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Abstract: In this paper, we define and discuss properties of various classes of analytic univalent
functions by using modified q-Sigmoid functions. We make use of an idea of Salagean to introduce the
q-analogue of the Salagean differential operator. In addition, we derive families of analytic univalent
functions associated with new q-Salagean and q-Ruscheweh differential operators. In addition, we
obtain coefficient bounds for the functions in such new subclasses of analytic functions and establish
certain growth and distortion theorems. By using the concept of the (q, δ)-neighbourhood, we provide
several inclusion symmetric relations for certain (q, δ)-neighbourhoods of analytic univalent functions
of negative coefficients. Various q-inequalities are also discussed in more details.
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1. Introduction

In recent decades, the q-derivative has experienced accelerated developments in vari-
ous fields of science due to its numerous applications in mathematical analysis and physical
sciences including q-difference operators, fractional and q-symmetric fractional q-calculus,
optimal control, q-symmetric functions and q-integral equations, to mention but a few (see,
e.g., [1–9]). In [10], Jackson introduces the q-difference operator and discusses some appli-
cations of the q-derivative and the q-integral (see, also, [11] for more details and concepts).
In [12], Srivastava introduces a connection between the geometric function theory of the
complex analysis and the theory of the q-calculus. In [13], Arif et al. describe important ap-
plications of the q-calculus concept. In [14], Ismail et al. describe starlike functions by using
q-difference operators. In [15], Sokol et al. investigate a subclass of analytic functions with a
Ruscheweyh q-differential operator. In [16], Kanas and Raducanu introduce q-analogues of
the Ruscheweyh differential operators and establish some convolution properties of some
normalized analytic functions. In [17], Darus et al. study a q-analogue of some operator by
using q-hypergeometric functions. Moreover, authors of [18–21] apply properties of the
q-difference operator to discuss subclasses of complex analytic functions. In this paper,
we define q-analogues of the Salagean and Ruscheweyh differential operators for certain
univalent functions and study some interesting properties of the obtained results.

LetH be the set of all analytic functions on the unite open disc D = {z ∈ C : |z| < 1.
Let A0 be the subset of H of all functions normalized by f (0) = 0 and f ′(0) = 1 and S
be the set of univalent functions (consult, for details, [22]). For a function f in the class S,
Salagean in [23] introduced a differential operator and studied some of its applications on a
certain subclass of univalent functions. Ruscheweyh in [24] defined the differential operator
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and investigated some properties of the univalent functions. Recently, in various papers,
several authors have introduced generalizations to the Salagean differential operator (see,
e.g., [25]). The q-analogue of the Ruscheweyh operator was also studied in [26–28]. For
more details on this theory, we refer to [29–42] and references cited therein.

For any real number q, 0 < q < 1, the q-difference operator for a complex valued
function f is defined by

Dq f (z) =
f (z)− f (qz)

z− qz
, z ∈ D.

It is clear that Dq f → f ′ when q → 1. Let U denote the subclass of all normalized
functions f inH such that

f (z) = z−
∞

∑
k=1

akzk, ak ≥ 0. (1)

Then, for every function f furnished by (1), we assert that

Dq f (z) = 1−
∞

∑
k=2

[k]qakzk, ak ≥ 0,

where [k]q = 1−qn

1−q , 0 ≤ q < 1 and n ∈ N. The q-real number for a ∈ C is defined by [11]

(a; q)n =

{
1, n = 0,
∏n−1

i=0 (1− aqi), n ∈ N.
(2)

Therefore, for a complex number α, we use the following notation to denote the
q-binomial coefficients [43]

Bk
q(α) =

(
α

k

)
q
=

{
1, k = 0,
(1−qα)(1−qα−1)...(1−qα−k+1)

(q;q)k
, k ∈ N.

The q-analogue exponential function is defined in [43] by

es
q = 1 +

∞

∑
k=1

sk

[k]q!
,

where the q-factorial [k]q! is given by

[k]q! =
{

1, k = 0,
[k]q[k− 1]q . . . [1]q, k = 1, 2, . . .

The modified q-Sigmoid function is defined in [43] by

γq(s) =
1

1 + es
q

. (3)

Alternatively, it can be expressed as

γq(s) = 1 +
1

2[1]q!
s +

(
1

4([1]q!)2 −
1

2[2]q!

)
s2 +

(
1

2[3]q!
− 1

2[1]q![2]q!
+

1
(2[1]q!)3

)
s3 + . . . ,

where the q-factorial [k]q! is given by

[k]q! =
{

1, k = 0,
[k]q[k− 1]q . . . [1]q, k = 1, 2, . . .
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By keeping track of the definition of the q-Sigmoid function γq(s), we define

fγq(z) = z−
∞

∑
k=2

γq(s)akzk, ak ≥ 0. (4)

Hence, we introduce the (q, λ)-Salagean differential operator for the function fγq(z)
to be

D0
q,λ fγq(z) = fγq(z);

Dq,λ fγq(z) = γq(s)
(
(1− λ) fγq(z) + λzDq fγq(z)

)
;

...

Dn
q,λ fγq(z) = Dq,λ(Dn−1

q,λ fγq(z)),

where n ∈ N0 = N
⋃{0}.

If f is satisfies (4), then we have

Dn
q,λ fγq(z) = γn

q (s)z−
∞

∑
n=k

γn+1
q (s)

[
(1− λ) + λ[k]q

]nakzk. (5)

From the preceding definition, we observe that if s = 0 and q→ 1−, then we have

Dn
λ f (z) = z−

∞

∑
k=2

[1 + (k− 1)λ]nakzk,

where the operator Dλ f is the generalized Salagean differential operator defined by [25].
Let f be given by (1), then the q-analogue involving a modified q-Sigmoid function of the
Ruscheweyh operator is defined by

Rn
q fγq(z) = z−

∞

∑
n=2

γq(s)Bk
q(n)akzk, (6)

where Bk
q(n) has a significance of (2).

Definition 1. Let f ∈ U and 0 ≤ q ≤ 1. Then, we define Sn,R
γq (α) to be the subclass of U defined as

Sn,R
γq (α) =

{
f ∈ U : Re

(
zDqRn

q fγq(z)
Rn

q fγq(z)

)
> α, z ∈ D

}
.

Definition 2. Let f ∈ U and 0 ≤ q ≤ 1. Then, by Cn,R
γq (α) we denote the subclass of U such that

Cn,R
γq (α) =

{
f ∈ U : Re

(
1 +

zDq(zDqRn
q fγq(z))

zDqRn
q fγq(z)

)
> α, z ∈ D

}
.

In [44,45], the authors raised a definition of the (n, δ)-neighbourhood of a function f
in U . In [46], they introduced the (δ, q)-neighbourhood of a function f ∈ U in the form

Nδ,q( f ) =

{
g ∈ Up : g(z) = z−

∞

∑
k=n

bkzk and
∞

∑
k=n

[k]q|ak − bk| ≤ δ

}
, (δ > 0). (7)
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Therefore, it can be inferred from (7) that if h(z) = z, then

Nδ,q(h) =

{
g ∈ U : g(z) = z−

∞

∑
k=n

bkzk and
∞

∑
k=n

[k]q|bk| ≤ δ

}
, (δ > 0). (8)

However, the aim of the present paper is to discuss various characteristics of an analytic
univalent function in the class Tn,R

γq (µ, α) of those functions f possessing the inequality

Re

{
zDqRn

q fγq(z) + µzDq(zDqRn
q fγq(z))

(1− µ)Rn
q fγq(z) + µzDqRn

q fγq(z)

}
> α, (z ∈ D, 0 ≤ µ ≤ 10 ≤ α < 1). (9)

Clearly, in terms of the simpler classes Sn,R
γq (α) and Cn,R

γq (α), we, respectively, have

Tn,R
γq (0, α) = Sn,R

γq ,λ(α) and Tn,R
γq (1, α) = Cn,R

γq (α).

For further demonstration, we denote by Kn,R
γq (µ, α) the subclass of U of all functions

f possessing the inequality

Re
{

Rn
q fγq(z) + µzDqRn

q fγq(z)
}
> α.

Now, we combine the q-analogue of the generalized Salagean differential operator
involving the modified q-Sigmoid function defined by (5) and the Ruscheweyh operator
involving the modified q-Sigmoid function expressed in (6) to obtain a new operator
as follows:

Ψn
q,λ fγq(z) = βDn

γq ,λ fγq(z) + (1− β)Rn
q fγq(z), 0 ≤ λ ≤ 1, 0 ≤ β ≤ 1, z ∈ U.

Thus, we write

Ψn
q,λ fγq(z) =

(
βγn

q (s)− β + 1
)

z−
∞

∑
k=2

γq(s)
[

βγn
q (s)

[
(1− λ) + λ[k]q

]n
+ (1− β)Bk

q(n)
]

akzk.

Definition 3. Let f ∈ U , 0 ≤ q ≤ 1 and 0 ≤ λ ≤ 1. Then, we define the subclass Sn,Ψ
γq ,λ(α) of the

class U by

Sn,Ψ
γq ,λ(α) =

{
f ∈ U : Re

(
zDqΨn

q,λ fγq(z)

Ψn
q,λ fγq(z)

)
> α, z ∈ D

}
.

Definition 4. Let f ∈ U , 0 ≤ q ≤ 1 and 0 ≤ λ ≤ 1. Then, we define the subclass Cn,Ψ
γq ,λ(α) of the

class U by

Cn,Ψ
γq ,λ(α) =

{
f ∈ U : Re

(
1 +

zDq(zDqΨn
q,λ fγq(z))

zDqΨn
q,λ fγq(z)

)
> α, z ∈ D

}
.

Finally, let Tn,Ψ
γq ,λ(µ, α) denote the subclass of U of functions such that the following

inequality holds

Re

{
zDqΨn

q,λ fγq(z) + µzDq(zDqΨn
q,λ fγq(z))

(1− µ)Ψn
q,λ fγq(z) + µzDqΨn

q,λ fγq(z)

}
> α, (z ∈ D, 0 ≤ µ ≤ 10 ≤ α < 1). (10)
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Then, in terms of the simpler classes Sn,Ψ
γq ,λ(α) and Cn,Ψ

γq ,λ(α), we, respectively, have

Tn,Ψ
γq ,λ(0, α) = Sn,Ψ

γq ,λ(α) and Tn,Ψ
γq ,λ(1, α) = Cn,Ψ

γq ,λ(α).

Furthermore, let Kn,Ψ
γq ,λ(µ, α) denote the subclass of U of functions f that satisfy the

inequality

Re
{

Ψn
q,λ fγq(z) + µzDqΨn

q,λ fγq(z)
}
> α.

One part of deriving a set of coefficient bounds for each of such function classes is
to establish several inclusion relationships associated with the (q, δ)-neighbourhoods of
analytic univalent functions of negative missing coefficients in the same subclasses.

2. A Set of Coefficient q-Inequalities

In this section, we establish the following result, which gives a coefficient inequality
for functions in the subclass Tn,Ψ

γq ,λ(µ, α).

Theorem 1. Let n ∈ N
⋃{0} be a fixed number. A function f ∈ U is in the class Tn,Ψ

γq ,λ(µ, α) if
and only if

∞

∑
k=2

φk

[
αµ− α + (1− αµ)[k]q + µ[k]2q

]
ak,≤ (1 + µ− α)(βγn

q (s)− β + 1) (11)

(0 ≤ q < 1, 0 ≤ β ≤ 1, 0 ≤ µ < 1, 0 ≤ α < 1, z ∈ D),

where

φk = γq(s)
[

βγn
q (s)

[
(1− λ) + λ[k]q

]n
+ (1− β)Bk

q(n)
]
, k = 2, 3, . . . . (12)

This result is sharp.

Proof. Assume that f ∈ Tn,Ψ
γq ,λ(µ, α). Then, we have

Re

 (1 + µ)(βγn
q (s)− β + 1)−∑∞

k=2 φk

[
[k]q + µ[k]2q

]
akzk−1

βγn
q (s)− β + 1−∑∞

k=2 φk

[
1− µ + µ[k]q

]
akzk−1

 > α,

(0 ≤ q < 1, 0 ≤ β ≤ 1, 0 ≤ µ < 1, 0 ≤ α < 1, z ∈ D).

Choose z to be real and let z→ 1−. Then, we obtain

(1 + µ)(βγn
q (s)− β + 1)−∑∞

k=2 φk

[
[k]q + µ[k]2q

]
ak

γn
q (s)− β + 1−∑∞

k=2 φk

[
1− µ + µ[k]q

]
ak

> α,

(0 ≤ q < 1, 0 ≤ β ≤ 1, 0 ≤ µ < 1, 0 ≤ α < 1, z ∈ D).

Or, alternatively, we write

(1 + µ)(βγn
q (s)− β + 1)−

∞

∑
k=2

φk

[
[k]q + µ[k]2q

]
ak ≥ α

(
γn

q (s)− β + 1
)
−

∞

∑
k=2

αφk

[
1− µ + µ[k]q

]
ak,

(0 ≤ q < 1, 0 ≤ β ≤ 1, 0 ≤ µ < 1, 0 ≤ α < 1, z ∈ D).
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Thus, it follows

−
∞

∑
k=2

φk

[
αµ− α + (1− αµ)[k]q + µ[k]2q

]
ak ≥ (α− 1− µ)(βγn

q (s)− β + 1)

(0 ≤ q < 1, 0 ≤ β ≤ 1, 0 ≤ µ < 1, 0 ≤ α < 1, z ∈ D),

which is precisely the assertion (11) of Theorem 1.
Conversely, assume that the inequality (11) truly holds and let

z ∈ ∂D = {z ∈ C : |z| = 1}.

Then, from the assertion (10) and the assumption that the inequality (11) holds, we
find that∣∣∣∣∣ zDqΨn

q,λ fγq(z) + µzDq(zDqΨn
q,λ fγq(z))

(1− µ)Ψn
q,λ fγq(z) + µzDqΨn

q,λ fγq(z)
− (1 + µ− α)

∣∣∣∣∣
=

∣∣∣∣∣∣
α(βγn

q (s)− β + 1)−∑∞
k=2 φk

[
µ[k]2q + (1− µ(1 + µ− α))[k]q − (1− µ)(1 + µ− α)

]
akzk−1

βγn
q (s)− β + 1−∑∞

k=2 φk

[
1− µ + µ[k]q

]
akzk−1

∣∣∣∣∣∣
≤

α(βγn
q (s)− β + 1) + ∑∞

k=2 φk

[
µ[k]2q + (1− µ(1 + µ− α))[k]q − (1− µ)(1 + µ− α)

]
ak|z|k−1

βγn
q (s)− β + 1−∑∞

k=2 φk

[
1− µ + µ[k]q

]
ak|z|k−1

=
α(βγn

q (s)− β + 1) + ∑∞
k=2 φk

[
µ[k]2q + [k]q

]
ak|z|k−1 − (1 + µ− α)∑∞

k=2 φk

[
µ[k]q + (1− µ)

]
ak|z|k−1

βγn
q (s)− β + 1−∑∞

k=2 φk

[
1− µ + µ[k]q

]
ak|z|k−1

≤ 1 + µ− 2α.

Thus, the maximum modulus theorem reveals f ∈ Tn,Ψ
q,λ (µ, α). Finally, it is clear that

the assertion (11) of Theorem 1 is sharp, where the extremal function is given by

f (z) = z−
(1 + µ− α)(βγn

q (s)− β + 1)

φk

[
αµ− α + (1− αµ)[k]q + µ[k]2q

] zk

(0 ≤ q < 1, 0 ≤ β ≤ 1, 0 ≤ µ < 1, 0 ≤ α < 1, z ∈ D).

Hence, we have the required result.

Putting β = 0 in Theorem 1, one may derive the following corollary.

Corollary 1. Let n ∈ N
⋃{0} be a fixed number. A function f ∈ U is in the class Tn,R

q,λ (µ, α) if
and only if

∞

∑
k=2

Bk
q(n)

[
αµ− α + (1− αµ)[k]q + µ[k]2q

]
ak ≤

1 + µ− α

γq(s)

(0 ≤ q < 1, , 0 ≤ µ < 1, 0 ≤ α < 1, z ∈ D).

This result is indeed sharp for a function f in the form

f (z) = z− 1 + µ− α

γq(s)(Bk
q(n)

[
αµ− α + (1− αµ)[k]q + µ[k]2q

]
)

zk, (0 ≤ q < 1, 0 ≤ µ < 1, 0 ≤ α < 1, z ∈ D).
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Similarly, we can prove the following theorem.

Theorem 2. Let n ∈ N
⋃{0} be a fixed number. A function f ∈ U is a member in the class

KnΨ
q,λ(µ, α) if and only if

∞

∑
k=2

φk(1 + µ[k]q)ak ≤ (1 + µ)(βγn
q (s)− β + 1)− α, (13)

(0 ≤ q < 1, 0 ≤ β ≤ 1, 0 ≤ µ < 1, 0 ≤ α < 1, z ∈ D),

where φk is given by (12).
This result is sharp for a function f given by

f (z) = z−
(1 + µ)(βγn

q (s)− β + 1)− α

φk(1 + µ[k]q)
zk, (0 ≤ q < 1, 0 ≤ β ≤ 1, 0 ≤ µ < 1, 0 ≤ α < 1, z ∈ D).

Putting β = 0 in Theorem 2, we derive a corollary as follows.

Corollary 2. Let n ∈ N
⋃{0} be a fixed number. A function f ∈ U is in the class N n,R

q (µ, α) if
and only if

∞

∑
k=2

Bk
q(n)ak ≤

1 + µ− α

γq(s)
, 0 ≤ q < 1, 0 ≤ µ < 1, 0 ≤ α < 1, z ∈ D.

(0 ≤ q < 1, , 0 ≤ µ < 1, 0 ≤ α < 1, z ∈ D).

This result is indeed sharp for a function f in the form

f (z) = z− 1 + µ− α

γq(s)Bk
q(n)ak

, (0 ≤ q < 1, , 0 ≤ µ < 1, 0 ≤ α < 1, z ∈ D).

Theorem 3. Let the function f be given by (1) and φk be given by (12). If f is in the class
Tn,Ψ

q,λ (µ, α), then we have

∞

∑
k=2

[k]qak ≤
(1 + µ− α)(βγn

q (s)− β + 1)

φk

[
1− αµ + µ[k]q

] (
1 +

αµ− α

αµ− α + (1− αµ)[k]q + µ[k]2q

)
. (14)

Proof. By using the assertion (11) in Theorem 1, we obtain

φk

(
αµ− α + (1− αµ[k]q + µ[k]2q

) ∞

∑
k=2

akzk ≤
∞

∑
k=2

φk

(
αµ− α + (1− αµ)[k]q + µ[k]2q

)
akzk

≤ (1 + µ− α)(βγn
q (s)− β + 1),

which immediately yields

∞

∑
k=2

akzk ≤
(1 + µ− α)(βγn

q (s)− β + 1)

φk

(
αµ− α + (1− αµ)[k]q + µ[k]2q

) . (15)

Furthermore, by using the inequality (11), we have

φk(αµ− α)
∞

∑
k=2

ak + φk

(
1− αµ + µ[k]q

) ∞

∑
k=1

[k]qak

≤
∞

∑
k=2

φk

(
α− αµ + (1− αµ)[k]q + µ[k]2q

)
ak ≤ (1 + µ− α)(βγn

q (s)− β + 1).
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It follows from the inequality (15) that

φk

(
1− αµ + µ[k]q

) ∞

∑
k=1

[k]qak ≤ (α− αµ)
(1 + µ− α)(βγn

q (s)− β + 1)

αµ− α + (1− αµ)[k]q + µ[k]2q
+ (1 + µ− α)(βγn

q (s)− β + 1).

Hence, we derived the desired inequality as presented in (14).

Putting β = 0 in Theorem 3, we state without proof a corollary as follows.

Corollary 3. Let f be a function furnished by (1). If f is in the class Tn,R
q,λ (µ, α), then we have

∞

∑
k=2

[k]qak =
1 + µ− α

γq(s)Bk
q(n)

[
1− αµ + µ[k]q

](1 +
αµ− α

αµ− α + (1− αµ)[k]q + µ[k]2q

)
. (16)

Similarly, by invoking inequality (13) in Theorem 2, we prove a new theorem as follows.

Theorem 4. Let f be a function given by (1) and φk be given by (12). If f is in the classN n,Ψ
q,λ (µ, α),

then we have

∞

∑
k=2

ak ≤
(1 + µ)(βγn

q (s)− β + 1)− α

φk

(
1 + µ[k]q

)
and

∞

∑
k=2

[k]qak =
(1 + µ)(βγn

q (s)− β + 1)

µφk

(
1− 1

1 + µ[k]q

)
+

α

µφk(1 + µ[k]q)
. (17)

Putting β = 0 in Theorem 4, we derive a new corollary as follows.

Corollary 4. Let the function f be given by (1). If f is in the class N n,R
q,λ (µ, α), then we have

∞

∑
k=2

[k]qak =
1 + µ

µγq(s)Bk
q(n)

(
1− 1

1 + µ[k]q

)
+

α

µq(s)Bk
q(n)(1 + µ[k]q)

. (18)

In the following, we have the following growth and distortion theorem for the defined
subclasses of univalent functions.

Theorem 5. Let a function f be given by (1). If f ∈ Tn,Ψ
γq ,λ(µ, α), then we have

r− r2 (1 + µ− α)(βγn
q (s)− β + 1)

φk

(
αµ− α + (1− αµ)[k]q + µ[k]2q

) ≤ | f (z)| ≤ r + r2 (1 + µ− α)(βγn
q (s)− β + 1)

φk

(
αµ− α + (1− αµ)[k]q + µ[k]2q

) , (19)

where φk is defined in assertion (12).

Proof. Since f ∈ Tn,Ψ
q,λ (µ, α), let z→ 1− in the above inequality to have

∞

∑
k=2

ak ≤
(1 + µ− α)(βγn

q (s)− β + 1)

φk

(
αµ− α + (1− αµ[k]q + µ[k]2q

) . (20)
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In addition, since the function f is given by (1), we obtain

|z| − |z|2
∞

∑
k=2

ak|z|k−2 ≤ | f (z)| ≤ |z|+ |z|2
∞

∑
k=2

ak|z|k−2.

Thus, it gives

|z| − |z|2
∞

∑
k=2

ak ≤ | f (z)| ≤ |z|+ |z|2
∞

∑
k=2

ak.

Hence, by using the inequality (20) we obtain the desired inequality of (19).

Putting β = 0 in Theorem 5, we derive the following corollary.

Corollary 5. Let f be a function given by (1). If f ∈ Tn,R
q,λ (µ, α), then we have

r− r2 (1 + µ− α)

Bk
q(n)γq(s)

(
αµ− α + (1− αµ)[k]q + µ[k]2q

) ≤ | f (z)|
≤ r + r2 (1 + µ− α)

Bk
q(n)γq(s)

(
αµ− α + (1− αµ)[k]q + µ[k]2q

) .

By following a proof similar to the proof of Theorem 5, we prove the following theorem.

Theorem 6. Let f be a function given by (1). If f ∈ Tn,Ψ
γq ,λ(µ, α), then we have

|Dq f (z)| ≤ 1 + r
(1 + µ)(βγn

q (s)− β + 1)

µφk

(
1− 1

1 + µ[k]q

)
+

α

µφk(1 + µ[k]q)
,

|Dq f (z)| ≥ 1− r
(1 + µ)(βγn

q (s)− β + 1)

µφk

(
1− 1

1 + µ[k]q

)
+

α

µφk(1 + µ[k]q)
.

where φk is defined in assertion (12).

Putting β = 0 in the Theorem 5, we derive the following corollary.

Corollary 6. Let the function f be given by (1). If f (z) ∈ Tn,R
γq ,λ(µ, α), then we have

|Dq f (z)| ≤ 1 + r
1 + µ− α

γq(s)Bk
q(n)

[
1− αµ + µ[k]q

](1 +
αµ− α

αµ− α + (1− αµ)[k]q + µ[k]2q

)
,

|Dq f (z)| ≥ 1− r
1 + µ− α

γq(s)Bk
q(n)

[
1− αµ + µ[k]q

](1 +
αµ− α

αµ− α + (1− αµ)[k]q + µ[k]2q

)
.

3. Inclusion Relations Involving the (n, δ)-Neighborhoods

In this section, we derive inclusion relations associated with the (n, δ)-neighbourhoods
and properties for each of the following subclasses of univalent functions with negative
coefficients as follows.

Theorem 7. Let f be given by (1), φk be given by (12) and h(z) = z for each z ∈ D. If f is in the
class Tn,Ψ

q,λ (µ, α), then we have

Tn,Ψ
q,λ (µ, α) ⊆ Nδ,q(h), (21)
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where

δ :=
(1 + µ− α)(βγn

q (s)− β + 1)

φk

[
1− αµ + µ[k]q

] (
1 +

αµ− α

αµ− α + (1− αµ)[k]q + µ[k]2q

)
.

Proof. By using the definition of Nδ,q(h) in (8), which is given when g is replaced by f , and
using inequality (14) in Theorem 3, we derive the assertion presented (22).

Similarly, by using the inequalities (16)–(18) and the definition of Nδ,q(h) presented
in (8), we derive the three following theorems.

Theorem 8. Let f be a function be given by (1) and h(z) = z for each z ∈ D. If f belongs to the
class Tn,R

q,λ (µ, α), then we have

Tn,R
q,λ (µ, α) ⊆ Nδ,q(h),

where

δ :=
1 + µ− α

γq(s)Bk
q(n)

[
1− αµ + µ[k]q

](1 +
αµ− α

αµ− α + (1− αµ)[k]q + µ[k]2q

)
.

Theorem 9. Let f be a function given by (1), φk be given by (12) and h(z) = z for each z ∈ D. If
f falls in the class N n,Ψ

q,λ (µ, α), then we have

N n,Ψ
q,λ (µ, α) ⊆ Nδ,q(h), (22)

where

δ :=
(1 + µ)(βγn

q (s)− β + 1)

µφk

(
1− 1

1 + µ[k]q

)
+

α

µφk(1 + µ[k]q)
.

Theorem 10. Let the function f be given by (1) and h(z) = z for each z ∈ D. If f is in the class
N n,R

q,λ (µ, α), then we have

N n,R
q,λ (µ, α) ⊆ Nδ,q(h),

where

δ :=
1 + µ

µγq(s)Bk
q(n)

(
1− 1

1 + µ[k]q

)
+

α

µq(s)Bk
q(n)(1 + µ[k]q)

.

Definition 5. The function f ∈ U is said to belong to the class Sn,Ψ
q,λ (µ, ζ) if there exists a function

g ∈ N n,Ψ
q,λ (µ, α)) such that ∣∣∣∣ f (z)

g(z)
− 1
∣∣∣∣ ≤ η, (0 < η ≤ 1),

where

g(z) = z +
∞

∑
k=2

bnzn, (z ∈ D). (23)
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Theorem 11. Let the function f be given by (23), φk be given by (12) and g ∈ N n,Ψ
q,λ (µ, α)). If

ζ ≤ 1−
2δφk(1 + µ[k]q)

[2]q
(

φk

(
1 + µ[k]q

)
− (1 + µ)(βγn

q (s)− β + 1)
) ,

then we have

Nδ,q(h) ⊆ Sn,Ψ
q,λ (µ, ζ).

Proof. Suppose that f ∈ Nδ,q(g), then in view of the relation (7), we have

∞

∑
k=2

[k]q|ak − bk| ≤ δ. (24)

Since {[n]q} is a non-decreasing sequence, we obtain

∞

∑
k=2

[2]q|ak − bk| ≤
∞

∑
k=2

[k]q|ak − bk|.

This implies that

[2]q
∞

∑
k=2
|ak − bk| ≤

∞

∑
k=2

[k]q|ak − bk|,

which, in view of the inequality (24), reveals

∞

∑
k=2
|ak − bk| ≤

δ

[2]q
, (0 ≤ q < 1, δ ≥ 0).

Therefore, for a function g in the class Sn,Ψ
q,λ (µ, ζ), expressed by (23), by using the

inequality (17), we obtain

∞

∑
k=2
|bk| ≤

(1 + µ)(βγn
q (s)− β + 1)− α

φk(1 + µ[k]q)
.

By applying the equations (1) and (23) and the fact that |z| < 1, we get∣∣∣∣ f (z)
g(z)

− 1
∣∣∣∣ =

∣∣∣∣∣∑∞
k=2(ak − bk)zk−1

1 + ∑∞
k=2 bnzn−1

∣∣∣∣∣ ≤ ∑∞
k=2 |ak − bk|

1−∑∞
k=2 bk

(25)

≤ δ

[2]q

(
1

1−∑∞
k=2 |bk|

)
(26)

≤ δ

[2]q

 φk

(
1 + µ[k]q

)
φk

(
1 + µ[k]q

)
− (1 + µ)(βγn

q (s)− β + 1)

. (27)

If we set

ζ ≤ 1−
2δφk(1 + µ[k]q)

[2]q
(

φk

(
1 + µ[k]q

)
− (1 + µ)(βγn

q (s)− β + 1)
) ,

then, in view of the definition (5) and the inequality (25), we obtain that f ∈ Sn,Ψ
q,λ (µ, ζ). Hence,

the proof of the theorem is completed.

Putting β = 0 in Theorem 11 leads to the following theorem.
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Theorem 12. Let the function f be given by (23) and g ∈ N n,R
q,λ (µ, α)). If

ζ ≤ 1−
2δγq(s)Bk

q(n)(1 + µ[k]q)

[2]q
(

γq(s)Bk
q(n)

(
1 + µ[k]q

)
− (1 + µ)

) ,

then we have

Nδ,q(h) ⊆ Sn,R
q,λ (µ, ζ).

4. Conclusions

In the present work, certain analytic functions and new q-analogues of the Salagean
differential operator are, respectively, obtained by using a modified q-Sigmoid function and
a recent idea of Salagean. In addition, certain classes of analytic univalent functions associ-
ated with new q-Salagean differential operators and q-Ruscheweh operators are obtained.
Moreover, coefficient bounds for functions in the mentioned subclasses and the growth
and distortion theorems are established. Following the concept of (q, δ)-neighbourhoods
of analytic univalent functions, several inclusion relations for the (q, δ)-neighbourhood of
these functions are discussed.
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