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Abstract: It is known that the method of Lyapunov functionals is a powerful method of stability
investigation for functional differential equations. Here, it is shown how the previously proposed
method of stability investigation for nonlinear stochastic differential equations with delay and a high
order of nonlinearity can be extended to nonlinear mathematical models of a much more general
form. An important feature is the combination of the method of Lyapunov functionals with the
method of Linear Matrix Inequalities (LMIs). Some examples of applications of the proposed method
of stability research to known mathematical models are given.
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1. Introduction

It is known that after the works of Krasovskii N.N. [1–3], the method of Lyapunov
functionals or the so-called method of Lyapunov–Krasovskii functionals is one of the
most powerful methods of stability investigation for functional differential equations
(see, for instance [4–8] and the references therein). The special procedure of Lyapunov
functionals construction allows for the construction of different Lyapunov functionals for
one differential equation with delay and, as a result, obtains different stability conditions
for the considered equation [4].

The aim of this paper is to show how the application of the method proposed in [9]
for studying the stability of nonlinear stochastic functional differential equations with
a high order of nonlinearity can be extended to mathematical models of a much more
general form.

1.1. Statement of the Problem

Consider the nonlinear differential equation with distributed delays:

ẋ(t) =a + Ax(t) +
k

∑
i=1

∫ ∞

0
Bix(t− s)dKi(s) +

m

∑
i=1

∫ ∞

0
fi(x(t), x(t− s))dFi(s),

x(s) =φ(s), s ≤ 0,

(1)

where a, x(t) ∈ Rn, A, Bi ∈ Rn×n, fi(x1, x2) ∈ Rn are nonlinear differentiable functions, and
Ki(s) and Fi(s) are scalar right-continuous nondecreasing functions of bounded variation
on [0, ∞), such that

Ki =
∫ ∞

0
dKi(s) < ∞, Fi =

∫ ∞

0
dFi(s) < ∞, (2)

and the integrals are understood in the Stieltjes sense.
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From (1) and (2), it follows that the equilibrium x∗ of Equation (1) is defined by
the equation

a +

(
A +

k

∑
i=1

KiBi

)
x∗ +

m

∑
i=1

Fi fi(x∗, x∗) = 0. (3)

We will investigate the stability of Equation (1) equilibrium x∗ under stochastic per-
turbations of the white-noise type that are directly proportional to the deviation of the
solution x(t) from the equilibrium x∗ and immediately influence the derivative. In doing
this, Equation (1) takes the form of Ito’s stochastic differential equation [4,10]

dx(t) =

(
a + Ax(t) +

k

∑
i=1

∫ ∞

0
Bix(t− s)dKi(s) +

m

∑
i=1

∫ ∞

0
fi(x(t), x(t− s))dFi(s)

)
dt

+
l

∑
j=1

Cj(x(t)− x∗)dwj(t), x(s) = φ(s) ∈ H2, s ≤ 0,

(4)

where Cj ∈ Rn×n and wj(t), j = 1, . . . , l, are mutually independent standard Wiener
processes on the completed probability space {Ω,F, P} with a nondecreasing family of
σ-algebras Ft, and H2 is the space of F0-adapted stochastic processes φ(s), s ≤ 0, with con-
tinuous trajectories.

Note that stochastic perturbations of the type (4) were firstly used in [11] and later
in many other research works (see, for instance, [4] and references therein). In this, the
equilibrium x∗ of Equation (1) is also the solution of the stochastic differential Equation (4).

Let us center Equation (4) at the equilibrium x∗ using the new variable y(t) = x(t)− x∗.
From (4) we have

dy(t) =

(
a + A(x∗ + y(t)) +

k

∑
i=1

∫ ∞

0
Bi(x∗ + y(t− s))dKi(s)

+
m

∑
i=1

∫ ∞

0
fi(x∗ + y(t), x∗ + y(t− s))dFi(s)

)
dt +

l

∑
j=1

Cjy(t)dwj(t).

(5)

It is clear that the stability of the equilibrium x∗ of Equation (4) is equivalent to the
stability of the zero solution of Equation (5).

Let Jj fi(x1, x2), j = 1, 2, be the Jacobian matrix of the function fi(x1, x2) ∈ Rn with
respect to the variable xj. Using Taylor’s expansion in the form

fi(x∗1 + y1, x∗2 + y2) = fi(x∗1 , x∗2) + J1 fi(x∗1 , x∗2)y1 + J2 fi(x∗1 , x∗2)y2 + o(y1) + o(y2),

where lim
|y1|→0

o(y1)

|y1|
= 0, lim

|y2|→0

o(y2)

|y2|
= 0, via (2) we have

∫ ∞

0
fi(x∗ + y(t), x∗ + y(t− s))dFi(s)

=Fi fi(x∗, x∗) + Fi J1 fi(x∗, x∗)y(t)

+
∫ ∞

0
J2 fi(x∗, x∗)y(t− s)dFi(s) + o(y1) + o(y2).

(6)

Substituting (6) into (5) and using (2) and (3), we obtain the linear approximation of
the nonlinear Equation (5)

dz(t) =

[(
A +

m

∑
i=1

FiD1i

)
z(t) +

k

∑
i=1

∫ ∞

0
Biz(t− s)dKi(s)

+
m

∑
i=1

∫ ∞

0
D2iz(t− s)dFi(s)

]
dt +

l

∑
j=1

Cjz(t)dwj(t),

(7)
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where
D1i = J1 fi(x∗, x∗), D2i = J2 fi(x∗, x∗). (8)

Remark 1. Using (2), the equalities

d
dt

(∫ ∞

0

∫ t

t−s
z(τ)dτdKi(s)

)
= Kiz(t)−

∫ ∞

0
z(t− s)dKi(s),

d
dt

(∫ ∞

0

∫ t

t−s
z(τ)dτdFi(s)

)
= Fiz(t)−

∫ ∞

0
z(t− s)dFi(s),

(9)

and (8), transform Equation (7) into the form of a neutral-type equation

dZ(t) = (A + H)z(t)dt +
l

∑
j=1

Cjz(t)dwj(t), Z(t) = z(t) + G(t),

H =
k

∑
i=1

KiBi +
m

∑
i=1

Fi(D1i + D2i), G(t) =
k

∑
i=1

Biξi(t) +
m

∑
i=1

D2iηi(t),

ξi(t) =
∫ ∞

0

∫ t

t−s
z(τ)dτdKi(s), ηi(t) =

∫ ∞

0

∫ t

t−s
z(τ)dτdFi(s).

(10)

1.2. Some Auxiliary Definitions and Statements

Definition 1 ([4]). The zero solution of Equation (5) with the initial condition y(s) = φ(s),
s ≤ 0, is called stable in probability if for any ε1 > 0 and ε2 > 0 there exists δ > 0 such that
the solution y(t, φ) of Equation (5) satisfies the condition P{supt≥0 |y(t, φ)| > ε1} < ε2 for any
initial function φ such that P{sups≤0 |φ(s)| < δ} = 1.

Definition 2 ([4]). The zero solution of Equation (7) with the initial condition z(s) = φ(s), s ≤ 0,
is called:

- Mean square stable if for any ε > 0 there exists a δ > 0 such that E|z(t, φ)|2 < ε, t ≥ 0,
provided that ‖φ‖2 = sups≤0 E|φ(s)|2 < δ;

- Asymptotically mean square stable if it is mean square stable and for each initial function φ

the solution z(t) of Equation (7) satisfies the condition limt→∞ E|z(t)|2 = 0.

Remark 2. The representation (6) in particular means that the level of nonlinearity of Equation (5)
is more than one. In this case, it is known that sufficient conditions for the asymptotic mean square
stability of the zero solution of the linear Equation (7) are also sufficient conditions for stability in
probability of the zero solution of the nonlinear Equation (5) and therefore are sufficient conditions
for stability in probability of the equilibrium x∗ of Equation (4) [4].

Let z(t) be a value of Equation (7) solution in the time moment and t, zt = z(t + s),
s < 0 be the trajectory of Equation (7) solution until the time moment t. Consider a
functional V(t, ϕ) : [0, ∞) × H2 → R+ that can be presented in the form V(t, ϕ) =
V(t, ϕ(0), ϕ(s)), s < 0, and for ϕ = zt put

Vϕ(t, z) = V(t, ϕ) = V(t, zt) = V(t, z, z(t + s)), z = ϕ(0) = z(t), s < 0. (11)

Denote by D the set of the functionals, for which the function Vϕ(t, z) defined in (11)
has a continuous derivative with respect to t and two continuous derivatives with respect
to z. Let ′ be the sign of transpose, ∇ and ∇2 be the first and the second derivatives,
respectively, of the function Vϕ(t, z) with respect to z. For the functionals from D, the
generator L of Equation (7) has the form [4,10]



Symmetry 2022, 14, 1734 4 of 13

LV(t, zt) =
∂Vϕ(t, z(t))

∂t
+∇V′ϕ(t, z(t))

[(
A +

m

∑
i=1

FiD1i

)
z(t)

+
k

∑
i=1

Biui(zt) +
m

∑
i=1

D2ivi(zt)

]
+

1
2

l

∑
j=1

z′(t)C′j∇2Vϕ(t, z(t))Cjz(t),

ui(zt) =
∫ ∞

0
z(t− s)dKi(s), vi(zt) =

∫ ∞

0
z(t− s)dFi(s).

(12)

Theorem 1 ([4]). Let there exist a functional V(t, ϕ) ∈ D and positive constants c1, c2, c3, such
that the following conditions hold:

EV(t, zt) ≥ c1E|z(t)|2, EV(0, φ) ≤ c2‖φ‖2, ELV(t, zt) ≤ −c3E|z(t)|2.

Then the zero solution of Equation (7) is asymptotically mean square stable.

Lemma 1 ([9]). Let R ∈ Rn×n be a positive definite matrix, z =
∫

Q y(s)µ(ds), where z, y(s) ∈ Rn,
µ(ds) is some measure on Q such that µ(Q) < ∞ and the integral is defined in the Lebesgue sense.
Then

z′Rz ≤ µ(Q)
∫

Q
y′(s)Ry(s)µ(ds). (13)

Definition 3 ([4]). The trace of the k-th order of a n× n matrix A = ‖aij‖ is defined as follows:

Sk = ∑
1≤i1<...<ik≤n

∣∣∣∣∣∣
ai1i1 . . . ai1ik

. . . . . . . . .
aik i1 . . . aik ik

∣∣∣∣∣∣, k = 1, . . . , n.

Here, in particular, S1 = Tr(A), Sn = det(A), Sn−1 =
n
∑

i=1
Aii, where Aii is the algebraic

complement of the diagonal element aii of the matrix A.

Lemma 2 ([4]). A 2× 2 matrix A is the Hurwitz matrix if and only if S1 < 0, S2 > 0. A 3× 3
matrix A is the Hurwitz matrix if and only if S1 < 0, S1S2 < S3 < 0.

2. Stability

In this section, we obtain sufficient conditions for the asymptotic mean square stability
of the zero solutions of Equations (7) and (10), which, following Remark 2, are also sufficient
conditions for stability in probability of the equilibrium x∗ of Equation (4).

Note that the sign “*” inside of a matrix indicates a symmetric element of a symmetric
matrix, and the matrix inequality Ψ < 0 indicates that the symmetric matrix Ψ is a negative
definite one.

Theorem 2. Let there exist positive definite n× n matrices P, Q1, . . . , Qk and R1, . . . , Rm, such
that the LMI is satisfied:

Ψ0 =



Φ0 PB1 . . . PBk PD21 . . . PD2m
∗ −Q1 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .
∗ ∗ . . . −Qk 0 . . . 0
∗ ∗ . . . ∗ −R1 ... 0

. . . . . . . . . . . . . . . . . . . . .
∗ ∗ ... ∗ ∗ . . . −Rm


< 0,

Φ0 = P

(
A +

m

∑
i=1

FiD1i

)
+

(
A +

m

∑
i=1

FiD1i

)′
P +

l

∑
j=1

C′jPCj +
k

∑
i=1

K2
i Qi +

m

∑
i=1

F2
i Ri.

(14)
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Then the equilibrium x∗ of Equation (4) is stable in probability.

Proof. Following Remark 2, it is enough to prove that the zero solution of the linear
Equation (7) is asymptotically mean square stable. Let L be the generator of Equation (7) [4,10].
Following the procedure of Lyapunov functional construction [4], we will construct the
Lyapunov functional for Equation (7) in the form V = V1 +V2, where V1(z(t)) = z′(t)Pz(t),
P > 0. Using (12) for V1(z(t)), we have

LV1(z(t)) =2z′(t)P

[(
A +

m

∑
i=1

FiD1i

)
z(t) +

k

∑
i=1

Biui(zt) +
m

∑
i=1

D2ivi(zt)

]

+
l

∑
j=1

z′(t)C′jPCjz(t)

=z′(t)

[
P

(
A +

m

∑
i=1

FiD1i

)
+

(
A +

m

∑
i=1

FiD1i

)′
P +

l

∑
j=1

C′jPCj

]
z(t)

+ 2
k

∑
i=1

z′(t)PBiui(zt) + 2
m

∑
i=1

z′(t)PD2ivi(zt).

(15)

Let us choose the additional functional V2 in the form

V2(t, zt) =
k

∑
i=1

Ki

∫ ∞

0

∫ t

t−s
z′(τ)Qiz(τ)dτdKi(s)

+
m

∑
i=1

Fi

∫ ∞

0

∫ t

t−s
z′(τ)Riz(τ)dτdFi(s), Qi, Ri > 0.

Using (2) and the inequality (13), we have

u′i(t)Qiui(t) ≤ Ki

∫ ∞

0
z′(t− s)Qiz(t− s)dKi(s),

v′i(t)Rivi(t) ≤ Fi

∫ ∞

0
z′(t− s)Riz(t− s)dFi(s).

So, for the functional V2, we obtain

LV2(t, zt) =
k

∑
i=1

K2
i z′(t)Qiz(t)−

k

∑
i=1

Ki

∫ ∞

0
z′(t− s)Qiz(t− s)dKi(s)

+
m

∑
i=1

F2
i z′(t)Riz(t)−

m

∑
i=1

Fi

∫ ∞

0
z′(t− s)Riz(t− s)dFi(s)

≤z′(t)

(
k

∑
i=1

K2
i Qi +

m

∑
i=1

F2
i Ri

)
z(t)−

k

∑
i=1

u′i(t)Qiui(t)−
m

∑
i=1

v′i(t)Rivi(t).

(16)

From (15) and (16) for the functional V = V1 + V2, it follows that

LV(t, zt) ≤z′(t)Φ0z(t) + 2
k

∑
i=1

z′(t)PBiui(zt) + 2
m

∑
i=1

z′(t)PD2ivi(zt)

−
k

∑
i=1

u′i(t)Qiui(t)−
m

∑
i=1

v′i(t)Rivi(t)

=ζ ′(t)Ψ0ζ(t),

where the matrices Φ0 and Ψ0 are defined in (14) and ζ(t) = col(z(t), u1(t), . . . , uk(t),
v1(t), . . . , vm(t)).
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So, the construction above the Lyapunov functional V satisfies Theorem 1. Thus,
the zero solution of Equation (7) is asymptotically mean square stable, and, therefore,
the equilibrium x∗ of Equation (4) is stable in probability. The proof is completed.

Theorem 3. Let be

α =
k

∑
i=1

ki‖Bi‖+
m

∑
i=1

qi‖D2i‖ < 1,

ki =
∫ ∞

0
sdKi(s), qi =

∫ ∞

0
sdFi(s),

(17)

where ‖.‖ is the matrix norm, and there exist positive definite n× n matrices P, Q1, . . . , Qk, and
R1, . . . , Rm, such that the LMI is satisfied.

Ψ1 =



Φ1 (A + H)′PB1 ... (A + H)′PBk (A + H)′PD21 ... (A + H)′PD2m
∗ −Q1 ... 0 0 ... 0
... ... ... ... ... ... ...
∗ ∗ ... −Qk 0 ... 0
∗ ∗ ... ∗ −R1 ... 0
... ... ... ... ... ... ...
∗ ∗ ... ∗ ∗ ... −Rm


< 0,

Φ1 = P(A + H) + (A + H)′P +
l

∑
j=1

C′j PCj +
k

∑
i=1

k2
i Qi +

m

∑
i=1

q2
i Ri.

(18)

Then, the equilibrium x∗ of Equation (4) is stable in probability.

Proof. Let L be the generator of Equation (10). Then, for the functional V1(zt) = Z′(t)PZ(t),
P > 0, via (10), we have

LV1(zt) =2(z(t) + G(t))′P(A + H)z(t) +
l

∑
j=1

z′(t)C′jPCjz(t)

=2

(
z(t) +

k

∑
i=1

Biξi(t) +
m

∑
i=1

D2iηi(t)

)′
P(A + H)z(t)

+
l

∑
j=1

z′(t)C′jPCjz(t)

=2z′(t)P(A + H)z(t) + 2
k

∑
i=1

ξ ′i(t)B′i P(A + H)z(t)

+ 2
m

∑
i=1

η′i (t)D′2iP(A + H)z(t) +
l

∑
j=1

z′(t)C′jPCjz(t).

(19)

From (10), (13) and (17) it follows that

ξ ′i(t)Qiξi(t) ≤ ki

∫ ∞

0

∫ t

t−s
z′(τ)Qiz(τ)dτdKi(s),

η′i (t)Riηi(t) ≤ qi

∫ ∞

0

∫ t

t−s
z′(τ)Riz(τ)dτdFi(s).

(20)

So, for the functional

V2(t, zt) =
k

∑
i=1

ki

∫ ∞

0

∫ t

t−s
(τ − t + s)z′(τ)Qiz(τ)dτdKi(s)

+
m

∑
i=1

qi

∫ ∞

0

∫ t

t−s
(τ − t + s)z′(τ)Riz(τ)dτdFi(s)
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via (20), we obtain

LV2(t, zt) =
k

∑
i=1

k2
i z′(t)Qiz(t)−

k

∑
i=1

ki

∫ ∞

0

∫ t

t−s
z′(τ)Qiz(τ)dτdKi(s)

+
m

∑
i=1

q2
i z′(t)Riz(t)−

m

∑
i=1

qi

∫ ∞

0

∫ t

t−s
z′(τ)Riz(τ)dτdFi(s)

≤z′(t)

(
k

∑
i=1

k2
i Qi +

m

∑
i=1

q2
i Ri

)
z(t)−

k

∑
i=1

ξ ′i(t)Qiξi(t)−
m

∑
i=1

η′i (t)Riηi(t).

(21)

Using (19) and (21) for the functional V = V1 + V2, we have

LV(t, zt) ≤z′(t)Φ1z(t) + 2
k

∑
i=1

ξ ′i(t)B′i P(A + H)z(t) + 2
m

∑
i=1

η′i (t)D′2iP(A + H)z(t)

−
k

∑
i=1

ξ ′i(t)Qiξi(t)−
m

∑
i=1

η′i (t)Riηi(t)

=ζ ′(t)Ψ1ζ(t),

where the matrices Φ1 and Ψ1 are defined in (18) and ζ(t) = col{z(t), ξ1(t), . . . , ξk(t),
η1(t), . . . , ηm(t)}.

This indicates that by using the conditions (17) and (18), the zero solution of Equa-
tion (10) is asymptotically mean square stable [4], and therefore the equilibrium x∗ of
Equation (4) is stable in probability. The proof is completed.

Remark 3. In the scalar case (n = 1) without loss of generality in the LMIs (14), (18) one can use
P = 1. In the general case, the LMIs of the type (14) and (18) are successfully investigated using
MATLAB (see, for instance, [12–14]).

Corollary 1. In the case k = 0, n = m = 1, the LMIs (14) and (18) are equivalent to the conditions

A + F1D11 < 0, |A + F1D11| > F1|D21|+
1
2

C2
1 , (22)

and
A + F1(D11 + D21) < 0, |A + F1(D11 + D21)|(1− q1|D21|) >

1
2

C2
1 , (23)

respectively.

Proof. Note that via Remark 3, the matrices Ψ0 and Ψ1 by the given conditions are

Ψ0 =

[
Φ0 D21
∗ −R1

]
, Φ0 = 2(A + F1D11) + C2

1 + F2
1 R1 < 0,

and

Ψ1 =

[
Φ1 (A + H)D21
∗ −R1

]
, Φ1 = 2(A + H) + C2

1 + q2
1R1 < 0, H = F1(D11 + D21),

respectively.
Putting R1 for the matrices Φ0 and Φ1

R1 =
2|A + F1D11| − C2

1
2F2

1
and R1 =

2|A + H| − C2
1

2q2
1

,
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respectively, we obtain Φ0 = −F2
1 R1, Φ1 = −q2

1R1, and via Lemma 2, the matrices Ψ0
and Ψ1 are negative definite by the conditions F1R1 > |D21| and q1R1 > |(A + H)D21|,
respectively, which coincides with (22) and (23). The proof is completed.

Remark 4. Note that the condition (17) in the second inequality (23) takes the form q1|D21| < 1
and holds.

Remark 5. It is known that the condition α < 1 in (17) provides exponential stability of the
integral equation Z(t) = 0, i.e., z(t) = −G(t) (10) [4,15]. Sometimes this condition can be
relaxed. For instance, for the simple integral equation

z(t) = −
∞∫
0

t∫
t−s

Bz(τ)dτdK(s) (24)

similarly to [9,16], it can be shown that if there exists a positive definite matrix S ∈ Rn×n such that
the LMI

k1B′SB− k−1
1 S < 0, k1 =

∫ ∞
0 sdK(s), (25)

holds, and then the integral Equation (24) is exponentially stable.
The condition (17) for the integral Equation (24) has the form k1‖B‖ < 1 and is simpler, but,

generally speaking, rougher than (25). Note, however, that in the scalar case (n = 1), both these
conditions coincide.

3. Application to Known Mathematical Models

In this section, several applications of the Theorems 2 and 3 for some known mathe-
matical models are considered.

3.1. Glassy-Winged Sharpshooter Population

The nonlinear mathematical model of the glassy-winged sharpshooter under stochastic
perturbations is described by the equation

dN(t) =
(

I − cN(t)− rN(t) ln
N(t− τ)

K

)
dt + σ(N(t)− N∗)dw(t),

N(s) = N0(s), s ∈ [−τ, 0],
(26)

where I, c, r, τ and K are positive parameters [17,18].
The equation for the equilibrium N∗ of Equation (26) can be written in the form

r ln
N
K

+ c =
I
N

. (27)

Note that for N > 0, the function from the left-hand part of this equation increases
from −∞ to +∞, and the function from the right-hand part of this equation decreases from
+∞ to zero. So, it is clear that this equation has a unique positive solution, N∗.

Equation (26) is a particular case of Equation (4) with

n = m = l = 1, k = 0, a = I, A = −c,

f (N(t), N(t− τ)) = −rN(t) ln
N(t− τ)

K
, dF1(s) = δ(s− τ)ds,

where δ(s) is the Dirac function.
Note that

D11 = −r ln
N∗

K
, D21 = −r, F1 = 1, q1 = τ,

A + F1D11 = − I
N∗

, A + F1(D11 + D21) = −
I

N∗
− r.

(28)
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Using (28) and (27), the linear Equation (7) takes the form

dz(t) =
(
− I

N∗
z(t)− rz(t− τ)

)
dt + σz(t)dw(t),

z(s) =φ(s), s ∈ [−τ, 0].
(29)

By the well-known [4] conditions

I
N∗

> r +
1
2

σ2 or
(

I
N∗

+ r
)
(1− rτ) >

1
2

σ2 (30)

the zero solution of Equation (29) is asymptotically mean square stable, and therefore
(Remark 2) the equilibrium N∗ of Equation (26) is stable in probability.

It is easy to see that both inequalities (30) also follow from the conditions (22) and (23)
of Corollary 1, and the condition (17) takes here the form rτ < 1.

3.2. SIR Epidemic Model

Consider the very popular mathematical model of the spread of infectious diseases
used in research, the so-called SIR epidemic model (see, for instance, [4,9,11,14,19–22]
and references therein). The SIR epidemic model under stochastic perturbations can be
described by the system of stochastic differential equations with distributed delay:

dS(t) =
(

b− βS(t)
∫ ∞

0
I(t− s)dK(s)− µ1S(t)

)
dt + σ1(S(t)− S∗)dw1(t),

dI(t) =
(

βS(t)
∫ ∞

0
I(t− s)dK(s)− (µ2 + λ)I(t)

)
dt + σ2(I(t)− I∗)dw2(t),

dR(t) = (λI(t)− µ3R(t))dt + σ3(R(t)− R∗)dw3(t).

(31)

All parameters, b, β, λ, µ1, µ2 and µ3, are positive constants, K(s) is a nondecreas-
ing function, such that

∫ ∞
0 dK(s) = 1, wi(t) and i = 1, 2, 3, are mutually independent

standard Wiener processes. Equilibria of the system (31) are defined by the system of
algebraic equations

b = βSI + µ1S, βSI = (µ2 + λ)I, λI = µ3R, (32)

with two solutions: E∗0 = (bµ−1
1 , 0, 0) and the positive equilibrium E∗1 = (S∗, I∗, R∗), where

S∗ =
µ2 + λ

β
<

b
µ1

, I∗ =
b(S∗)−1 − µ1

β
, R∗ =

λI∗

µ3
.

The system (31) is a particular case of Equation (4) with

n = l = 3, k = 0, m = 1,

dF1(s) = dK(s), F1 = 1, q1 =
∫ ∞

0
sdK(s),

x(t) =

S(t)
I(t)
R(t)

, a =

b
0
0

, A =

−µ1 0 0
0 −(µ2 + λ) 0
0 λ −µ3

,

f1(x(t), x(t− s)) =

−βS(t)I(t− s)
βS(t)I(t− s)

0

,

the matrix Cj has all zeros elements instead of

cjj = σj, j = 1, 2, 3.

(33)
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Note that

D11 =

−βI∗ 0 0
βI∗ 0 0
0 0 0

, D21 =

0 −βS∗ 0
0 βS∗ 0
0 0 0

. (34)

So, for the equilibrium E∗0 = (bµ−1
1 , 0, 0), we have

D11 =

0 0 0
0 0 0
0 0 0

, D21 =

0 −βbµ−1
1 0

0 βbµ−1
1 0

0 0 0

, A + D11 = A. (35)

Similarly, for the equilibrium E∗1 via (33) and (32), we obtain

D11 =

−βI∗ 0 0
βI∗ 0 0
0 0 0

, D21 =

0 −βS∗ 0
0 βS∗ 0
0 0 0

,

A + D11 =

−b(S∗)−1 0 0
βI∗ −βS∗ 0
0 λ −µ3

.

(36)

Corollary 2. Let there exist positive definite 3× 3 matrices P, R1, satisfying the LMI

Ψ0 =

[
Φ0 PD21
∗ −R1

]
< 0,

Φ0 = P(A + D11) + (A + D11)
′P + R1 +

3

∑
i=1

C′i PCi.
(37)

Then, the equilibrium E∗0 (in the case of (35)) and the equilibrium E∗1 (in the case of (36)) of
the system (31) are stable in probability.

Remark 6. From Lemma 2, it follows that in the both cases (35) and (36), the matrix A + D11 is
the Hurwitz matrix. So, for a small enough σi, i = 1, 2, 3, the matrix Φ0 is a negative definite one.

Note that stability conditions for both equilibria E∗0 and E∗1 of the SIR epidemic model (31) were
investigated in [4,11] and significantly improved in [14] by virtue of the method considered here,
which included a detailed investigation of LMIs of the type (14) and (18) by virtue of MATLAB.

3.3. Heroin Model

Consider the heroin model [23] with stochastic perturbations

dS(t) =
(

Λ− βS(t)
∫ h1

0
U1(t− s)dF1(s)− µS(t)

)
dt

+ σ1(S(t)− S∗)dw1(t),

dU1(t) =
(

βS(t)
∫ h1

0
U1(t− s)dF1(s)− νU1(t) + p

∫ h2

0
U1(t− s)dK1(s)

)
dt

+ σ2(U1(t)−U∗1 )dw2(t),

dU2(t) =
(

p U1(t)− γU2(t)− p
∫ h2

0
U1(t− s)dK1(s)

)
dt

+ σ3(U2(t)−U∗2 )dw3(t),

(38)

where

dF1(s) = f (s)e−νsds, f (s) > 0, dK1(s) = g(s)e−γsds, g(s) > 0,

ν = µ + δ1 + p, γ = µ + δ2, a =
∫ h1

0
dF1(s) < 1, b =

∫ h2

0
dK1(s) < 1.

(39)
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Equilibria of the system (38) are defined by the system of algebraic equations

(µ + aβU1)S = Λ, (aβS + pb)U1 = νU1, p(1− b)U1 = γU2, (40)

with two solutions: E∗0 =

(
Λ
µ

, 0, 0
)

and

E∗1 = (S∗, U∗1 , U∗2 ), S∗ =
ν− pb

aβ
, U∗1 =

Λ(S∗)−1 − µ

aβ
, U∗2 =

p(1− b)
γ

U∗1 . (41)

Note that the equilibrium E∗1 is a positive one by the condition

R0 =
aβΛ

µ(ν− pb)
> 1. (42)

The system (38) is a particular case of Equation (4) with

n = l = 3, k = m = 1, K1 = b, F1 = a,

q1 =
∫ h1

0
sdF1(s), k1 =

∫ h2

0
sdK1(s),

x(t) =

 S(t)
U1(t)
U2(t)

, A =

−µ 0 0
0 −ν 0
0 p −γ

, B1 =

0 0 0
0 p 0
0 −p 0

,

f (x(t), x(t− s)) =

−βS(t)U1(t− s)
βS(t)U1(t− s)

0

,

the matrix Cj has all zeros elements instead of

cjj = σj, j = 1, 2, 3.

(43)

Note that

D11 =

−βU∗1 0 0
βU∗1 0 0

0 0 0

, D21 =

0 −βS∗ 0
0 βS∗ 0
0 0 0

. (44)

So, for the equilibrium E∗0 =

(
Λ
µ

, 0, 0
)

via (43) and (44), we have D11 = 0, H =

bB1 + aD21,

D21 =

0 −βΛµ−1 0
0 βΛµ−1 0
0 0 0

, A + H =

−µ −aβΛµ−1 0
0 −(ν− pb− aβΛµ−1) 0
0 p(1− b) −γ

. (45)

Similarly, for the equilibrium E∗1 via (43), (44) and (40)

A + aD11 =

−Λ(S∗)−1 0 0
aβU∗1 −ν 0

0 p −γ

. (46)

Corollary 3. Let the condition (42) hold, and there exist positive definite 3× 3 matrices P, Q1, R1,
satisfying the LMI

Ψ0 =

Φ0 PB1 PD21
∗ −Q1 0
∗ ∗ −R1

 < 0,

Φ0 = P(A + aD11) + (A + aD11)
′P + b2Q1 + a2R1 +

3

∑
i=1

C′i PCi.
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Then, the equilibrium E∗1 = (S∗, U∗1 , U∗2 ) of the system (38) is stable in probability.

Remark 7. From Lemma 2, it follows that the matrix A + aD11 (46) is the Hurwitz matrix. So,
for a small enough σi, i = 1, 2, 3 and Q1 = R1 = 0, the matrix Φ0 is a negative definite one.

Corollary 4. Let the conditions q1‖D21‖ < 1, R0 < 1 hold, and there exist positive definite 3× 3
matrices P, Q1, R1, satisfying the LMI

Ψ1 =

Φ1 (A + H)′PB1 (A + H)′PD21
∗ −Q1 0
∗ ∗ −R1

 < 0,

Φ1 = P(A + H) + (A + H)′P + b2Q1 + a2R1 +
3

∑
i=1

C′i PCi.

Then, the equilibrium E∗0 =

(
Λ
µ

, 0, 0
)

of the system (38) is stable in probability.

Remark 8. Note that via (42), the condition R0 < 1 indicates that the positive equilibrium E∗1
does not exist and ν > pb + aβΛµ−1. From Lemma 2, it follows that by this condition the matrix
A + H (45) is the Hurwitz matrix. So, for a small enough σi, i = 1, 2, 3 and Q1 = R1 = 0, the
matrix Φ1 is negative definite.

4. Conclusions

A method of investigation to determine equilibria stability for nonlinear delay differen-
tial equations under stochastic perturbations and a high level of nonlinearity was described
in [9]. As was noted there, in future research we plan to apply the proposed method
to more complex nonlinear models. This paper devoted namely to extension of possible
applications of the proposed research method to nonlinear stochastic delay differential
equations of a much more general form. In addition, it is shown that the combination of
the method of Lyapunov functionals with the method of Linear Matrix Inequalities (LMIs)
gives very useful and productive results, allowing for this research method to be used in a
lot of different applications. The author continues this work and hopes to involve all other
interested researchers in it.
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