inf
n→∞

‖$n − ν‖

for all ν ∈ M with ν 6= w. All finite dimensional Banach spaces, Hilbert spaces and
`p (1 < p < ∞) have the Opial property; see [24].

Lemma 1 ([26], (p. 484)). Let M be a UCBS and 0 < a ≤ pn ≤ b < 1, ∀ n ∈ N. Let
{$n} and {νn} be two sequences in M such that lim sup

n→∞
‖$n‖ ≤ r, lim sup

n→∞
‖νn‖ ≤ r and

lim
n→∞

‖pn$n + (1− pn)νn‖ = r hold for some r ≥ 0. Then lim
n→∞

‖$n − νn‖ = 0.

Lemma 2 ([27]). For given r > 0, a Banach spaceM is uniformly convex if and only if there exists
a strictly increasing continuous function ϕ : [0, ∞)→ [0, ∞), ϕ(0) = 0, in such a way that

‖µ$ + (1− µ)ν‖2 ≤ µ‖$‖2 + (1− µ)‖ν‖2 − µ(1− µ)ϕ(‖$− ν‖) (3)
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for all $, ν ∈ M, ‖$‖ ≤ r, ‖ν‖ ≤ r and µ ∈ [0, 1].

Proposition 1. LetM be a UCBS and K a closed convex subset ofM such that K 6= ∅.

(i) Ref. [28] (Demiclosedness principle) Let T : K → K be a nonexpansive mapping. If {$n} is
a sequence inM such that {$n} weakly converges to $ and lim

n→∞
‖$n − T($n)‖ = 0, then

T($) = $. That is, I − T is demiclosed at zero.
(ii) Ref. [29] If K is bounded, then there exists a continuous, strictly increasing and convex

function χ : R+ → R+ (depending only on the diameter of K) with χ(0) = 0 such that
for every nonexpansive mapping T : K → K, for all $, ν ∈ K and β ∈ [0, 1], the following
inequality holds:

χ(‖βT($) + (1− β)T(ν)− T{β$ + (1− β)ν}‖) ≤ ‖$− ν‖ − ‖T($)− T(ν)‖.

Definition 1 ([30]). LetM be a norm space and K a subset ofM such that K 6= ∅. A mapping
T : K → K satisfies condition (I) if there exists a nondecreasing function g : [0, ∞) → [0, ∞)
with g(0) = 0 and g(s) > 0 for all s ∈ (0, ∞) such that ‖$− T($)‖ ≥ g(d($, F(T))) for all
$ ∈ K, where F(T) := {$ ∈ K : T($) = $}. If mapping T is nonexpansive with F(T) 6= ∅ and
demicompact, then T must satisfy condition (I).

Definition 2. LetM be a normed space. A mapping T :M→M is said to be a contraction if
there exists a number k ∈ [0, 1) such that, for all $, ν ∈ M,

‖T($)− T(ν)‖ ≤ k‖$− ν‖.

3. A General Picard-Mann Iterative Method

In this section, we propose a new iterative method (a general Picard–Mann) which we
define as follows: {

$1 = $ ∈ C
$n+1 = Tk{(1− αn)$n + αnT($n)}, n ∈ N,

(4)

where k is a fixed natural number and {αn} is a sequence in [0, 1].

Remark 1.

(i) For k = 1, the iterative method (4) becomes normal S-iterative method [17] (or Picard–Mann
hybrid iterative method [31]).

(ii) For k = 2, the iterative method (4) becomes M-iterative method [19] (or F∗-iterative method [21]).
(iii) For k = 3, the iterative method (4) becomes F-iterative method [22].

Stability Results

Now, we discuss the stability results for the GPM method (4). A fixed point iteration
method is numerically stable if a small perturbation (due to rounding errors, approximation,
etc.) during computations, will produce small changes in the approximate value of the
fixed point computed by means of this method; see [32]. The stability of an iterative method
plays a vital role in fractal geometry, computational analysis, game theory and others.

LetM be a Banach space andK a convex subset ofM such thatK 6= ∅. Let T : K → K
be a mapping with F(T) 6= ∅. For given $1 ∈ K the fixed point iteration method generates
a sequence {$n} in K as follows:

$n+1 = f (T, $n) (5)

where f is some function. Harder and Hicks [33] considered the following definition:
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Definition 3. Let K andM be same as defined above. Let T : K → K be a mapping. Suppose
that the method (5) strongly converges to a fixed point $† of T. Let {νn} be an arbitrary sequence in
K and define

εn = ‖νn+1 − f (T, νn)‖. (6)

Then, the fixed point iterative method (5) is said to be T-stable (or stable with respect to T) if and
only if

lim
n→∞

εn = 0 implies that lim
n→∞

νn = $†.

Osilike [34] considered the following concept of almost stability.

Definition 4. Let K,M and T be same as in Definition (3). Suppose that the method (5) strongly
converges to a fixed point $† of T. Let {νn} and {εn} be sequences defined in (6). Then, the iterative
method (5) is said to be almost T-stable (or almost stable with respect to T) if and only if

∞

∑
n=1

εn < ∞ implies that lim
n→∞

νn = $†.

Berinde [35] considered the weaker concept of stability, called summably almost T-stable.

Definition 5. Let K,M and T be same as in Definition (3). Suppose that the method (5) strongly
converges to a fixed point $† of T. Let {νn} and {εn} be sequences defined in (6). Then, the iterative
method (5) is said to be summably almost T-stable (or summably almost stable with respect to T) if
and only if

∞

∑
n=1

εn < ∞ implies that
∞

∑
n=1
‖νn − $†‖ < ∞.

Any almost stable iteration procedure is also summably almost stable, but the reverse
implication does not hold in general.

Now, we show that iterative method (4) is summably almost stable for contractive
type mappings.

Theorem 1. LetM be a Banach space and K a closed convex subset ofM such that K 6= ∅. Let
T : K → K be a contraction mapping with a fixed point $†. Let {αn} be a sequence in [0, 1], for
given $1 ∈ K and for fixed k ∈ N, the sequence {$n} defined by (4). Suppose {νn} is an arbitrary
sequence in K and define

εn = ‖νn+1 − Tk{(1− αn)νn + αnT(νn)}‖.

Then, we have following:

(1) The sequence {$n} strongly converges to the fixed point $†.

(2)
∞
∑

n=1
εn < ∞ implies that

∞
∑

n=1
‖νn − $†‖ < ∞, so that {$n} is summably almost T-stable

(3) lim
n→∞

νn = $† implies lim
n→∞

εn = 0.

Proof. By (4) and let $† ∈ F(T), we have

‖$n+1 − $†‖ = ‖Tk{(1− αn)$n + αnT($n)} − $†‖
≤ θk‖(1− αn)$n + αnT($n)− $†‖ ≤ θk‖$n − $†‖ (7)

by successively induction, we obtain

‖$n+1 − $†‖ ≤
(

θk
)n
‖$1 − $†‖.
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Since θk < 1, {$n} strongly converges to $†.
Now, we prove (2), for each $† ∈ F(T), we have

‖T(νn)− $†‖ ≤ θ‖νn − $†‖

and, for fixed k ∈ N
‖Tk(νn)− $†‖ ≤ θk‖νn − $†‖.

By the triangle inequality,

‖νn+1 − $†‖ ≤ ‖νn+1 − Tk{(1− αn)νn + αnT(νn)}‖+ ‖Tk{(1− αn)νn + αnT(νn)} − $†‖
≤ θk‖(1− αn)νn + αnT(νn)− $†‖+ εn

≤ θk{(1− αn)‖νn − $†‖+ αnθ‖νn − $†‖}+ εn

≤ θk‖νn − $†‖+ εn.

In view of assumption
∞
∑

n=1
εn < ∞ and [35], (Lemma 1) it implies that

∞
∑

n=0
‖νn− $†‖ < ∞.

Finally, we prove (3). Suppose lim
n→∞

νn = $†. Now,

εn = ‖νn+1 − Tk{(1− αn)νn + αnT(νn)}‖

≤ ‖νn+1 − $†‖+
∥∥∥Tk{(1− αn)νn + αnT(νn)} − $†

∥∥∥
≤ ‖νn+1 − $†‖+ ‖νn − $†‖ → 0 as n→ ∞.

This completes the proof.

4. Convergence Results for Nonexpansive Mappings

In this section, we present some convergence results for the sequence generated by
iterative method (4).

Lemma 3. LetM be a Banach space and K a closed convex subset ofM such that K 6= ∅. Let
T : K → K be a nonexpansive mapping with F(T) 6= ∅. Let {$n} be a sequence defined by (4).
The following assertions hold:

(1) If p† ∈ F(T), then lim
n→∞

‖$n − p†‖ exists;

(2) lim
n→∞

d($n, F(T)) exists, where d($, F(T)) denotes the distance from $ to F(T).

(3) For all β ∈ [0, 1] and $†, ν† ∈ F(T), the limit lim
n→∞

‖β$n + (1− β)$† − ν†‖ exists.

(4) In addition, ifM is uniformly convex and the dual spaceM∗ ofM has the KK-property, then
ωw($n) is a singleton.

Proof. From (4) and let p† ∈ F(T),

‖$n+1 − p†‖ = ‖Tk{(1− αn)$n + αnT($n)} − p†‖
≤ ‖(1− αn)$n + αnT($n)− p†‖
≤ (1− αn)‖$n − p†‖+ αn‖T($n)− p†‖
≤ ‖$n − p†‖. (8)

Therefore, the sequence {‖$n− p†‖} is a nonincreasing and bounded. Thus, lim
n→∞

‖$n−
p†‖ exists for each p† ∈ F(T). Therefore, lim

n→∞
d($n, F(T)) exists.

From (1), the sequence {$n} is bounded. Let $†, ν† ∈ F(T) and set

ζn(β) := ‖β$n + (1− β)$† − ν†‖.
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Then, lim
n→∞

ζn(0) = ‖$† − ν†‖ and lim
n→∞

ζn(1) = ‖$n − ν†‖ exists. Now, we need to

check the case β ∈ (0, 1). Now, we define a mapping Tn : K → K by

Tn($) := Tk{(1− αn)$ + αnT($)}, ∀ n ∈ N and ∀ $ ∈ K.

Then, Tn is a nonexpansive mapping. Indeed, ∀ $, ν ∈ K

‖Tn($)− Tn(ν)‖ = ‖Tk{(1− αn)$ + αnT($)} − Tk{(1− αn)ν + αnT(ν)}‖
≤ ‖{(1− αn)$ + αnT($)} − {(1− αn)ν + αnT(ν)}‖
≤ (1− αn)‖$− ν‖+ αn‖T($)− T(ν)‖
≤ ‖$− ν‖.

Moreover, $n+1 = Tn($n) and F(T) ⊆
∞
∩

n=1
F(Tn). Let Vn,m : K → K be the mapping

defined as
Vn,m = Tn+m−1Tn+m−2 · · · Tn+1Tn.

It can be observed that $n+m = Vn,m($n) and F(T) ⊆
∞
∩

n=1
F(Vn,m). Moreover,

‖Vn,m($)−Vn,m(ν)‖ ≤ ‖$− ν‖ for all $, ν ∈ K.

Set
ξn,m(β) := ‖βVn,m($n) + (1− β)$† −Vn,m{β$n + (1− β)$†}‖.

Now, from Proposition 1, there exists a strictly increasing continuous convex function
χ : R+ → R+ with χ(0) = 0 such that

χ(ξn,m(β)) = χ
(
‖βVn,m($n) + (1− β)$† −Vn,m{β$n + (1− β)$†}‖

)
≤ ‖$n − $†‖ − ‖Vn,m($n)−Vn,m($

†)‖
= ‖$n − $†‖ − ‖$n+m − $†‖.

Since lim
n→∞

‖$n − $†‖ exists, the last difference is zero. Therefore, lim
n,m→∞

χ(ξn,m(β)) = 0

and lim
n,m→∞

ξn,m(β) = 0. Now, we have

ζn+m(β) = ‖β$n+m + (1− β)$† − ν†‖
= ‖βVn,m($n) + (1− β)$† − ν†‖
≤ ξn,m(β) + ‖Vn,m{β$n + (1− β)$†} − ν†‖
≤ ξn,m(β) + ‖β$n + (1− β)$† − ν†‖
≤ ξn,m(β) + ζn(β).

Hence,

lim sup
n→∞

ζn(β) ≤ lim
n→∞

ξn,m(β) + lim inf
n→∞

ζn(β)

≤ lim inf
n→∞

ζn(β).

That is, there exists lim
n→∞

‖(1− β)$n + β$†− ν†‖ for all β ∈ (0, 1). From [23], (Lemma 3.2)

we conclude that ωw($n) is a singleton. This completes the proof.

Theorem 2. LetM be a UCBS, K and T be same as in Lemma 3. Let {$n} be a sequence defined
by (4) with

∞

∑
n=1

αn(1− αn) = ∞. (9)
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Assume that either of the following assumptions hold:

(a) M satisfies the Opial’s property;
(b) M∗ has the KK-property.

Then, {$n} weakly converges to a fixed point of T.

Proof. In view of Lemma 3, both sequences {$n − $†} and {T($n)− $†} are bounded, so
these are contained in Bs := {$ ∈ M : ‖$‖ ≤ s} for sufficiently large s > 0. In view of
Lemma 2, there exists a continuous, convex and strictly increasing function ϕ : R+ → R+

with ψ(0) = 0 such that (3) holds. Thus, we have

‖$n+1 − $†‖2 = ‖Tk{(1− αn)$ + αnT($)} − $†‖2

≤ ‖αn($n − $†) + (1− αn)(T($n)− $†)‖2

≤ αn‖$n − $†‖2 + (1− αn)‖T($n)− $†‖2

−αn(1− αn)ϕ(‖$n − T($n)‖)
≤ ‖$n − $†‖2 − αn(1− αn)ϕ(‖$n − T($n)‖).

So,

αn(1− αn)ϕ(‖$n − T($n)‖) ≤ ‖$n − $†‖2 − ‖$n+1 − $†‖2. (10)

This implies that
∞

∑
n=1

αn(1− αn)ϕ(‖$n − T($n)‖) < ∞.

In particular, lim
n→∞

αn(1 − αn)ϕ(‖$n − T($n)‖) = 0. Due to (9),

lim inf
n→∞

ϕ(‖$n − T($n)‖) = 0. Therefore,

lim inf
n→∞

‖$n − T($n)‖ = 0. (11)

However,

‖T($n+1)− $n+1‖ = ‖T($n+1)− Tk{(1− αn)$n + αnT($n)}‖
≤ ‖$n+1 − Tk−1{(1− αn)$n + αnT($n)}‖
= ‖Tk{(1− αn)$n + αnT($n)} − Tk−1{(1− αn)$n + αnT($n)}‖
≤ ‖T{(1− αn)$n + αnT($n)} − {(1− αn)$n + αnT($n)}‖
= ‖T{(1− αn)$n + αnT($n)} − (1− αn)$n − αnT($n)

−T($n) + T($n)‖
= ‖T{(1− αn)$n + αnT($n)} − T($n)− (1− αn)$n

+(1− αn)T($n)‖
≤ ‖T{(1− αn)$n + αnT($n)} − T($n)‖+ (1− αn)‖$n − T($n)‖
≤ ‖(1− αn)$n + αnT($n)− $n‖+ (1− αn)‖$n − T($n)‖
≤ αn‖$n − T($n)‖+ (1− αn)‖$n − T($n)‖
= ‖$n − T($n)‖.

Thus, sequence {‖$n − T($n)‖} is nonincreasing. Therefore, lim
n→∞

‖$n − T($n)‖ exists.

From (11), we obtain
lim

n→∞
‖$n − T($n)‖ = 0. (12)
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Since M is uniformly convex, M is reflexive. Since M is reflexive, there exists
a subsequence {$nj} of {$n} and {$nj} weakly converges to a point p ∈ K. From the
demiclosedness principle of I − T (Proposition (1)), we notice that

p ∈ ωw($n) ⊂ F(T).

Now, we show that ωw($n) is a singleton; this implies that there is a unique weak limit
for each subsequences of {$n}, and {$n} weakly converges to a fixed point of T.

First, we suppose that (a) is true; that is,M has Opial’s property. We assume that
{$n} does not converge weakly to p, i.e., let {$ni} and {$mj} be subsequences of {$n}
such that $ni ⇀ p and $mj ⇀ q, respectively, then p, q ∈ ωw($n). If p 6= q, we reach the
following contradiction:

lim
n→∞

‖$n − p‖ = lim
i→∞
‖$ni − p‖ < lim

i→∞
‖$ni − q‖

= lim
n→∞

‖$n − q‖ = lim
j→∞
‖$mj − q‖

< lim
j→∞
‖$mj − p‖ = lim

n→∞
‖$n − p‖.

Suppose (b) is true (M∗ has the KK-property); from Lemma 3, it is guaranteed that
ωw($n) is a singleton. Therefore, in both cases it is showed that ωw($n) is a singleton. This
completes the proof.

Theorem 3. Let K, T, {$n} be same as in Theorem 2 andM is UCBS. If the range of K under T
is contained in a compact subset ofM. Then, {$n} strongly converges to a fixed point of T.

Proof. Since the range of K under T is contained in a compact set, there exists a subse-
quence {T($nj)} of {T($n)} that strongly converges to p† ∈ K. By the triangle inequality,
we obtain

‖$nj − p†‖ ≤ ‖$nj − T($nj)‖+ ‖T($nj)− p†‖

and by (12), the subsequence {$nj} strongly converges to $†. By the triangle inequality and
nonexpansiveness of T

‖$nj − T(p†)‖ ≤ ‖$nj − T($nj)‖+ ‖$nj − p†‖.

Taking j→ ∞,

lim sup
j→∞

‖$nj − T(p†)‖ ≤ lim
j→∞
‖$nj − T($nj)‖+ lim sup

j→∞
‖$nj − p†‖,

and, we have T(p†) = p†. Lemma 3 ensures that lim
n→∞

‖$n − p†‖ exists. Therefore, p† is a

strong limit of the sequence {$n}.

Theorem 4. Let K, T, {$n} be same as in Theorem 2 andM be a UCBS. Then, the sequence {$n}
strongly converges to a fixed point of T if lim inf

n→∞
d($n, F(T)) = 0.

Proof. Let lim inf
n→∞

d($n, F(T)) = 0. From Lemma 3, lim
n→∞

d($n, F(T)) exists, so

lim
n→∞

d($n, F(T)) = 0.

Let {$nj} be a subsequence of sequence {$n} such that ‖$nj − zj‖ ≤
1
2j , ∀ j ∈ N, where

{zj} is a sequence in F(T). From Lemma 3, we have
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‖$nj+1 − zj‖ ≤ ‖$nj − zj‖ ≤
1
2j . (13)

By the triangle inequality and (13),

‖zj+1 − zj‖ ≤ ‖zj+1 − $nj+1‖+ ‖$nj+1 − zj‖

<
1

2j+1 +
1
2j <

1
2j−1 .

Following the standard argument, it can be easily shown that {zj} is a Cauchy se-
quence in F(T). Since F(T) is closed [24], the sequence {zj} converges to a point z ∈ F(T).
By the triangle inequality

‖$nj − z‖ ≤ ‖$nj − zj‖+ ‖zj − z‖.

Letting j→ ∞ it follows that {$nj} strongly converges to z. By Lemma 3, lim
n→∞

‖$n− z‖
exists; thus, the sequence {$n} strongly converges to z.

Theorem 5. Let K,M, T and {$n} be same as in Theorem 4. If T satisfies condition (I), then
{$n} strongly converges to a fixed point of T.

Proof. From Theorem 2,
lim

n→∞
‖$n − T($n)‖ = 0. (14)

Since T satisfies condition (I),

‖$n − T($n)‖ ≥ g(d($n, F(T)))

From (14), we obtain
lim

n→∞
g(d($n, F(T))) = 0

Since the function g : [0, ∞) → [0, ∞) is a nondecreasing with g(s) > 0 ∀ s ∈ (0, ∞)
and g(0) = 0, lim

n→∞
d($n, F(T)) = 0. Thus, all conditions of Theorem 4 are fulfilled and

{$n} strongly converges to a point in F(T).

5. Applications

In this section, we discuss some useful applications of our results.

5.1. Zero of an Accretive Operator

Let B be an operator having domain D(B) and range R(B) in a Banach spaceM.
The operator B is called as accretive if there exists j($− ν) ∈ J($− ν) such that

〈B($)−B(ν), j($− ν)〉 ≥ 0, ∀ $, ν ∈ D(B),

where J is the duality mapping from M to M∗ (dual space of M). An operator B is
m-accretive if

R(B+ λB) =M, ∀ λ > 0.

We denote by F the set of zeros of B, that is,

F := B−1(0) = {$ ∈ D(B) : 0 ∈ B($)}.

For any r > 0, denote by Jr the resolvent of B and defined as

Jr = (I + rB)−1.
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It is well-known that Jr is a nonexpansive mapping fromM to C := D(B). For any
r > 0, F(Jr) = F .

It is well-known fact that many pivotal problems originating in different fields can be
modelled as an initial value problem defined below

du
dt

+B(u) = 0, u(0) = u0, (15)

where B is an accretive operator on M. Some important models such as Schrödinger,
heat and wave equations are examples of evolution equations (cf. [36]). In [37], Browder
showed that (15) is solvable if B is locally Lipschitzian and accretive operator onM. Many
researchers considered the solution of (15) under various conditions on the operator B.

It can be seen that du
dt = 0 in (15), whenever u is not depending on t, then (15) reduces to

B(u) = 0. Therefore, the zero of accretive operators is equivalent to the equilibrium points
of the system (15), see [37]. Thus, the equilibrium points of the system described by (15)
correspond to approximating zeros of accretive operators; see [37] and references therein.

Now, we consider a problem of finding zeros of an m-accretive operator B inM :

Find $ ∈ D(B) such that 0 ∈ B($).

Lemma 4. [38] Let c∗ ≥ c∗ > 0. Then, for all $ ∈ M,

‖Jc∗($)− $‖ ≤ 2‖Jc∗($)− $‖.

In particular, if cn ≥ c∗ > 0 for all n ≥ 0, and {$n} is any sequence inM, then

‖Jc∗($n)− $n‖ ≤ 2‖Jcn($n)− $n‖.

Theorem 6. LetM be a UCBS and B an m-accretive operator inM such that F 6= ∅. For fixed
k ∈ N, let {$n} be a sequence defined as follows:{

$1 = $ ∈ C
$n+1 = Jk

cn{(1− αn)$n + αn Jcn($n)}, n ∈ N,
(16)

where {αn} is a sequences in [a, b] with a, b ∈ (0, 1) and {cn} is a sequence of positive numbers
satisfying the following condition:

0 < c∗ < cn < c∗ < ∞.

Assume that either of following assumptions hold:

(a) M has the Opial’s property;
(b) M∗ has the KK-property.

Then, the sequence {$n} weakly converges to a point of F .

Proof. Let p† ∈ F . By (16), we obtain

‖$n+1 − p†‖ = ‖Jk
cn{(1− αn)$n + αn Jcn($n)} − p†‖

≤ ‖(1− αn)$n + αn Jcn($n)− p†‖
= ‖(1− αn)($n − p†) + αn(Jcn($n)− p†)‖
≤ ‖$n − p†‖.

Thus, {$n} is bounded and lim
n→∞

‖$n − p†‖ exists. Call it r. That is

lim
n→∞

‖$n − p†‖ = r. (17)
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Using nonexpansiveness of Jcn and (17)

lim sup
n→∞

‖Jcn($n)− p†‖ ≤ r. (18)

Now, by (16) and (17), we have

r = lim
n→∞

‖$n+1 − p†‖ = lim sup
n→∞

‖Jk
cn{(1− αn)$n + αn Jcn($n)} − p†‖

≤ lim sup
n→∞

‖(1− αn)$n + αn Jcn($n)− p†‖

≤ lim
n→∞

‖$n − p†‖ = r.

Thus,
lim

n→∞
‖(1− αn)($n − p†) + αn(Jcn($n)− p†)‖ = r. (19)

From (17)–(19) and Lemma 1, it follows that

lim
n→∞

‖$n − Jcn($n)‖ = 0. (20)

By (20) and Lemma 4, we obtain

lim
n→∞

‖$n − Jc∗($n)‖ ≤ 2 lim
n→∞

‖$n − Jcn($n)‖ = 0. (21)

From (21) and demiclosedness principle, it follows that ωw($n) ⊂ F(Jc∗) = F . Follow-
ing the last part of the proof of Theorem 2, we can conclude that the sequence {$n} weakly
converges to a point in F .

5.2. Generalized Mixed Equilibrium Problem

Let C be a closed convex subset of H and ϕ : C × C → R is a bifunction satisfying
certain conditions. Consider the following problem which is known as equilibrium problem
(or EP), see [39]:

Find u ∈ C such that ϕ(u, ν) ≥ 0 for all ν ∈ C. (22)

Zhang [40] generalized EP and called it generalized mixed equilibrium problem:

Find u ∈ C such that ϕ(u, ν) + 〈Θ(u), ν− u〉 − φ(u) + φ(ν) ≥ 0 (23)

for all ν ∈ C, where Θ : C → H is a nonlinear mapping and φ : C → R ∪ {∞} is a real
valued function. We denote the set of solutions of (23) by GMEP(ϕ, Θ, φ), that is,

GMEP(ϕ, Θ, φ) = {u ∈ C : ϕ(u, ν) + 〈Θ(u), ν− u〉 − φ(u) + φ(ν) ≥ 0} (24)

for all ν ∈ C.

• The problem (23) reduced to mixed equilibrium problem (in short, MEP) [41] if Θ = ∅.
• The problem (23) is equivalent to mixed variational inequality problem of Browder

type [42] if ϕ = ∅.
• The problem (23) is known as equilibrium problem (22) if Θ = φ = ∅.

In order to solve problem (23), we suppose that the bifunction ϕ : C × C → R satisfies
the following assumptions:

(X1) ϕ($, $) = 0 for all $ ∈ C;
(X2) ϕ is monotone, that is, ϕ($, ν) + ϕ(ν, $) ≥ 0 for all $, ν ∈ C;
(X3) for all $, ν, w ∈ C, lim

t→0
ϕ(tw + (1− t)$, ν) ≤ ϕ($, ν);

(X4) for each $ ∈ C; ν 7→ ϕ($, ν) is a convex and lower semicontinuous;
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(X5) for fixed r > 0 and w ∈ C, there exists a bounded subset K ofH and $ ∈ C ∩ K such
that for all ν ∈ C\K

ϕ(w, $) +
1
r
〈ν− $, $− w〉 ≥ 0.

It is shown in [40] that if ϕ($, ν) satisfies (X1)–(X4), then for the function

H1($, ν) := ϕ($, ν) + 〈Θ($), ν− $〉 − φ($) + φ(ν)

assumptions (X1)–(X4) still hold and GMEP(ϕ, Θ, φ) is closed and convex.

Lemma 5. [40]. Let H be a Hilbert space and C a nonempty closed convex subset of H. Let
Θ : C → H be a continuous and monotone mapping, ϕ : C × C → R a bifunction satisfying
(X1)–(X4) and φ : C → R∪ {∞} a proper lower semicontinuous and convex function. For given
r > 0 and $ ∈ H, define a mapping Tϕ

r : H → C by

Tϕ
r ($) =

{
u ∈ C : ϕ(u, ν) + 〈Θ(u), ν− u〉 − φ(u) + φ(ν) +

1
r
〈ν− u, u− $〉 ≥ 0

}
(25)

for all ν ∈ C. Then

(a) For each $ ∈ H, Tϕ
r ($) is nonempty;

(b) Tϕ
r is a single valued mapping;

(c) Tϕ
r is firmly nonexpansive, that is, for all $, y ∈ C

‖Tϕ
r ($)− Tϕ

r (ν)‖2 ≤ 〈Tϕ
r ($)− Tϕ

r (ν), $− ν〉;

so Tϕ
r is a nonexpansive.

(d) F(Tϕ
r ) = GMEP(ϕ, Θ, φ);

(e) GMEP(ϕ, Θ, φ) is closed and convex.

Theorem 7. Let C,H, Θ, ϕ and φ be same as in Lemma (5). Suppose GMEP(ϕ, Θ, φ) 6= ∅. Let
{$n} be a sequence defined by

$1 ∈ H
ϕ(un, ν) + 〈Θ(un), ν− un〉 − φ1(un) + φ1(ν) +

1
r 〈ν− un, un − $n〉 ≥ 0 for all ν ∈ C

νn = (1− αn)$n + αnun

ϕ(vn, ν) + 〈Θ(vn), ν− vn〉 − φ1(vn) + φ1(ν) +
1
r 〈ν− vn, vn − νn〉 ≥ 0 for all ν ∈ C

$n+1 = vn,

for every n ∈ N, where {αn} is a same sequence as in Theorem 2. Then, {$n} weakly converges to a
point in GMEP(ϕ, Θ, φ).

Proof. Taking T = Tϕ
r , k = 1 in Theorem 2 and in view of Lemma 5, we can easily obtain

the desired result.

5.3. Constrained Convex Optimization Problem

Let H be a Hilbert space and C a closed convex subset of H. Let ς : H → R be a
differentiable convex function. Consider the following minimization problem:

min
$∈C

ς($). (26)

It can be seen that $∗ ∈ C is a solution to the minimization problem (26) if and only if
$∗ is a solution to the fixed point equation

$∗ = PC(I − γ∇ς)$∗, (27)
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where γ > 0 is any fixed number. It is known that if ∇ς satisfies the Lipschitz condition,
that is,

‖∇ς($)−∇ς(ν)‖ ≤ L‖$− ν‖ (28)

for all $, ν ∈ H, where L > 0, then the mapping PC(I − γ∇ς) is 2+γL
4 is averaged for

0 < γ < 2
L . Hence, Tγ = PC(I − γ∇ς) is nonexpansive mapping. Now, we employ the

iterative method (4) to solve the minimization problem (26).

Theorem 8. Let ς : H → R be a function defined above with the Lipschitz condition (28). Assume
that the divergence condition (9) holds. For fixed k ∈ N and given $1 ∈ H, the sequence {$n} is
defined as

$n+1 = [PC(I − γ∇ς)]k{(1− αn)$n + PC(I − γ∇ς)($n)}

where 0 < γ < 2
L . Then, {$n} weakly converges to a solution of (26).

Again, we discuss a quadratic optimization problem on the trust region (see [43] for
more details). Let A : H → H be a bounded self-adjoint linear operator. Let δ > 0 be a
fixed constant and u a given point inH. Consider the following problem:

min
‖$‖≤δ

ς($) :=
1
2
〈A($), $〉 − 〈$, u〉. (29)

Take
C := {$ ∈ H : ‖$‖ ≤ δ}.

Then, C is a closed ball having radius δ with center at origin. Thus, the projection PC
can be defined as

Pδ ≡ PC =

{
$, if ‖$‖ ≤ δ
δ$
‖$‖ , if ‖$‖ > δ.

The gradient of ς is defined as

∇ς($) = A($)− u

and ∇ς is L-Lipschitz with L = ‖A‖. We consider the following theorem.

Theorem 9. Let A, Pδ, H and u be as defined above. Assume that the divergence condition (9)
holds. For fixed k ∈ N and given $1 ∈ H, the sequence {$n} is defined as

$n+1 = [Pδ(I − γA + γu)]k{(1− αn)$n + Pδ(I − γA + γu)($n)}

where 0 < γ < 2
L . Then, {$n} weakly converges to a solution of (29).

5.4. Split Feasibility Problem

Censor and Elfving [44] introduced the following problem (or split feasibility problem,
in short SFP):

LetH1 andH2 be finite dimensional Hilbert spaces. Let Γ : H1 → H2 be a bounded
linear operator. Let C andQ be nonempty closed convex subsets ofH1 andH2, respectively.
The split feasibility problem (SFP) is to find an element

$∗ ∈ C such that Γ($∗) ∈ Q. (30)

Let Ω := {$∗ ∈ C : Γ($∗) ∈ Q} = C ∩ Γ−1(Q) be set of solutions of (30). The SFP has
many important applications which appear in modeling inverse problems, medical image
reconstruction and others; for more details, see [45]. A number of authors have extended
the SFP from finite dimensional spaces to infinite dimensional Hilbert spaces.
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Byrne [5] considered the following algorithm known as CQ to obtain the solution of (30):

$n+1 = PC(I − γΓ∗(I − PQ)Γ)$n

where Γ∗ : H2 → H1 is the adjoint of Γ and γ > 0.
In view of following analysis, we can use fixed point iterative method to solve the

SFP (30) (see [46] for more details).
Suppose that $∗ ∈ Ω and γ > 0. Hence Γ($∗) ∈ Q, which in turn follows the equation

(I − PQ)Γ($∗) = 0 which leads to the equation γ(I − PQ)Γ($∗) = 0. Therefore, we have
the fixed point equation

(I − γΓ∗(I − PQ)Γ)$∗ = $∗.

To ensure that $∗ ∈ C, we can consider the following:

PC(I − γΓ∗(I − PQ)Γ)$∗ = $∗. (31)

Proposition 2 ([46]). For given $∗ ∈ H1, $∗ is a solution of the SFP (30) if and only if $∗ is a
solution of the fixed point Equation (31).

Theorem 10. LetH1,H2, Γ, and Γ∗ be as defined above. Assume that the SFP (30) is consistent
and 0 < γ < 2

‖Γ‖2 . For fixed k ∈ N and let {$n} be a sequence such that{
$1 ∈ H
$n+1 = [PC(I − γΓ∗(I − PQ)Γ)]k{(1− αn)$n + αnPC(I − γΓ∗(I − PQ)Γ)$n}

for every n ∈ N, where {αn} ⊆ [0, 1] satisfying the following condition:

∞

∑
n=1

αn(1− αn) = ∞.

Then, the sequence {$n} weakly converges to a point p ∈ Ω.

Proof. It is shown in [46], (Theorem 3.6) that PC(I − γΓ∗(I − PQ)Γ) is α-averaged with

α = 2+γ‖Γ‖2

4 ∈ (0, 1). Thus, take T = PC(I − γΓ∗(I − PQ)Γ) and T is a nonexpansive
mapping. Therefore, the required result follows from Theorem 2.

5.5. Periodic Solution of a Nonlinear Evolution Equation

Browder [47] considered the following time-dependent nonlinear evolution equation,

d$

dr
+ Ψ(r)$ = f (r, $), r > 0 (32)

whereH is Hilbert space, f : R×H → H is a mapping and Ψ(r) is a family of closed linear
operators inH.

Definition 6 ([47]). Let $ : R→ H be continuous under the strong topology. $ is called a mild
solution of (32) on R+ with initial value

$(0) = ν (33)

if and only if

$(r) = U(r, 0)ν +
∫ r

0
U(r, s) f (s, $(s))ds, ∀ r > 0,
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where {U(r, s)}r≥s≥0 is the evolution system for the homogeneous linear system

d$

dr
+ Ψ(r)$ = 0 (r > s). (34)

The following theorem proved the existence of periodic solution of (32).

Theorem 11 ([47]). Assume that Ψ(r) and f (r, $) are periodic in r with a common period ξ and
the following conditions hold:

(1) For each r,
Re〈 f (r, $)− f (r, ν), $− ν〉 ≤ 0, ∀ $, ν ∈ H.

(2) For each r,
Re〈Ψ(r)$, $〉 ≥ 0, ∀ $ ∈ D(Ψ(r)).

(3) For each initial value ν ∈ H, there exists a mild solution $ of (32) on R+.
(4) There exists some R > 0 such that

Re〈 f (r, $), $〉 < 0, ∀ ‖$‖ = R and ∀ r ∈ [0, ξ].

Then, there exists an element ν ∈ H with ‖ν‖ < R such that the mild solution of (32) with
initial condition $(0) = ν, is periodic of period ξ.

We employ the iterative method (4) to obtain a periodic solution of (32). Let T : H → H
be a mapping defined as follows:

T(ν) = $(ξ), (35)

where $ is the solution of (32) satisfying the initial condition $(0) = ν. That is, let T be
the mapping which assigns to each ν ∈ H the value of ξ of the mild solution $(r) of (32)
with $(0) = ν. T maps the closed ball B := {ν ∈ H : ‖ν‖ ≤ R} into itself due to the
Assumption (4). It is noted that T is a nonexpansive mapping. Therefore, T has a fixed
point, say ν, and the corresponding solution $ of (32) with $(0) = ν is a desired periodic
solution of (32) with period ξ. More precisely, finding a periodic solution $ of (32) is
equivalent to finding a fixed point of T.

Now, we consider an iterative method approach to finding a periodic solution of (32).

Theorem 12. Suppose that Assumptions (1)–(4) in Theorem 11 hold. For a given ν1 ∈ B, define a
sequence of functions {νn} as follows:{

wn = (1− αn)νn + αn$
(1)
n (ξ)

νn+1 = $
(2)
n (ξ)

(36)

where {αn} is a sequence as in Theorem 2, $
(1)
n is a solution of (32) with $

(1)
n (0) = νn and $

(2)
n

is a solution of (32) with $
(2)
n (0) = wn for each n ∈ N (that is (35) holds for $ = $

(1)
n , ν = νn

and $ = $
(2)
n , ν = wn). Then, the sequence {νn} weakly converges to a point in F(T) and the

corresponding mild solution of (32) with $(0) = ν, is a periodic of period ξ.
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