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Abstract: This article presents a new technique to generate distributions that have the ability to
fit any complex data called the exponentiated exponentiated Weibull-X (EEW-X) family, and the
exponentiated exponentiated Weibull exponential (EEWE) distribution is presented as a member of
this family. The new distribution’s unknown parameters were calculated by applying the maximum
likelihood method. Some statistical properties, such as quantile, Rényi entropy, order statistics, and
median are obtained for the proposed distribution. A simulation study was performed for different
cases to investigate the estimation method’s performance. Three real datasets have been applied in
which the new distribution has shown more flexibility compared to some other distributions.
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1. Introduction

Statistical distributions are of great importance in analyzing and modeling data in
many real applications. That is, in many experiments, the probability distributions are
required to fit the data and study some of its characteristics, such as hazard rate and
survival. However, statistical distributions may not be able to deal with all types of data.
That is, in many real applications, the data show complex behavior, in which using the
traditional distributions for analyzing these data leads to misleading results. Therefore,
developing and modifying new flexible distributions are highly vital.

Recently, researchers have generated new statistical distributions by different methods,
such as adding a number of parameters to the existing distributions and combining two or
more distributions to generate more flexible ones that can fit the data accurately.

By adding a shape parameter to a baseline distribution function, ref. [1] proposed a
method to generate new distributions called the exponentiated-G distribution. For any
random variable X with probability density function (PDF), g(x), and cumulative distribu-
tion function (CDF), G(x), the PDF and CDF of the exponentiated family are respectively
given by

g(x) = β[F(x)]β−1 f (x), (1)

G(x) = [F(x)]β. x ∈ R, β > 0, (2)

where F(x) and f (x) are, respectively, the CDF and the PDF for any baseline distribution
function and β is the shape parameter. This method has been applied by many authors.
For example, ref. [2] studied some exponentiated distributions including the exponentiated
inverse Weibull, the exponentiated logistic, the exponentiated Pareto, and the exponen-
tiated generalized uniform distributions. Ref. [3] proposed the exponentiated gamma
distribution, ref. [4] introduced the exponentiated Pareto distribution, ref. [5] considered
the exponentiated Gompertz distribution, ref. [6] provided the exponentiated Lomax distri-
bution, and ref. [7] proposed the exponentiated Mukherjee–Islam distribution.

The transformed-transformer (T-X) family is a technique introduced in [8] to generate
families of continuous distributions. This general method can be obtained by using any
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continuous random variable as a generator. To illustrate, let X and T be two random
variables, where X is the transformer and T is the transformed. The idea for this method is
to use X to transform T using a weighted function W of the CDF of X.

That is, the T-X family can be defined as follows
Let r(t) be the PDF of a random variable T ∈ [z1, z2], for −∞ ≤ z1 < z2 ≤ ∞.

Assume W(F(x)) is a function of the CDF F(x) for any random variable X, where the
function W(F(x)) should satisfy the subsequent constraints:

(1) W(F(x)) ∈ [z1, z2]
(2) W(F(x)) −→ z1 as x −→ −∞ and W(F(x)) −→ z2 as x −→ ∞
(3) W(F(x)) is differentiable and monotonically non-decreasing.

The CDF and the PDF of the T-X family can be respectively defined as

G(x) =
∫ W(F(x))

z1

r(t)dt, (3)

g(x) = { d
dx

W(F(x))}r(W(F(x))). (4)

The family of T-X distributions can be introduced by using various forms of W(F(x)),
in which the definition of W(F(x)) based on the subsidizing of the random variable T,
for more details see [8].

Ref. [8] discussed some families such as, gamma-X and Weibull-X by choosing the
upper limit for generating the T-X distribution W(F(x)) = −log(1− F(x)). Subsequently,
many members of these families have been proposed such as the Weibull–Pareto distribu-
tion in [9] and the Weibull-gamma distribution in [10]. Ref. [11] introduced a new family of
distributions called exponentiated T-X that based on the T-X transformation by defining
a different upper limit W(F(x)) = −log(1− Fα(x)). Thus, the CDF and the PDF of the
exponentiated T-X family can be respectively given by

G(x) =
∫ A

z1

r(t)dt = R(A), (5)

g(x) =
α f (x)(F(x))α−1

1− (F(x))α
r(A), α > 0 (6)

where A = − log(1− (F(x))α), R(A) is the CDF of T and α is the shape parameter. Many
families of distributions can be generated using this technique, for example, ref. [11]
proposed the exponentiated Weibull-X and the exponentiated gamma-X families. Then,
the exponentiated Weibull-exponential distribution was developed as a member of the
exponentiated Weibull-X family where X follows the standard exponential distribution
with a scale parameter equal to one. Additionally, the exponentiated gamma exponential
distribution introduced in [12] is a member of the exponentiated gamma-X family.

In this paper, the basic aim of the study is to submit a new method that generates a
new distribution with more flexibility to fit different behavior of data.

2. Exponentaited Exponentiated T-X Family

In this section, we combine the exponentiated family of distributions and the exponen-
tiated T-X family of distributions by replacing the CDF in Equation (2) with Equation (5).
The new technique for generating families of distributions is called the exponentiated
exponentiated T-X (EET-X) family and affords vast flexibility in modeling different real
data in practice, hence the CDF and PDF of the new family are defined respectively as

G(x) = [
∫ A

z1

r(t)dt ]β = [R(A)]β, (7)



Symmetry 2022, 14, 1739 3 of 15

g(x) =
βα f (x)(F(x))α−1

1− (F(x))α
r(A)β−1, α > 0, (8)

where β and α are shape parameters. Furthermore, the survival function and the hazard
function for the EET-X family can be introduced respectively as

S(x) = 1− [R(A)]β, (9)

h(x) =
βα f (x)(F(x))α−1

[1− (F(x))α][1− [R(A)]β]
. (10)

In Section 3, we will introduce a new distribution called the exponentiated exponenti-
ated Weibull exponential distribution as a member of the EET-X family.

3. Exponentiated Exponentiated Weibull Exponential Distribution

In this section, a new distribution that is considered a member of an EEW-X family
will be proposed and studied. First, we will display a new family called the exponenti-
ated exponentiated Weibull-X (EEW-X) family. Moreover, a new distribution called the
exponentiated exponentiated Weibull exponential (EEWE) will be studied.

3.1. Exponentiated Exponentiated Weibull-X Family

Let r(t) in Equation (7) be the PDF of a non-negative random variable T which fol-
lows the Weibull distribution. Then, the CDF and the PDF of the EEW-X family can be
respectively defined as

G(x; κ, β, α, λ) ={1− e−[
A
λ ]κ}β, (11)

g(x; κ, β, α, λ) =
κβα f (x)(F(x))α−1

λκ(1− (F(x))α)
e−[

A
λ ]κ Aκ−1 {1− e−[

A
λ ]κ}β−1, (12)

where κ, β, α > 0 are the shape parameters and λ > 0 is the scale parameter of the EEW-X
family. The survival function and the hazard function for the EEW-X family can be given as

S(x; κ, β, α, λ) = 1− {1− e−[
A
λ ]κ}β, (13)

h(x; κ, β, α, λ) =
κβα f (x)(F(x))α−1 Aκ−1

λκ(1− (F(x))α)[1− [1− e−[
A
λ ]κ ]β][1− e−[

A
λ ]κ ]β−1

. (14)

Using the EEW-X family we will generalize the exponentiated exponentiated Weibull
exponential distribution with a scale parameter equal to one that was presented in [11].

3.2. CDF and PDF of EEWE Distribution

Let X follow the exponential distribution with shape parameter θ, then the CDF of the
EEWE distribution can be defined as

G(x; κ, β, α, θ, λ) ={1− e−[
B
λ ]

κ}β, (15)

and the corresponding PDF of the EEWE distribution can be defined as

g(x; κ, β, α, θ, λ) =
κβαθe−θxCα−1

λκ(1− Cα)
e−[

B
λ ]

κ
Bκ−1{1− e−[

B
λ ]

κ}β−1, (16)
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where B = − log(1− (1− e−θx)α), C = 1− e−θx, also, κ, β, α > 0 are the shape parameters
and θ, λ > 0 are scale parameters of the EEWE distribution. The survival function of the
EEWE distribution can be provided, according to

S(x; κ, β, α, θ, λ) =1− {1− e−[
B
λ ]

κ}β. (17)

The hazard function can be presented as

h(x; κ, β, α, θ, λ) =
g(x; κ, β, α, θ, λ)

1− G(x; κ, β, α, θ, λ)
,

where g(x) and G(x) are introduced before in Equations (15) and (16), respectively,

h(x; κ, β, α, θ, λ) =
κβαθe−θxCα−1e−[

B
λ ]

κ
Bκ−1[1− e−[

B
λ ]

κ
]β−1

λκ(1− Cα)[1− [1− e−[
B
λ ]

κ
]β]

. (18)

Several shapes of the PDF and the hazard functions for the EEWE distribution are
introduced in Figures 1 and 2, respectively, for several various parameters values. The dif-
ferent shapes show that the density function for EEWE distribution can be (nearly) sym-
metric, monotonically decreasing, skewed, and unimodal, as well as, the hazard func-
tion plot shows several shapes, involving monotonically increasing, decreasing, skewed,
and unimodal.
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Figure 1. PDFs for the exponentiated exponentiated Weibull exponential for several values of κ, β, α,
θ, and λ.
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Figure 2. Hazard function for the exponentiated exponentiated Weibull exponential for several values
of κ, β, α, θ, and λ.
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3.3. Some Special Cases of EEWE Distribution

I When β = 1, the EEWE distribution converts to the generalized Weibull exponential
(GWE) distribution with parameters α, θ, λ, and κ.

II When β, α = 1, the EEWE distribution converts to the Weibull exponential (WE)
distribution with parameters θ, λ, and κ.

III When α = 1, the EEWE distribution converts to the exponentiated Weibull exponential
(EWE) distribution with parameters θ, κ, λ, and β.

IV When α, β, κ, λ = 1, the EEWE distribution converts to the exponential (E) with one
parameter θ.

V When θ, β = 1, the EEWE distribution converts to the exponentiated Weibull expo-
nential (EWE) distribution with parameters κ, α, and λ, as presented in [11].

3.4. Some of EEWE Distribution Properties

In this section, we will study the statistical properties of EEWE distribution, such as
the moments, the quantile function, and order statistics.

3.4.1. The Quantile Function and the Median

The quantile function for EEWE distribution can be obtained by:

G(x) ={1− e−[
B
λ ]

κ}β = u,

x =
−1
θ

log
{

1−
[

1− e−λ[− log(1−uβ−1
)]κ
−1
]α−1}

. (19)

The median (MD) for the EEWE distribution can be given by substituting the value of
u = 0.5 in, Equation (19), then the median of the EEWE distribution is shown as:

MD =
−1
θ

log
{

1−
[

1− e−λ[− log(1−0.5β−1
)]κ
−1
]α−1}

. (20)

Solving the PDF given in Equation (16) by using integrals might be difficult, complex,
and not accurate. Therefore, deriving the statistical properties can be done after applying
some mathematical expansions for representing the PDF.

Useful Expansions

This section presents some expansions applied to simplify the PDF of EEWE dis-
tribution. After that, several statistical properties are studied using these mathematical
expansions for which any mathematical program can be used to solve expansions analyti-
cally. Using binomial expansion equation

(1− x)s−1 =
∞

∑
d=0

(−1)d
(

s− 1
d

)
xd, (21)

where |x| < 1 and s is a positive real non-integer. The PDF of the EEWE distribution
presented in Equation (16) can be rewritten as

g(x; κ, β, α, θ, λ) =
κβαθe−θxCα−1

λκ(1− Cα)
Bκ−1

∞

∑
s1=0

(−1)s1

(
β− 1

s1

)
e−[

B
λ ]

κ(s1+1)
.

Using the expansion equation

e−x =
∞

∑
b=0

(−1)b

b!
xb, x > 0, (22)
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we have

g(x; κ, β, α, θ, λ) =
κβαθe−θxCα−1

1− Cα

∞

∑
s1,s2=0

(−1)s1+s2

s2!
(s1 + 1)s2

λκ(s2+1)

(
β− 1

s1

)
Bκ(s2+1)−1.

The generalized binomial theorem was applied by [13,14] to show that

(−log(1− x))b = b
∞

∑
d=0

d

∑
m=0

(−1)m+d(d−b
d )( d

m)Pm,d

(b−m)
xb+d, (23)

where b > 0 is any real value and |x| < 1. The constants Pm,d can be solved by using

Pm,d = d−1
d

∑
i=1

(d− i(m + 1))ciPm,d−i,

for d = 1, 2, . . . , and Pm,0 = 1, and cd = (−1)d+1(d + 1)−1, then, the PDF formula will be,

g(x; κ, β, α, θ, λ) =
κβαθe−θx

(1− Cα)

∞

∑
s1,s2,s3=0

s3

∑
s4=0

(−1)s1+s2+s3+s4(s1 + 1)s2 [κ(s2 + 1)− 1]
s2!λκ(s2+1)[κ(s2 + 1)− s4 − 1](

β− 1
s1

)(
s3 − κ(s2 + 1) + 1

s3

)(
s3

s4

)
Ps4,s3 Cα[κ(s2+1)+s3]−1.

The binomial expansion equation

(1− x)−1 =
∞

∑
h=0

xh (24)

was used, then, the PDF formula can be given as

g(x; κ, β, α, θ, λ) =κβαθe−θx
∞

∑
s1,s2,s3,s5=0

s3

∑
s4=0

(−1)s1+s2+s3+s4(s1 + 1)s2

s2!λκ(s2+1)[κ(s2 + 1)− s4 − 1](
β− 1

s1

)(
s3 − κ(s2 + 1) + 1

s3

)(
s3

s4

)
Ps4,s3

[κ(s2 + 1)− 1]Cα[κ(s2+1)+s3+s5]−1.

Recall the binomial expansion Equation (21), finally, the PDF formula of EEWE distri-
bution can be given as

g(x) =καβθ
∞

∑
s1,s2,s3,s5,s6=0

s3

∑
s4=0

(−1)s1+s2+s3+s4+s6(s1 + 1)s2 [k(s2 + 1)− 1]
s2!λκ(s2+1)[k(s2 + 1)− s4 − 1]

Ps4,s3

(
β− 1

s1

)(
s3 − k(s2 + 1) + 1

s3

)(
s3

s4

)
(25)(

α[k(s2 + 1) + s3 + s5]− 1
s6

)
e−θx(s6+1).

Then, various mathematical properties of the EEWE distribution can easily be studied
in terms of the expansion in Equation (25).

3.4.2. Moments

From Equation (25), the rth moment of a random variable X, which follow the EEWE
distribution can be given as:

µ̀r =
∫ ∞

0
xrg(x)dx,
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where g(x) is the PDF of the EEWE distribution which simplified in Equation (25), then,
integrating the PDF to obtain the rth moment can be calculated as, let u = (s6 + 1)θx, then
x = u

θ(s6+1) and dx = du
θ(s6+1) , then, we substitute the previous formulas in the integration

to have

µ̀r =καβ
∞

∑
s1,s2,s3,s5,s6,r=0

s3

∑
s4=0

(−1)s1+s2+s3+s4+s6(s1 + 1)s2 [k(s2 + 1)− 1]
s2!λκ(s2+1)[k(s2 + 1)− s4 − 1]

Ps4,s3

(
β− 1

s1

)(
s3 − k(s2 + 1) + 1

s3

)(
s3

s4

)
(

α[k(s2 + 1) + s3 + s5]− 1
s6

)
Γ(r + 1)

θr(s6 + 1)r+1 ,

where Γ denotes the gamma function and for every r the rth moment exists.

3.4.3. Moment Generating Function and Characteristic Function

The moment generating function of EEWE distribution can be given by using the
following formula:

Mx(t) =E(etx) =
∫ ∞

0
etxg(x)dx.

Using the expansion Equation (22), the moment generating function can be obtained as:

Mx(t) =
∞

∑
r=0

tr

r!

∫ ∞

0
xrg(x)dx,

where t ∈ R. By substituting the value of g(x) which given in Equation (25), we get the
moment generating function of EEWE distribution

Mx(t) =καβ
∞

∑
s1,s2,s3,s5,s6,r=0

s3

∑
s4=0

(−1)s1+s2+s3+s4+s6(s1 + 1)s2 [k(s2 + 1)− 1]
s2!λκ(s2+1)[k(s2 + 1)− s4 − 1]

Ps4,s3

(
β− 1

s1

)(
s3 − k(s2 + 1) + 1

s3

)(
s3

s4

)
(26)(

α[k(s2 + 1) + s3 + s5]− 1
s6

)
trΓ(r + 1)

r!θr(s6 + 1)r+1 .

The characteristic function of a distribution can be obtained as

φx(t) =E(eitx) =
∫ ∞

0
eitxg(x)dx,

which can be rewritten using the expansion Equation (22), as

φx(t) =
∞

∑
r=0

(it)r

r!

∫ ∞

0
xrg(x)dx.

The value of g(x) which given in Equation (25) was substituted and the characteristic
function given as

φx(t) =καβ
∞

∑
s1,s2,s3,s5,s6,r=0

s3

∑
s4=0

(−1)s1+s2+s3+s4+s6(s1 + 1)s2 [k(s2 + 1)− 1]
s2!λκ(s2+1)[k(s2 + 1)− s4 − 1]

Ps4,s3

(
β− 1

s1

)(
s3 − k(s2 + 1) + 1

s3

)(
s3

s4

)
(27)(

α[k(s2 + 1) + s3 + s5]− 1
s6

)
(it)rΓ(r + 1)

r!θr(s6 + 1)r+1 .
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3.4.4. Rényi Entropy

The uncertainty of a random variable X can be measured by using the entropy.
The data have more uncertainty if the value of the entropy is large. From [15], the en-
tropy is obtained by

γR(ρ) =
1

1− ρ
log
( ∫ ∞

0
gρ(x)dx

)
, (28)

where ρ > 0 and ρ 6= 0.
By substituting the PDF in Equation (16) into the Rényi entropy equation, we get

[
g(x)

]ρ
=

[
κβαθ

λκ

]ρ e−θxρCρ(α−1)

(1− Cα)ρ e−ρ[ B
λ ]

κ
Bρ(κ−1){1− e−[

B
λ ]

κ}ρ(β−1).

Using the binomial expansion Equations (21) and (22), we have

[
g(x)

]ρ
=
[
κβαθ

]ρ e−θxρCρ(α−1)

(1− Cα)ρ

∞

∑
s1,s2=0

(−1)s1+s2(ρ + s1)
s2

s2!λκ(s2+ρ)

(
ρ(β− 1)

s1

)
Bκ(s2+ρ)−ρ.

The expansion Equation (23) will be applied, then, the
[
g(x)

]ρ can be written as

[
g(x)

]ρ
=
[
κβαθ

]ρ e−θxρ

(1− Cα)ρ

∞

∑
s1,s2,s3=0

s3

∑
s4=0

(−1)s1+s2+s3+s4(ρ + s1)
s2

s2!λκ(s2+ρ)

κ(s2 + ρ)− ρ

κ(s2 + ρ)− ρ− s4

(
ρ(β− 1)

s1

)(
s3 − κ(s2 + ρ) + ρ

s3

)(
s3

s4

)
Ps4,s3 Cα[κ(s2+ρ)+s3]−ρ.

By using the binomial expansions Equation (21) and the following expansion

(1− x)−j =
∞

∑
y=0

(
j + y− 1

y

)
xy, (29)

we get

[
g(x)

]ρ
=
[
κβαθ

]ρ
∞

∑
s1,s2,s3,s5,s6=0

s3

∑
s4=0

(−1)s1+s2+s3+s4+s6(ρ + s1)
s2

s2!λκ(s2+ρ)

κ(s2 + ρ)− ρ

κ(s2 + ρ)− ρ− s4

(
ρ(β− 1)

s1

)(
s3 − κ(s2 + ρ) + ρ

s3

)(
s3

s4

)
(

ρ + s5 − 1
s5

)(
α[κ(s2 + ρ) + s3 + s5]− ρ

s6

)
Ps4,s3 e−(ρ+s6)θx.

By substituting in Equation (28) and after solving the integration, the Rényi entropy
can be found as follows

γR(ρ) =
1

1− ρ
log

{[
κβα

]ρ
θρ−1

∞

∑
s1,s2,s3,s5,s6=0

s3

∑
s4=0

(−1)s1+s2+s3+s4+s6(ρ + s1)
s2

s2!λκ(s2+ρ)

κ(s2 + ρ)− ρ

κ(s2 + ρ)− ρ− s4

(
ρ(β− 1)

s1

)(
s3 − κ(s2 + ρ) + ρ

s3

)(
s3

s4

)(
ρ + s5 − 1

s5

)
(

α[κ(s2 + ρ) + s3 + s5]− ρ

s6

)
Ps4,s3

(ρ + s6)

}
.

The Rényi entropy for the EEWE distribution can be given by
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γR(ρ) =
1

1− ρ

{
ρ log(κβα) + (ρ− 1) log θ + log

[ ∞

∑
s1,s2,s3,s5,s6=0

s3

∑
s4=0

(−1)s1+s2+s4+s3+s6(ρ + s1)
s2

s2!λκ(ρ+s2)[κ(s2 + ρ)− ρ− s4]

[κ(s2 + ρ)− ρ]Ps4,s3

(ρ + s6)

(
ρ(β− 1)

s1

)(
s3 − κ(s2 + ρ) + ρ

s3

)(
s3

s4

)(
ρ + s5 − 1

s5

)
(30)(

α[κ(s2 + ρ) + s3 + s5]− ρ

s6

)]}
.

3.4.5. Order Statistics

Assume that X1, X2, . . . , Xn is a random sample of EEWE distribution and let Xa:n
denote the ath order statistic. The PDF of Xa:n can be presented as

ga:n(x) =
n!

(a− 1)!(n− a)!

n−a

∑
c=0

(−1)c
(

n− a
c

)
f (x)Fc+a−1(x).

Substituting the EEWE distribution’s PDF and CDF which shown in Equations (15) and (16)
into ga:n(x), we get

ga:n(x) =
n!καβ

(a− 1)!(n− a)!

n−a

∑
c=0

(−1)c
(

n− a
c

){
θe−θxCα−1

λκ(1− Cα)
e−[

B
λ ]

κ

Bκ−1{1− e−[
B
λ ]

κ}β−1

}{
{1− e−[

B
λ ]

κ}β

}c+a−1

and hence,

ga:n(x) =
n!καβ

(a− 1)!(n− a)!

n−a

∑
c=0

(−1)c
(

n− a
c

){
θe−θxCα−1

λκ(1− Cα)
e−[

B
λ ]

κ

Bκ−1

[
1− e−[

B
λ ]

κ

]β(c+a)−1}
.

Similar to the PDF expansions in Section 3.4.1 by applying expansion Equation (21)
two times and expansions Equations (22)–(24) one time, the order statistics formula of the
EEWE distribution is defined as

ga:n(x) =
n!καβθ

(a− 1)!(n− a)!

∞

∑
s1,s2,s3,s5,s6=0

s3

∑
s4=0

n−a

∑
c=0

(−1)s1+s2+s3+s4+s6+c(s1 + 1)s2

s2!λκ(s2+1)

κ(s2 + 1)− 1
κ(s2 + 1)− s4 − 1

Ps4,s3

(
n− a

c

)(
β(c + a)− 1

s1

)(
s3 − κ(s2 + 1) + 1

s3

)
(

s3

s4

)(
α[κ(s2 + 1) + s3 + s5]− 1

s6

)
e−θx(s6+1). (31)

3.5. Parameter Estimation For EEWE Distribution

The parameters estimation for the EEWE distribution using maximum likelihood
estimation (MLEs) of the vector of parameters ω = (κ, β, α, θ, λ) can be defined in three
steps. First, define the log-likelihood function. Second, calculate the partial derivative with
respect to every single parameter. Finally equate these derivatives to zero. The likelihood
function L(x; κ, β, α, θ, λ) for the EEWE distribution can be found as
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L(x; κ, β, α, θ, λ) =(κβαθλ−k)ne−θ ∑n
i=1 xi

∏n
i=1 Ci

α−1

∏n
i=1[1− Ci

α]
e−∑n

i=1[
Bi
λ ]κ

n

∏
i=1

Bi
κ−1

n

∏
i=1
{1− e[

Bi
λ ]κ}β−1, (32)

where Bi = − log(1− (1− e−θxi )α), Ci = 1− e−θxi . The log-likelihood function for the
EEWE distribution can be shown as

` =n log(κβαθ)− nκ log λ− θ
n

∑
i=1

xi −
n

∑
i=1

log(1− Ci
α)−

n

∑
i=1

[
Bi
λ
]κ

+ (α− 1)
n

∑
i=1

log(Ci) + (k− 1)
n

∑
i=1

log(Bi) + (β− 1)
n

∑
i=1

log[1− e−[
Bi
λ ]κ ]. (33)

The derivatives results of Equation (33), with respect to the EEWE distribution param-
eters, are shown as

∂`

∂κ
=n(κ−1 − log λ) +

n

∑
i=1

log(Bi)−
[
(

Bi
λ
)κ log[

Bi
λ

]]{
1− (β− 1)e−[

Bi
λ ]κ

[1− e−[
Bi
λ ]κ ]

}
. (34)

∂`

∂β
=

n
β
+

n

∑
i=1

log[1− e−[
Bi
λ ]κ ]. (35)

∂`

∂α
=

n
α
+

n

∑
i=1

log(Ci)

{
1 +

Cα
i

1− Cα
i

[
1 +

(κ − 1)
Bi

− κ

λκ
Bκ−1

i

[
1− (β− 1)e−[

Bi
λ ]κ

{1− e−[
Bi
λ ]κ}

]]}
. (36)

∂`

∂θ
=

n
θ
−

n

∑
i=1

xi +
n

∑
i=1

xie−θxi

{
(α− 1)

Ci
+

αCα−1
i

1− Cα
i

[
1 +

(κ − 1)
Bi

− κ

λκ
Bκ−1

i

[
1− (β− 1)e−[

Bi
λ ]κ

[1− e−[
Bi
λ ]κ ]

]]}
. (37)

∂`

∂λ
=

κ

λ

{
− n− λ−κ Bκ−1

i

n

∑
i=1

log(1− Cα
i )

[
1− (β− 1)e−[

Bi
λ ]κ

[1− e−[
Bi
λ ]κ ]

]}
. (38)

Hence, the MLE_s of the parameters κ, β, α, θ, and λ can be existed by setting
Equations (34)–(38) to zero and solve them analytically or by using numerical methods,
such as, the Newton–Raphson iteration method. Moreover, the estimators can be obtained
automatically by maximizing Equation (33) using any R function, such as optim and nlm.

4. Simulation Study

This section presents three cases of simulation studies to test the performance of the
MLEs of the EEWE distribution parameters. Different values for the true parameters ωtr
have been considered as follows:

Case I: κ = 1.7, β = 0.5, α = 1.1, θ = 0.63 and λ = 0.07 .
Case II: κ = 10, β = 0.7, α = 0.4, θ = 0.01 and λ = 0.03 .
Case III: κ = 1.7, β = 5, α = 0.5, θ = 0.01 and λ = 0.07 .
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For each case, the simulation has been conducted with the number of iterations equal
to nsim = 1000. To evaluate the MLE, ω̂, for each parameter, the mean square error (MSE)
was used, which can be defined as

MSE(ω̂) =
∑nsim

i=1 (ω̂i −ωtr)2

nsim

The Monte Carlo simulation method was applied using the programming language R.
The MLE of parameters with their MSE are presented in Table 1.

Table 1. Simulation study results for the EEWE parameter estimates and the MSE, for three different
cases with different sample sizes.

Sample Size Parameter
Case I Case II Case III

MLE MSE MLE MSE MLE MSE

n = 30 κ 1.76213618 0.129651982 9.99999859 6.954299 × 10−10 1.74599329 0.039682607
β 0.70181142 0.376492237 0.69998767 4.283840 × 10−8 4.96089997 0.038061954
α 1.19264764 0.124722840 0.39993911 7.877924 × 10−7 0.49491032 0.009612482
θ 0.63184321 0.004721838 0.01003896 2.259842 × 10−7 0.06848698 0.043138538
λ 0.06247869 0.001296300 0.29997104 1.193325 × 10−7 0.18147413 0.186045347

n = 100 κ 1.74879729 0.0449915708 9.99999963 1.076094 × 10−10 1.70939431 0.006057104
β 0.54529106 0.0828786328 0.69999617 9.621094 × 10−9 4.99155636 0.005188604
α 1.14668157 0.0507040578 0.39997500 2.988855 × 10−7 0.49763442 0.001341771
θ 0.63752005 0.0002359174 0.01000043 7.295098 × 10−8 0.02243868 0.007344277
λ 0.06777658 0.0005551312 0.29998489 8.749173 × 10−8 0.09581724 0.035992660

n = 200 κ 1.72037501 0.0199463651 9.99999977 3.979467 × 10−11 1.70018095 4.287554 × 10−6

β 0.52909388 0.0304618773 0.69999751 3.975560 × 10−9 4.99994003 6.777741 × 10−6

α 1.11148820 0.0232369786 0.39998275 1.094464 × 10−7 0.50049358 2.552080 × 10−5

θ 0.63848830 0.0001331668 0.01000066 3.239753 × 10−8 0.01043817 4.765273 × 10−5

λ 0.07083394 0.0002764211 0.29998902 3.205238 × 10−8 0.07072449 1.246056 × 10−4

n = 500 κ 1.71516169 0.0082627191 9.999999975 4.400126 × 10−13 1.70000095 2.189370 × 10−10

β 0.50519590 0.0099628342 0.699999507 6.021973 × 10−11 5.00000030 7.631066 × 10−12

α 1.10662718 0.0096392748 0.399992036 4.053356 × 10−9 0.50001427 8.525506 × 10−9

θ 0.63743595 0.0000782145 0.009995108 1.321479 × 10−8 0.01001696 5.476000 × 10−8

λ 0.07094053 0.0001238495 0.299993643 2.002551 × 10−9 0.07003131 2.155901 × 10−8

It is clear that the MSE becomes smaller as the sample size rises and the estimates
become nearer to the true value of parameters.

5. Application

In this section, three real datasets have been fitted by six different distributions in-
cluding the proposed EEWE. Four of these distributions are special cases for the EEWE
distribution and the fifth one is the generalized transmuted generalized exponential distri-
bution. The PDF for the five distributions can be presented as

(1) Exponential distribution

g(x) = θe−θx.

(2) Weibull exponential distribution

g(x) =
κθe−(

θx
λ )κ

(θx)κ−1

λκ
.

(3) Generalized Weibull exponential distribution presented by [16]

g(x) =
καθ

λκ

e−θxCα−1

(1− Cα)
Bκ−1e−[

B
λ ]

κ
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(4) Exponentiated Weibull exponential distribution

g(x) =
κβθe−(

θx
λ )κ

(θx)κ−1

λκ
{1− e−(

θx
λ )κ}β−1

(5) Generalized transmuted generalized exponential distribution

g(x) = αθe−θxCaα−1[a(1 + λ)− λ(a + b)Cbα]

The parameters of the fitted distribution are estimated via the ML method by maximiz-
ing the log-likelihood. The Akaike information criterion (AIC) and the corrected Akaike
information criterion (AICc) are computed, hence, the best model is the one that gives
minimum AIC and AICc. The plots are used to compare the EEWE distribution with other
distributions and the Kolmogorov–Smirnov (K–S), which is used to introduce the p-value
for each distribution.

5.1. First Dataset

The first dataset is reported in [17] and displays the time (in days) for the survival
of 72 guinea pigs infected by virulent tubercle bacilli. Figure 3 shows the plot of the
fitted distributions for the first dataset and Table 2 summarizes the results of MLEs of the
parameters, the log-likelihood, AIC, and AICc for each distribution.

Fitted Densities
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si
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0 100 200 300 400 500 600

0.
00
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0.
00
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00
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00
6
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EEWED
GTrGED
EWED
GWED
WED
ED

Figure 3. Comparison of the EEWE distribution with other distributions for the first dataset.

Table 2. Estimation for the first dataset.

Distributions EEWE GTrGE EWE GWE WE E

Parameters estimation θ̂ = 0.0103 θ̂ = 0.006 θ̂ = 0.0023 θ̂ = 0.0065 θ̂ = 0.0061 θ̂ = 0.0057
κ̂ = 1.1 α̂ = 1.1062 κ̂ = 1.1 κ̂ = 1.1 κ̂ = 1.1
λ̂ = 1.1 λ̂ = 0.0471 λ̂ = 0.5 λ̂ = 1.1 λ̂ = 1.1
α̂ = 1.1 â = 1.2058 β̂ = 0.7 α̂ = 1.1
β̂ = 2.5 b̂ = 0.4997

Log-likelihood −425.7619 −437.7061 −450.4563 −437.9455 −440.1889 −444.6093
AICc 862.4329 886.3213 909.5096 884.4880 886.7306 891.2757
AIC 861.5238 885.4122 908.9126 883.8910 886.3777 891.2186

p-value 4.3706 × 10−1 3.2755 × 10−4 1.0452 × 10−7 1.9622 × 10−4 5.5284 × 10−5 7.5031 × 10−6
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5.2. Second Dataset

The second dataset is presented in [18] and contains 40 observations for the time (in
103 h) to failure of the turbocharger of one type of engine. Figure 4 shows the plot of the
fitted distributions for the second dataset and Table 3 summarizes the results of MLEs of
the parameters, the log-likelihood, AIC, and AICc for each distribution.

Fitted Densities

DATA

D
en
si
ty

2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

Distributions

EEWED
GTrGED
EWED
GWED
WED
ED

Figure 4. Comparison of the EEWE distribution with other distributions for the second dataset.

Table 3. Estimation for the second dataset.

Distributions EEWE GTrGE EWE GWE WE E

Parameters estimation θ̂ = 0.0349 θ̂ = 0.4499 θ̂ = 0.0368 θ̂ = 0.0243 θ̂ = 0.0501 θ̂ = 0.1599
κ̂ = 4.1813 α̂ = 3.1014 κ̂ = 4.8742 κ̂ = 2.8551 κ̂ = 3.8584
λ̂ = 0.0442 λ̂ = −0.0061 λ̂ = 0.275 λ̂ = 0.0753 λ̂ = 0.3468
α̂ = 2.2543 â = 3.0681 β̂=0.6589 α̂ = 1.4053
β̂ = 0.329 b̂ = −0.0014

Log-likelihood −79.6825 −90.1427 −81.2893 −82.6434 −82.4759 −113.3193
AICc 171.1297 192.0500 171.7215 174.4297 171.6184 228.7438
AIC 169.3650 190.2853 170.5787 173.2868 170.9518 228.6385

p-value 8.5019 × 10−1 2.9757 × 10−1 7.6829 × 10−1 7.3139 × 10−1 7.4037 × 10−1 5.2504 × 10−5

5.3. Third Dataset

The third dataset was submitted by the authors of [19] and includes 101 observations.
It displays the fatigue life (at 18 cycles per second) of 6061-T6 aluminum coupons cut
parallel to the direction of rolling and oscillated. Figure 5 shows the plot of the fitted
distributions for the third dataset and Table 4 summarizes the results of MLEs of the
parameters, the log-likelihood, AIC, and AICc for each distribution.

Table 4. Estimation for the third dataset.

Distributions EEWE GTrGE EWE GWE WE E

Parameters estimation θ̂ = 0.0173 θ̂ = 0.0393 θ̂ = 0.017 θ̂ = 0.0117 θ̂ = 0.0043 θ̂ = 0.0146
κ̂ = 1.8712 α̂ = 2.9796 κ̂ = 1.318 κ̂ = 1.8748 κ̂ = 1.0524
λ̂ = 0.8063 λ̂ = −0.0244 λ̂ = 0.6616 λ̂ = 0.5594 λ̂ = 0.2944
α̂ = 1.3978 â = 2.8173 β̂ = 4.5336 α̂ = 1.5371
β̂ = 1.889 b̂ = 0.0358

Log-likelihood −454.6378 −464.1941 −459.8019 −459.9742 −517.9904 −522.4495
AICc 919.9140 939.0264 928.0248 928.3694 1042.2296 1046.9399
AIC 919.2757 938.3881 927.6038 927.9483 1041.9796 1046.8991

p-value 4.2979 × 10−1 1.2058 × 10−1 1.4214 × 10−1 2.6729 × 10−2 1.9496 × 10−11 4.2664 × 10−12



Symmetry 2022, 14, 1739 14 of 15
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Figure 5. Comparison of the EEWE distribution with other distributions for the third dataset.

It is evident from the Tables 2–4 that the EEWE distribution is the best one of the
other comparative distributions by looking at the values of AIC and AICc. Additionally,
Figures 3–5 support this conclusion.

6. Conclusions

In this paper, a new approach to generating a new family of distributions has been
applied. This new family is called the exponentiated exponentiated Weibull-X family
and the EEWE distribution was introduced as a member of this family. Some statistical
characteristics of this distribution were studied and its five parameters were estimated using
the ML method. Three cases of different values of the EEWE parameters and four different
sample sizes are used to assess the performance of the MLEs in the EEWE distribution
parameters. Three datasets of real data were utilized to prove the efficiency of the EEWE
distribution in comparison to some other distributions. The usefulness and effectiveness of
the proposed distribution were demonstrated. The EEWE is a highly flexible distribution
in real data modeling.

7. Future Works

For future works, we propose to generate new distributions using the proposed new
family and estimate the unknown parameters of the proposed distribution using different
estimation methods.
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