Article

Well-Posedness for Nonlinear Parabolic Stochastic Differential Equations with Nonlinear Robin Conditions

Mogtaba Mohammed ${ }^{1,2}$

Citation: Mohammed, M. Well-Posedness for Nonlinear Parabolic Stochastic Differential Equations with Nonlinear Robin Conditions. Symmetry 2022, 14, 1722.
https:/ /doi.org/10.3390/ sym14081722

Academic Editor: Marin Marin

Received: 2 July 2022
Accepted: 29 July 2022
Published: 18 August 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1 Department of Mathematics, College of Science, Al-Zulfi Majmaah University, Al-Majmaah 11952, Saudi Arabia; mogtaba.m@mu.edu.sa or mogtaba.mohammed@gmail.com
2 Department of Mathematics, College of Science, Sudan University of Science and Technology, Khartoum 13311, Sudan

Abstract

In this paper, we present the existence and uniqueness of strong probabilistic solutions for nonlinear parabolic Stochastic Partial Differential Equations (SPDEs) with nonlinear Robin boundary conditions in a domain with holes. On the boundary of the holes, a nonlinear Robin condition is imposed, while a homogeneous Dirichlet condition is prescribed on the exterior boundary. The coefficient matrix is assumed to be symmetric, while the nonlinear random forces are assumed to satisfy some types of regularities. We use Galerkin's approximation method, probabilistic compactness results and some results from stochastic calculus.

Keywords: stochastic PDES; Robin boundary conditions; existence and uniqueness; perforated domains

1. Introduction

The groundbreaking contributions of Bensoussan and Temam [1,2] throughout the 1970s can be credited with launching the mathematically rigorous investigation of Stochastic Partial Differential Equations (SPDEs). The theses of Viot [3] and Pardoux [4] came after the Bensoussan and Temam results. Viot uses the compactness approach to address significant types of nonlinear SPDEs within the context of weak probabilistic solutions in infinite dimensions. Using the monotonicity principle, Pardoux established a rather general theory of strong solutions for nonlinear equations. The foundational research of Krylov and Rozovskii [5], which focuses on general investigations on theories of strong probabilistic solutions employing compactness and traditional monotonicity approaches, further extends this theory, see also [6-8], for more interesting results in the theoretical framework. Recently, there are several results answering interesting questions for the existence and uniqueness of stochastic models in applications [9-15]. The investigation of the asymptotic behavior for composite materials and flow of fluid in fixed and porous media has been very well established (from mathematical analysis point of view) by the so called homogenization theory, see, for instance, [16-18] and the references therein, for homogenization of deterministic partial differential equations. We also mention that there are few results in the stochastic setting, see [19-22]. However, one of the most important principles on which the theory of homogenization depends is the well posedness of the governing equation. Despite the fact that the problem considered in this paper models well motivated physical problems such as the random effect on climatization or some chemical reactions, see $[18,23]$. Up to the author's knowledge, homogenization results for these types of models have not been investigated, let alone existence and uniqueness results. From this point of view, the findings of this paper are new, and open the door for many problems in the homogenization and asymptotic analysis for SPDEs. The aim of this paper is to give some existence and uniqueness results for strong probabilistic solutions of nonlinear
stochastic equations in the perforated domain $D \subset \mathbb{R}^{n}$. More precisely, we consider the following problem:

$$
(I)\left\{\begin{array}{l}
d v-\operatorname{div} A \nabla v d t=F_{1}(v) d t+F_{2}(t, x, v) d B \text { in }(D \backslash S) \times(0, T) \\
A \nabla v \cdot \hat{n}+h(v)=g \quad \text { on } \partial S \times(0, T) \\
v=0 \quad \text { on } \quad(\partial D \backslash \partial S) \times(0, T), \\
v(x, 0)=v_{0}(x), \quad \text { in } D ;
\end{array}\right.
$$

where D is an open bounded domain in \mathbb{R}^{n}, S is a connected subset included in D with Lipschitz boundary, \hat{n} is the unit outward normal to the set $S, T \in(0, \infty), B=(B(t))$ $(t \in[0, T])$ is an m-dimensional standard Wiener process, i.e., $t \times \Omega \mapsto B(t, \omega)$ $(t \in(0, T))=\left(B_{1}(t, \omega), \cdots, B_{m}(t, \omega)\right)$ such that $B_{k}(t, \omega), k=1, \cdots, m$ are one dimensional standard Wiener processes that are identically distributed and pairwise independent, and B is defined on a given filtered complete probability space $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}\right)$. The model considered in this paper is related to homogenization theory on material science and engineering. Further, the model is physically motivated by the fact that several composites of the thermal conductivity depend, in a nonlinear way, on the temperature itself. Moreover, the nonlinear Robin boundary conditions appear in several physical models such as climatization or some chemical reactions, see $[18,23]$. Let us consider the following assumptions:
$\left(A_{1}\right)$ The matrix $A(x)=\left(a_{i, j}(x)_{1 \leq i, j \leq n}\right.$ is an $n \times n$, symmetric, bounded and:

$$
(A \eta, \eta) \geq \beta|\eta|^{2}, \quad \beta>0 \quad \text { and } \eta \in \mathbb{R}^{n} \quad \text { (coercivity). }
$$

$\left(A_{2}\right) F_{1} \in L_{2}\left(0, T ; L_{2}(D)\right) \quad$ such that $\left\|F_{1}(t, v)\right\| \leq C\left(1+\|v\|_{L_{2}(D)}\right)$,
$\left(A_{3}\right) F_{2}(t, x, v)$ is an m-dimensional vector function whose components:
$F_{2 j}(t, x, v)$ satisfy the following conditions:

- $\quad F_{2 j}(t, x, v)$ is measurable with respect to x for almost all $t \in(0, T)$ and for all $u \in L_{2}(D)$;
- $\quad F_{2 j}(t, x, v)$ is continuous with respect to u for almost all $(t, x) \in(0, T) \times D$, and there exists a positive constant C independent of t and x such that
$\left\|F_{2 j}(t, x, v)\right\|_{L_{2}(D)} \leq C\left(1+\|v\|_{L_{2}(D)}\right) ;$
- $\quad F_{2 j}(t, x, v)$ satisfies Lipschitz condition with respect to the L_{2} metric.

The differential $F_{2} d B$ is understood in the sense of Itô.
$\left(A_{4}\right) h: \mathbb{R} \times(0, T) \rightarrow \mathbb{R}$, such that:
$\left(\mathbb{I}_{1}\right) h$ is continuously differentiable function in the first argument $t \in[0, T] ;$
$\left(\mathbb{I}_{2}\right) h$ is monotonously non-decreasing in the first argument;
$\left(\mathbb{I}_{3}\right) h(t, 0)=0, \forall t \in[0, T]$;
$\left(\mathbb{I}_{4}\right)$ There exists a positive constant C and q with $0 \leq q \leq \infty$ if $n=2$ and $0 \leq q \leq \frac{n}{n-2}$ if $n \geq 2$ such that $|h(t, u)| \leq C\left(1+|v|^{q}\right)$.

Remark 1. With the assumption made on the nonlinear boundary function h, one could easily see that:

- $\quad h(v(x, t)) . v(x, t) \geq 0$ for all functions $v: D \times(0, t) \mapsto \mathbb{R}$;
- For any functions $v, \psi \in L_{2}\left(0, T ; H^{1}(D \backslash S)\right.$ we have:

$$
\int_{0}^{T} \int_{\partial S}|h(v(x, t)) \psi(x, t)| d t d \sigma<\infty
$$

With the preceding context, we state the main result of this paper:
Theorem 1. Assume that the hypotheses $\left(A_{1}\right)-\left(A_{4}\right)$ hold and the function having the properties $\mathbb{I}_{1}-\mathbb{I}_{4}$. Then there exists a unique strong probabilistic solution (v, B) of the problem (I).

The proof of this result will be carried out in the sections that follow.

2. Tightness Property

This section establishes the tightness of probability measures. We refer to [19,24,25]. for more information on relatively compactness, tightness of probability measures, and Prokhorov and Skorokhod compactness results. Let \mathcal{J} be a separable Banach space and consider its Borel σ-field to be $\mathcal{B}(\mathcal{J})$.

We also consider $\left\{\mu_{m}\right\}$ and $\left\{v_{m}\right\}, \mu_{m} \geq 0$ and $v_{m} \geq 0$ for all $m \in \mathbb{N}$ such that $\mu_{m} \rightarrow 0$ and $v_{m} \rightarrow 0$ as $m \rightarrow \infty$ and $\sum_{m} \frac{\sqrt{\mu_{m}}}{v_{m}}<\infty$, and define the set \mathcal{N}_{*} as follows:

$$
\begin{gathered}
\mathcal{N}_{*}=\left\{v: \sup _{0 \leq t \leq T}\|v\|_{L_{2}(D)}^{2} \leq C_{1}, \quad \int_{0}^{T}\|v\|_{H_{0}^{1}(D)}^{2} d t \leq C_{2}\right. \\
\left.\sup _{0 \leq t \leq T} \frac{1}{v_{m}} \sup _{|\theta| \leq \mu_{m}} \int_{0}^{T-\theta}\|v(t+\theta)-v(t)\|_{H^{-1}(D)}^{2} d t \leq C 3\right\} .
\end{gathered}
$$

The norm of \mathcal{N}_{*} is given by:

$$
\begin{aligned}
& \|v,\|_{\mathcal{N}_{*}}=\sup _{0 \leq t \leq T}\|v\|_{L_{2}(D)}+\left(\int_{0}^{T}\|v\|_{H_{0}^{1}(D)}^{2} d t\right)^{\frac{1}{2}} \\
+ & \sup _{0 \leq t \leq T} \frac{1}{v_{m}} \sup _{|\theta| \leq \mu_{m}}\left(\int_{0}^{T-\theta}\|v(t+\theta)-v(t)\|_{H^{-1}(D)}^{2} d t\right)^{\frac{1}{2}} .
\end{aligned}
$$

For more details on the following lemma, see [19,26]:
Lemma 1. The set \mathcal{N}_{*} is a compact subset of $L_{2}\left(0, T ; L_{2}(D)\right)$.
Define $\mathcal{J}=C\left(0, T ; \mathbb{R}^{m}\right) \times L_{2}\left(0, T ; L_{2}(D)\right)$ and $\mathcal{B}(\mathcal{J})$ the σ-algebra of its Borel sets. Let Ψ_{n} be the map:

$$
\Psi_{n}: D \rightarrow \mathcal{J}, \quad w \rightarrow\left(B(w, .), v^{n}(w, .)\right)
$$

For each n we introduce a measure Π_{n} on $(\mathcal{J}, \mathcal{B}(\mathcal{J}))$ by:

$$
\Pi_{n}(A)=\mathbb{P}\left(\Psi_{n}^{-1}(A)\right), \quad \forall A \in \mathcal{B}(\mathcal{J})
$$

With this setting, we have the following result:
Theorem 2. The family of measures $\left\{\Pi_{n}\right\}$ is tight.
Proof. For arbitrary $\propto>0$, we look for compact subsets $H_{\propto} \subset C\left(0, T ; \mathbb{R}^{m}\right)$ and $K_{\propto} \subset$ $L_{2}\left(0, T ; L_{2}(D)\right)$, such that:

$$
\begin{align*}
& \mathbb{P}\left\{w: B(w, .) \notin H_{\propto}\right\} \leq \frac{\propto}{2} . \tag{1}\\
& \mathbb{P}\left\{w: v^{n}(w, .) \notin K_{\propto}\right\} \leq \frac{\propto}{2} . \tag{2}
\end{align*}
$$

Define H_{\propto} consisting of all $B(.) \in C\left(0, T ; \mathbb{R}^{m}\right)$ such that

$$
\sup \left\{\left|B\left(t_{2}\right)-B\left(t_{1}\right)\right| \leq \frac{L_{\propto}}{m}: t_{1}, t_{2} \in[0, T],\left|t_{2}-t_{1}\right|<m^{-6}\right\} .
$$

It is clear that H_{\propto} is compactly included in $C\left(0, T ; \mathbb{R}^{m}\right)$ this is due to the well known result of Arzela and Ascoli. Using Markov's inequality as in [26], see also [19]. We get:

$$
\begin{gathered}
\mathbb{P}\left\{w: B(w, .) \notin H_{\propto}\right\} \leq \mathbb{P}\left\{\bigcup_{n}\left\{w: \sup _{t_{1}, t_{2} \in[0, T]\left|, t_{2}-t_{1}\right|<m^{-6}}\left|B\left(t_{2}\right)-B\left(t_{1}\right)\right|>\frac{L_{\propto}}{m}\right\}\right\} \\
\leq \sum_{m=1}^{\infty} \sum_{i=0}^{m^{-6}}\left(\frac{m}{L_{\propto}}\right)^{4} \mathbb{E} \sup _{i T m^{-6} \leq t \leq(i+1) T m^{-6}}\left|B(t)-B\left(i T m^{-6}\right)\right|^{4} \\
\quad \leq C \sum_{m=1}^{\infty}\left(\frac{m}{L_{\propto}}\right)^{4}\left(T m^{-6}\right)^{2} m^{6}=\frac{C}{L_{\propto}^{4}} \sum_{m=1}^{\infty} \frac{1}{m^{2}} \leq \frac{\propto}{2}
\end{gathered}
$$

We choose $L_{\propto}=\frac{1}{2 C \propto}\left(\sum_{m=1}^{\infty} \frac{1}{m^{2}}\right)^{-1}$.
Now,

$$
\begin{gathered}
\mathbb{P}\left\{v(w, .) \notin K_{\propto}\right\} \leq \mathbb{P}\left\{\sup _{0 \leq t \leq T}\|v\|_{L_{2}(D)}^{2}>M_{\propto}\right\}+\mathbb{P}\left\{\int_{0}^{T}\|v\|_{H_{0}^{1}(D)}^{2} d t>N_{\propto}\right\} \\
+\mathbb{P}\left\{\sup _{0 \leq t \leq T} \frac{1}{v_{m}} \sup _{|\theta| \leq \mu_{m}} \int_{0}^{T-\mu_{\propto}}\|v(t+\theta)-v(t)\|_{H^{-1}(D)}^{2} d t>Q_{\propto}\right\} \\
\leq \frac{1}{M_{\propto}} \sup _{0 \leq t \leq T}\|v\|_{L_{2}(D)}^{2}+\frac{1}{N_{\propto}} \mathbb{E} \int_{0}^{T}\|v\|_{H_{0}^{1}(D)}^{2} d t \\
+\sum_{m} \frac{1}{v_{m} Q_{\propto}} \mathbb{E}\left\{\sup _{|\theta| \leq \mu_{m}} \int_{0}^{T-\mu_{\propto}}\|v(t+\theta)-v\|_{H^{-1}(D)}^{2} d t\right\} \\
\leq \frac{C}{M_{\propto}}+\frac{C}{N_{\propto}}+\frac{C}{Q_{\propto}} \sum_{m} \frac{\sqrt{\mu_{m}}}{v_{m}}=\frac{\propto}{2} .
\end{gathered}
$$

Choose $M_{\propto}=N_{\propto}=\frac{6 C}{\propto}$ and $Q_{\propto}=\frac{6 C \sum_{m} \frac{\sqrt{\mu_{m}}}{v_{m}}}{\propto}$. From (1)and (2), we get:

$$
\mathbb{P}\left\{w: B(w, .) \in H_{\propto} ; v(w, .) \in K_{\propto}\right\} \geq 1-\propto .
$$

This proves that:

$$
\Pi_{n}\left(H_{\propto} \times K_{\propto}\right) \geq 1-\propto
$$

As a result, the family Π_{n} is tight, and the proof is complete.

3. Galerkin Approximation

In this section, we will build a weak solution using Galerkin approximation. For this, we let $H_{n}=\operatorname{span}\left(w_{1}, w_{2}, \cdots, w_{n}\right) \subset H_{0}^{1}(D)$. We seek a finite-dimensional approximation of a solution to our problem in the form of a vector $v^{n} \in H_{n}$, which can be written as the Fourier series:

$$
v^{n}=\sum_{k=1}^{n} \zeta_{n}^{k}(t) w_{k}(x)
$$

We require that v^{n} satisfies:

$$
\begin{align*}
& \left(d v^{n}, w_{k}\right)_{L_{2}(D)}+\left(A \nabla v^{n}, \nabla w_{k}\right)_{L_{2}(D)} d t+\left(h\left(v^{n}\right), w_{k}\right)_{L_{2}(\partial S)} \\
& \quad=\left(g, w_{k}\right)_{L_{2}(\partial S)}+\left(F_{1}\left(v^{n}\right), w_{k}\right)_{L_{2}(D)} d t+\left(F_{2}\left(v^{n}\right), w_{k}\right) d B, \tag{3}
\end{align*}
$$

$k=1, \cdots, n$.

A Priori Bounds

In this subsection, we derive energy and finite difference bounds that will be used to prove the existence result of problem (I).

Lemma 2. Suppose that the assumptions $A_{1}-A_{4}$ are satisfied, then:
(i) $\mathbb{E} \quad$ ess $\sup _{[0, T]}\left\|v^{n}\right\|_{L_{2}(D)}^{2} \leq C$,
(ii) $\mathbb{E}\left\|v^{n}\right\|_{L_{2}\left(0, T ;\left[H^{1}(D)\right]^{n}\right)}^{2} \leq C$.

Proof. Let us introduce the following stopping time:

$$
\tau_{M}=\left\{\begin{array}{l}
\inf \left\{0 \leq t:\left\|v^{n}\right\|_{H_{0}^{1}(D)}+\left\|v^{n}\right\|_{L_{2}(\partial S)}>M\right\} \tag{4}\\
T \quad \text { if } \quad\left\{\left\|v^{n}\right\|_{H_{0}^{1}(D)}+\left\|v^{n}\right\|_{L_{2}(\partial S)}>M\right\}=\varnothing,
\end{array}\right.
$$

for any integer $M>0$.
We multiply Equation (3) by $\left(v^{n}, w_{k}\right)$ and sum over $k=1, \cdots, n$, to obtain:

$$
\begin{aligned}
& \left(d v^{n}, \sum_{k=1}^{n}\left(v^{n}, w_{k}\right) w_{k}\right)_{L_{2}(D)}+\left(A \nabla v^{n}, \sum_{k=1}^{n}\left(v^{n}, w_{k}\right) \nabla w_{k}\right)_{L_{2}(D)} d t \\
& \quad+\left(h\left(v^{n}\right), \sum_{k=1}^{n}\left(v^{n}, w_{k}\right) w_{k}\right)_{L_{2}(\partial S)} d t=\left(g, \sum_{k=1}^{n}\left(v^{n}, w_{k}\right) w_{k}\right)_{L_{2}(\partial S)} d t \\
& \quad+\left(F_{1}\left(v^{n}\right), \sum_{k=1}^{n}\left(v^{n}, w_{k}\right) w_{k}\right)_{L_{2}(D)} d t+\left(F_{2}\left(t, x, v^{n}\right), \sum_{k=1}^{n}\left(v^{n}, w_{k}\right) w_{k}\right)_{L_{2}(D)} d B,
\end{aligned}
$$

by definition $\zeta_{n}^{k}(t)=\left(v^{n}, w_{k}\right)$, then we get:

$$
\begin{array}{r}
\quad\left(d v^{n}, v^{n}\right)_{L_{2}(D)}+\left(A \nabla v^{n}, \nabla v^{n}\right)_{L_{2}(D)} d t+\left(h\left(v^{n}\right), v^{n}\right)_{L_{2}(\partial S)} d t \\
=\left(g, v^{n}\right)_{L_{2}(\partial S)} d t+\left(F_{1}\left(v^{n}\right), v^{n}\right)_{L_{2}(D)} d t+\left(F_{2}\left(t, x, v^{n}\right), v^{n}\right)_{L_{2}(D)} d B, \tag{5}
\end{array}
$$

applying Itô formula:

$$
\begin{aligned}
& d\left\|v^{n}\right\|_{L_{2}(D)}^{2}+2\left(A \nabla v^{n}, \nabla v^{n}\right)_{L_{2}(D)} d t+2\left(h\left(v^{n}\right), v^{n}\right)_{L_{2}(\partial S)}=2\left(g, v^{n}\right)_{L_{2}(\partial S)} \\
& +2\left(F_{1}\left(v^{n}\right), v^{n}\right)_{L_{2}(D)} d t+\left(F_{2}\left(t, x, v^{n}\right), v^{n}\right)_{L_{2}(D)} d B+\left\|F_{2}\left(t, x, v^{n}\right)\right\|_{L_{2}(D)}^{2} d t,
\end{aligned}
$$

integrating over $0 \leq s \leq t \wedge \tau_{m}$, and $t \leq T$, we have:

$$
\begin{aligned}
&\left\|v^{n}(t)\right\|_{L_{2}(D)}^{2}+2 \int_{0}^{s}\left(A \nabla v^{n}(\tau), \nabla v^{n}(\tau)\right)_{L_{2}(D)} d \tau+2 \int_{0}^{s} \int_{\partial S} h\left(v^{n}(\tau)\right) \cdot v^{n}(\tau) d \tau d \sigma(\tau) \\
&\left\|v_{0}^{n}\right\|_{L_{2}(D)}^{2}+2 \int_{0}^{s} \int_{\partial S}\left(g(\tau), v^{n}(\tau)\right) d \tau d \sigma+2 \int_{0}^{s}\left(F_{1}\left(v^{n}(\tau)\right), v^{n}(\tau)\right)_{L_{2}(D)} d \tau \\
&+\int_{0}^{s}\left(F_{2}\left(t, x, v^{n}(\tau)\right), v^{n}(\tau)\right)_{L_{2}(D)} d B(\tau)+\int_{0}^{s}\left\|F_{2}\left(t, x, v^{n}(\tau)\right)\right\|^{2} d \tau
\end{aligned}
$$

using the assumption on the matrix A, taking the supremum over $0 \leq s \leq t \wedge \tau_{m}$ and the expectation, we have:

$$
\begin{align*}
\mathbb{E} \sup _{0 \leq s \leq t \wedge \tau_{m}} & {\left[\left\|v^{n}(s)\right\|_{L_{2}(D)}^{2}+\int_{0}^{s}\left\|\nabla v^{n}(\tau)\right\|_{L_{2}(D)}^{2} d \tau\right.} \\
& \left.+2\left|\int_{0}^{s} \int_{\partial S} h\left(v^{n}(\tau)\right) \cdot v^{n}(\tau) d \tau d \sigma(\tau)\right|\right] \\
& \leq \alpha\left\|v_{0}^{n}\right\|_{L_{2}(D)}^{2}+2 \alpha \mathbb{E} \int_{0}^{t \wedge \tau_{m}} \int_{\partial S}\left|\left(g(s), v^{n}(s)\right) d \tau d \sigma\right| \\
& +2 \alpha \mathbb{E} \int_{0}^{t \wedge \tau_{m}}\left|\left(F_{1}\left(v^{n}(s)\right), v^{n}(s)\right)_{L_{2}(D)} d s\right| \\
& +\alpha \mathbb{E} \sup _{0 \leq s \leq t \wedge \tau_{m}} \int_{0}^{t \wedge \tau_{m}}\left|\left(F_{2}\left(t, x, v^{n}(s)\right), v^{n}(s)\right)\right|_{L_{2}(D)} d B(s) \\
& +\alpha \mathbb{E} \int_{0}^{t \wedge \tau_{m}}\left\|F_{2}\left(t, x, v^{n}(s)\right)\right\|^{2} d s . \tag{6}
\end{align*}
$$

From Remark 1, we have:

$$
\begin{align*}
\mathbb{E} \sup _{0 \leq s \leq t \wedge \tau_{m}} & {\left[\left\|v^{n}(s)\right\|_{L_{2}(D)}^{2}+\int_{0}^{s}\left\|\nabla v^{n}(\tau)\right\|_{L_{2}(D)}^{2} d \tau\right] } \\
& \leq \alpha\left\|v_{0}^{n}\right\|_{L_{2}(D)}^{2}+2 \alpha \mathbb{E} \int_{0}^{t \wedge \tau_{m}} \int_{\partial S}\left|\left(g(s), v^{n}(s)\right) d \tau d \sigma\right| \\
& +2 \alpha \mathbb{E} \int_{0}^{t \wedge \tau_{m}}\left|\left(F_{1}\left(v^{n}(s)\right), v^{n}(s)\right)_{L_{2}(D)} d s\right| \\
& +\alpha \mathbb{E} \sup _{0 \leq s \leq t \wedge \tau_{m}} \int_{0}^{t \wedge \tau_{m}}\left|\left(F_{2}\left(t, x, v^{n}(s)\right), v^{n}(s)\right)\right|_{L_{2}(D)} d B(s) \\
& +\alpha \mathbb{E} \int_{0}^{t \wedge \tau_{m}}\left\|F_{2}\left(t, x, v^{n}(s)\right)\right\|^{2} d s . \tag{7}
\end{align*}
$$

Let us find bound for the right hand side of Equation (7). Using Cauchy-Schwarz's, Burkhölder-Davis-Gundy's and Young's inequalities and the hypotheses on F_{2}, we obtain:

$$
\begin{align*}
\mathbb{E} \sup & \left|\int_{0}^{s}\left(F_{2}\left(\tau, x, v^{n}(\tau)\right), v^{n}(\tau)\right)_{L_{2}(D)} d B(\tau)\right| \\
& \leq C \mathbb{E}\left(\int_{0}^{s}\left(F_{2}\left(\tau, x, v^{n}(\tau)\right), v^{n}(\tau)\right)^{2}\right)^{\frac{1}{2}} d v \\
& \leq C \mathbb{E}\left(\int_{0}^{t}\left\|v^{n}(v)\right\|_{L_{2}(D)}^{2} \| F_{2}\left(\tau, x, v^{n}(\tau) \|_{L_{2}(D)}^{2} d \tau\right)^{\frac{1}{2}}\right. \\
& \leq \rho \mathbb{E} \sup \left\|v^{n}(\tau)\right\|_{L_{2}(D)}^{2}+C(\rho) \int_{0}^{T}\left\|F_{2}\left(\tau, v^{n}(\tau)\right)\right\|_{L_{2}(D)}^{2} d \tau \\
& \leq \rho \mathbb{E} \sup \left\|v^{n}(v)\right\|_{L_{2}(D)}^{2}+C(\rho) T+C(\rho) \int_{0}^{T}\left\|v^{n}(\tau)\right\|_{L_{2}(D)} d \tau \tag{8}
\end{align*}
$$

for $\rho>0$.
Now, from ([21], Proposition 3) we get:

$$
\begin{align*}
& \mathbb{E}\left|\int_{0}^{T}\left(g, v^{n}\right)_{L_{2}(\partial S)} d t\right| \\
& \quad \leq C\left[\left|\mathcal{M}_{L_{2}(\partial S)}(g)\right| \mathbb{E} \int_{0}^{T}\left\|v^{n}\right\|_{L_{2}(D)} d t\right. \\
& \left.\quad+\mathbb{E} \int_{0}^{T}\left\|\nabla v^{n}\right\|_{\left[L_{2}(D)\right]^{n}} d t\right] . \tag{9}
\end{align*}
$$

Using Poincar'e inequality, we obtain:

$$
\left\|\left(F_{1}\left(v^{n}\right), v^{n}\right)\right\| \leq \varrho^{2}\left\|\nabla v^{n}\right\|\left\|\nabla F_{1}\left(v^{n}\right)\right\|,
$$

where ϱ is Poincare constant. We also mention that:

$$
\left(\varrho^{2}+\beta\right)^{-1}\|\psi\|_{L_{2}(D)}^{2} \leq\|\nabla \psi\|^{2} \leq(\beta)^{-1}\|\psi\|_{L_{2}(D)^{\prime}}^{2}
$$

for all $\psi \in L_{2}(D)$. Then, from the assumption on F_{1} and this, we get:

$$
\begin{equation*}
2\left\|\left(F_{1}\left(v^{n}\right), v^{n}\right)\right\|_{L_{2}(D)} \leq 2 C \frac{\varrho^{2}}{\alpha}\left(1+\left\|v^{n}(s)\right\|_{L_{2}(D)}^{2}\right) . \tag{10}
\end{equation*}
$$

Using Equations (8)-(10) into (6), together with Grönwall's inequality, gives the desired estimates. Thus, the proof is complete.

Lemma 3. For $4 \leq p<\infty$ we have:

$$
\begin{align*}
\mathbb{E} & \operatorname{ess}^{\sup _{[0, T]}\left\|v^{n}\right\|_{L_{2}(D)}^{p} \leq C,} \tag{11}\\
& \mathbb{E}\left\|v^{n}\right\|_{L_{2}\left(0, T ;\left[H^{1}(D)\right]^{n}\right)}^{p} \leq C, \tag{12}
\end{align*}
$$

for some positive constant C.
Proof. For $4 \leq p<\infty$, we apply Itô's lemma to $\left\|v^{n}\right\|_{L_{2}(D)}^{\frac{p}{2}}$, we have:

$$
\begin{aligned}
\left\|v^{n}(t)\right\|_{L_{2}(D)}^{\frac{p}{2}}+ & \frac{p}{2} \int_{0}^{t}\left\|v^{n}(s)\right\|_{L_{2}(D)}^{\left(\frac{p}{2}-2\right)}\left[\left(A \nabla v^{n}(s), \nabla v^{n}(s)\right)_{L_{2}(D)}\right. \\
& \left.+\left(h\left(v^{n}(s)\right), v^{n}(s)\right)_{L_{2}(\partial S)}\right] d s \\
& =\left\|u_{0}^{n}\right\|^{\frac{p}{2}}+\frac{p}{2} \int_{0}^{t}\left\|v^{n}(s)\right\|_{L_{2}(D)}^{\frac{p}{2}-2}\left[\left(g, v^{n}(s)\right)_{L_{2}(\partial S)}\right. \\
& \left.+\left(F_{1}\left(v^{n}(s)\right), v^{n}(s)\right)_{L_{2}(D)}\right] d s \\
& +\frac{p}{2} \int_{0}^{t}\left\|v^{n}(s)\right\|_{L_{2}(D)}^{\frac{p}{2}-2}+\left(F_{2}\left(t, x, v^{n}(s)\right), v^{n}(s)\right) d B \\
& +\frac{p}{4}\left(\frac{p}{2}-1\right) \int_{0}^{t}\left\|v^{n}(s)\right\|_{L_{2}(D)}^{\frac{p}{2}-2}\left\|F_{2}\left(t, x, v^{n}(s)\right)\right\|^{2} d s .
\end{aligned}
$$

From Remark 1, we have:

$$
\begin{aligned}
\left\|v^{n}(t)\right\|_{L_{2}(D)}^{\frac{p}{2}}+ & \frac{p}{2} \int_{0}^{t}\left\|v^{n}(s)\right\|_{L_{2}(D)}^{\left(\frac{p}{2}-2\right)}\left[\left(A \nabla v^{n}(s), \nabla v^{n}(s)\right)_{L_{2}(D)}\right] d s \\
& =\left\|u_{0}^{n}\right\|^{\frac{p}{2}}+\frac{p}{2} \int_{0}^{t}\left\|v^{n}(s)\right\|_{L_{2}(D)}^{\frac{p}{2}-2}\left[\left(g, v^{n}(s)\right)_{L_{2}(\partial S)}\right. \\
& \left.+\left(F_{1}\left(v^{n}(s)\right), v^{n}(s)\right)_{L_{2}(D)}\right] d s \\
& +\frac{p}{2} \int_{0}^{t}\left\|v^{n}(s)\right\|_{L_{2}(D)}^{\frac{p}{2}-2}+\left(F_{2}\left(t, x, v^{n}(s)\right), v^{n}(s)\right) d B \\
& +\frac{p}{4}\left(\frac{p}{2}-1\right) \int_{0}^{t}\left\|v^{n}(s)\right\|_{L_{2}(D)}^{\frac{p}{2}-2}\left\|F_{2}\left(t, x, v^{n}(s)\right)\right\|^{2} d s .
\end{aligned}
$$

Taking the Square on both sides, using the assumption on the matrix A, and some elementary inequalities, we obtain:

$$
\begin{array}{r}
\left\|v^{n}(t)\right\|_{L_{2}(D)}^{p}+C\left(\int_{0}^{t}\left\|v^{n}(s)\right\|_{L_{2}(D)}^{\frac{p}{2}-2}\left[\left\|\nabla v^{n}(s)\right\|_{L_{2}(D)}^{2}\right] d s\right)^{2} \\
\leq C\left\|u_{0}^{n}\right\|_{L_{2}(D)}^{p}+C\left(\int _ { 0 } ^ { t } \| v ^ { n } (s) \| _ { L _ { 2 } (D) } ^ { \frac { p } { 2 } - 2 } \left[\left(g, v^{n}(s)\right)_{L_{2}(\partial S)}\right.\right. \\
\left.\left.+\left(F_{1}\left(v^{n}(s)\right), v^{n}(s)\right)_{L_{2}(D)}\right] d s\right)^{2} \\
C\left(\int_{0}^{t}\left\|v^{n}(s)\right\|_{L_{2}(D)}^{\frac{p}{2}-2}\left(F_{2}\left(t, x, v^{n}(s)\right), v^{n}(s)\right) d B\right)^{2} \\
+C\left(\int_{0}^{t}\left\|v^{n}(s)\right\|_{L_{2}(D)}^{\frac{p}{2}-2}\left\|F_{2}\left(t, x, v^{n}(s)\right)\right\|^{2} d s\right)^{2} .
\end{array}
$$

We conclude from Poincar'e inequality, the hypothesis on h and Equations (8)-(10) that:

$$
\begin{aligned}
\left\|v^{n}(t)\right\|_{L_{2}(D)}^{p}+ & \int_{0}^{t}\left\|\nabla v^{n}(s)\right\|_{L_{2}(D)}^{p} d s \leq C\left\|v_{0}^{n}\right\|_{L_{2}(D)}^{p} \\
& +C\left(\int_{0}^{t}\left\|v^{n}(s)\right\|_{L_{2}(D)}^{\frac{p}{2}-2}\left(\left\|v^{n}(s)\right\|_{L_{2}(D)}+\left\|\nabla v^{n}\right\|_{\left[L_{2}(D)\right]^{n}}\right)\right)^{2} \\
& +C\left(\int_{0}^{t}\left\|v^{n}(s)\right\|_{L_{2}(D)}^{\frac{p}{2}-2}\left(1+\left\|v^{n}(s)\right\|_{L_{2}(D)}^{2}\right)\right)^{2} d s \\
& +C\left(\left\|v^{n}(s)\right\|_{L_{2}(D)}^{\frac{p}{2}-2}\left\|v^{n}(s)\right\|_{L_{2}(D)}^{2}\right)^{2},
\end{aligned}
$$

we know that:

$$
\left\|v^{n}\right\|^{p-4} \leq\left(1+\left\|v^{n}(t)\right\|_{L_{2}(D)}\right)^{p-4}
$$

taking the expectation and the supremum on both sides to the above equation and using Grönwall's inequality, we arrive at the estimates (11) and (12). Thus, the proof is complete.

Remark 2. Lemmas 2 and 3 imply the following:
(i) $\mathbb{E} \quad$ ess $\sup _{[0, T]}\left\|v^{n}\right\|_{L_{2}(D)}^{p} \leq C$,
(ii) $\mathbb{E}\left\|v^{n}\right\|_{L_{2}\left(0, T ;\left[H^{1}(D)\right]^{n}\right)}^{p} \leq C$,
for any $1 \leq p \leq \infty$.
Lemma 4. For every $\delta \in(0,1)$ there exists $C>0$ such that for all natural number n, we get:

$$
\mathbb{E} \sup _{|\theta|<\delta} \int_{0}^{T-\delta}\left\|v^{n}(s+\theta)-v^{n}(s)\right\|_{H^{-1}(D)}^{2} d s \leq C \delta^{\frac{1}{2}}
$$

Proof. Assume that $\tilde{v^{n}}=0$ in $\mathbb{R} \backslash[0, T]$. We write:

$$
\begin{aligned}
v^{n}(s+\theta)-v^{n}(s) & =\int_{s}^{s+\theta} \operatorname{div}\left(A \nabla v^{n}(t)\right) d t+\int_{s}^{s+\theta} F_{1}\left(v^{n}(t)\right) d t \\
& +\int_{s}^{s+\theta} F_{2}\left(t, x, v^{n}(t)\right) d B_{t}
\end{aligned}
$$

Then,

$$
\begin{align*}
& \left\|v^{n}(s+\theta)-v^{n}(s)\right\|_{H^{-1}(D)} \leq\left\|\int_{s}^{s+\theta} \operatorname{div}\left(A \nabla v^{n}(t)\right) d t\right\|_{H^{-1}(D)} \\
& \quad+\left\|\int_{s}^{s+\theta} F_{1}\left(v^{n}(t)\right) d t\right\|_{H^{-1}(D)}+\left\|\int_{s}^{s+\theta} F_{2}\left(t, x, v^{n}(t)\right) d B_{t}\right\|_{H^{-1}(D)} . \tag{13}
\end{align*}
$$

We will argue as in ([19], Lemma 2). By definition of the norm in $H^{-1}(D)$, and assumption A_{1}, we have:

$$
\begin{align*}
& \| \int_{S}^{s+\theta} \operatorname{div}\left(A \nabla v^{n}(t)\right) d t \|_{H^{-1}(D)} \\
& \quad \sup _{\Psi \in H_{0}^{1}(D):\|\Psi\|=1}\left|\left\langle\int_{S}^{s+\theta} \operatorname{div}\left(A \nabla v^{n}(t)\right) d t, \Psi\right\rangle_{H^{-1}(D), H_{0}^{1}(D)}\right| \\
& \quad=\sup _{\Psi \in H_{0}^{1}(D):\|\Psi\|=1} \int_{D} \int_{s}^{s+\theta} A \nabla v^{n} \nabla \Psi d x d t \\
& \quad \leq C \sup _{\Psi \in H_{0}^{1}(D):\|\Psi\|=1} \int_{S}^{s+\theta}\left\|v^{n}\right\|_{H_{0}^{1}(D)}\|\Psi\|_{H_{0}^{1}(D)} d t \leq C \theta . \tag{14}
\end{align*}
$$

From assumption A_{2}, we deduce:

$$
\begin{align*}
& \| \int_{s}^{s+\theta} F_{1}\left(v^{n}(t)\right) d t \|_{H^{-1}(D)} \\
& \leq \sup _{\Psi \in H_{0}^{1}(D):\|\Psi\|=1}\left|\left\langle\int_{s}^{s+\theta} F_{1}\left(v^{n}(t)\right) d t, \Psi\right\rangle_{H^{-1}(D), H_{0}^{1}(D)}\right| \\
&=\sup _{\Psi \in H_{0}^{1}(D):\|\Psi\|=1} \int_{D} \int_{s}^{s+\theta} F_{1}\left(v^{n}(t)\right) \Psi d x d t \\
& \quad \leq C \sup _{\Psi \in H_{0}^{1}(D):\|\Psi\|=1} \int_{s}^{s+\theta}\left(1+\left\|v^{n}\right\|_{L_{2}(D)}\right)\|\Psi\|_{L_{2}(D)} d t \leq C \theta . \tag{15}
\end{align*}
$$

Finally, we shall bound the stochastic term, for that we use Fubini's theorem, Burkholder-Davis-Gundy's inequality, Cauchy-Schwarz's inequality, and hypothesis A_{3}, we get:

$$
\begin{align*}
\mathbb{E} \sup _{|\theta|<\delta} \| & \int_{s}^{s+\theta} F_{2}\left(t, v^{n}\right) d B_{t} \|_{H^{-1}(D)}^{2} \leq \\
& \leq \mathbb{E} \sup _{|\theta|<\delta}\left(\int_{s}^{s+\theta}\left(\int_{D} F_{2}\left(t, v^{n}\right) \Psi d x\right) d B_{t}\right)^{2} \\
& \leq C \sup _{\Psi \in H_{0}^{1}(D):\|\Psi\|=1} \mathbb{E}\left(\int_{s}^{s+\delta}\left(\int_{D} F_{2}\left(t, v^{n}\right) \Psi d x\right)^{2} d t\right) \\
& \leq C \sup _{\Psi \in H_{0}^{1}(D):\|\Psi\|=1} \mathbb{E}\left(\int_{s}^{s+\delta}\left\|F_{2}\left(t, v^{n}\right)\right\|_{L_{2}(D)}^{2}\|\Psi\|_{L_{2}(D)}^{2} d t\right) \\
& \leq C \mathbb{E}\left[\delta+\int_{s}^{s+\delta}\left\|v^{n}\right\|_{L_{2}(D)}^{2} d s\right] \leq C \delta . \tag{16}
\end{align*}
$$

Substituting (14)-(16) into (13), integrating over $(0, T-\delta$, taking the expectation and the $\sup _{|\theta|<\delta}$ we have:

$$
\mathbb{E} \sup _{|\theta|<\delta} \int_{0}^{T-\delta}\left\|v^{n}(s+\theta)-v^{n}(s)\right\|_{H^{-1}(D)}^{2} d s \leq C \delta^{\frac{1}{2}}
$$

4. Implementation of the Tightness Property

From the estimates obtained in Lemmas 2 and 4, one can easily see that $v^{n} \in \mathcal{N}_{*}$. Then from the tightness Theorem 2 and Prokhorov's Lemma, there exists a subsequence $\Pi_{n_{j}}$ of $\Pi_{n_{j}}$ and Π such that $\Pi_{n_{j}}$ weakly convergent to Π. With this in hand, we apply Skorokhod's Lemma, to have the existence of a probability space $(\widehat{\Omega}, \widehat{\mathcal{F}}, \widehat{\mathbb{P}})$ and \mathcal{B}-valued random variables $\left(B_{n_{j}}, v^{n_{j}}\right)$ and (\widehat{B}, v) with the property that the probability law of $\left(B_{n_{j}}, v^{n_{j}}\right)$ is $\Pi_{n_{j}}$ and the probability law of (\widehat{B}, v) is Π. Then, we have:

$$
\begin{equation*}
\left(B_{n_{j}}, v^{n_{j}}\right) \rightarrow(\widehat{B}, v) \quad \text { in } \quad \mathcal{B}, \quad \widehat{\mathbb{P}} \text {-a.s. } \tag{17}
\end{equation*}
$$

We now define:

$$
\widehat{\mathcal{F}}_{t}=\sigma\{\widehat{B}(s), v(s)\}_{s \in[0, t]^{\prime}}
$$

and prove $\widehat{B}(t)$ is an $\widehat{\mathcal{F}}_{t}$-Wiener process. To do this, we will follow the same steps as in [27]. Define the sub intervals $\left(0, t_{1}\right),\left(t_{1}, t_{2}\right), \cdots,\left(t_{m-1}, t_{m}=T\right)$, it is enough to prove that:

- $\quad\left(B\left(t_{j}\right)-B\left(t_{j-1}\right)\right)$ are independent for all $i=1,2, \cdots m$;
- $\quad\left(B\left(t_{j}\right)-B\left(t_{j-1}\right)\right)$ are normally distributed with $\mu=0$ and $\sigma=t_{j}-t_{j-1}$ for all $i=1,2, \cdots m$.
To prove the above assertions, we show,

$$
\begin{equation*}
\widehat{\mathbb{E}} \exp \left\{\sum_{j=1}^{m} i \lambda_{j}\left[B\left(t_{j}\right)-B\left(t_{j-1}\right)\right]\right\}=\exp \left\{-\frac{1}{2} \sum_{j=1}^{m} \lambda_{j}^{2}\left(t_{j}-t_{j-1}\right)\right\}, \tag{18}
\end{equation*}
$$

where $\lambda_{j} \in \mathbb{R}^{m}$ and $\widehat{\mathbb{E}}$ denotes the mathematical expectation on $(\widehat{\Omega}, \widehat{\mathcal{F}}, \widehat{\mathbb{P}})$.
Note that (18) is similar to:

$$
\begin{equation*}
\widehat{\mathbb{E}} \exp \{i \lambda[B(t+k)-B(t)] / \mathcal{F}\}=\exp \left\{-\frac{\lambda^{2} k}{2}\right\} \tag{19}
\end{equation*}
$$

for any $k>0$ and λ in \mathbb{R}^{m}. Now, let us consider an arbitrary bounded continuous functional $\hbar(\widehat{B}, v)$ depending only on the values of \widehat{B} and v on $(0, T)$, from classical probability theory, we get:

$$
\begin{gather*}
\widehat{\mathbb{E}}\{\exp i \lambda[B(t+k)-B(t)] \hbar(\hat{B}, v)\}=\widehat{\mathbb{E}} \exp \{i \lambda[B(t+k)-B(t)]\} \widehat{\mathbb{E}} \hbar(\widehat{B}, v) \\
=\exp \left\{-\frac{\lambda^{2} k}{2}\right\} \widehat{\mathbb{E}} \hbar(\widehat{B}, v) . \tag{20}
\end{gather*}
$$

Since $\left[B_{n_{j}}(t+k)-B_{n_{j}}(t)\right]$ are independent of $\hbar\left(B_{n_{j}}, v^{n_{j}}\right)$ and $B_{n_{j}}$ is a Wiener process, it follows that:

$$
\begin{gather*}
\widehat{\mathbb{E}}\left\{\exp i \lambda\left[B_{n_{j}}(t+k)-B_{n_{j}}(t)\right] \hbar\left(B_{n_{j}}, v^{n_{j}}\right)\right\} \\
=\widehat{\mathbb{E}} \exp \left\{i \lambda\left[B_{n_{j}}(t+k)-B_{n_{j}}(t)\right]\right\} \widehat{\mathbb{E}} \hbar\left(B_{n_{j}}, v^{n_{j}}\right) \\
=\exp \left\{-\frac{\lambda^{2} k}{2}\right\} \widehat{\mathbb{E}} \hbar\left(B_{n_{j}}, v^{n_{j}}\right), \tag{21}
\end{gather*}
$$

Using (17) and the continuity of \hbar we can pass to the limit in this equality and get (20), which, in view of (18), implies (19) and therefore $\widehat{B}(t)$ is an $\widehat{\mathcal{F}}_{t}$-Wiener process.

Theorem 3. The pair $\left(B_{n_{j}}, v^{n_{j}}\right)$ satisfies \mathbb{P}-a.s.

$$
\begin{align*}
& \left(v^{n_{j}}(s), w_{k}\right)_{L_{2}(D)}-\left(v_{0}, w_{k}\right)+\int_{0}^{t}\left(A \nabla v^{n_{j}}(s), \nabla w_{k}\right)_{L_{2}(D)} d s \\
& \quad+\int_{0}^{t}\left(h\left(v^{n_{j}}(s)\right), w_{k}\right)_{L_{2}(\partial S)} d s=\int_{0}^{t}\left(g, w_{k}\right)_{L_{2}(\partial S)} d s \\
& \quad+\int_{0}^{t}\left(F_{1}\left(v^{n_{j}}(s)\right), w_{k}\right)_{L_{2}(D)} d s+\int_{0}^{t}\left(F_{2}\left(v^{n_{j}}(s)\right), w_{k}\right) d B_{n_{j}}(s) \tag{22}
\end{align*}
$$

for any $k \geq 0$.
Proof. Let us set:

$$
\begin{align*}
\aleph^{n}= & \int_{0}^{T} \|\left(v^{n}(s), w_{k}\right)_{L_{2}(D)}-\left(v_{0}, w_{k}\right)+\int_{0}^{t}\left(A \nabla v^{n}(s), \nabla w_{k}\right)_{L_{2}(D)} d s \\
& +\int_{0}^{t}\left(h\left(v^{n}(s)\right), w_{k}\right)_{L_{2}(\partial S)} d s-\int_{0}^{t}\left(g, w_{k}\right)_{L_{2}(\partial S)} d s \\
& -\int_{0}^{t}\left(F_{1}\left(v^{n}(s)\right), w_{k}\right)_{L_{2}(D)} d s-\int_{0}^{t}\left(F_{2}\left(v^{n}(s)\right), w_{k}\right) d B_{n} \|_{H^{-1}(D)}^{2} d t \tag{23}
\end{align*}
$$

Clearly,

$$
\aleph^{n}=0 \quad \mathbb{P} \text {-a.s., }
$$

and,

$$
\hat{\mathbb{E}} \frac{\aleph^{n}}{1+\aleph^{n}}=0
$$

If we define:

$$
\begin{align*}
Y^{n_{j}}= & \int_{0}^{T} \mid\left(v^{n_{j}}(s), w_{k}\right)_{L_{2}(D)}-\left(v_{0}, w_{k}\right)+\int_{0}^{t}\left(A \nabla v^{n_{j}}(s), \nabla w_{k}\right)_{L_{2}(D)} d s \\
& +\int_{0}^{t}\left(h\left(v^{n_{j}}(s)\right), w_{k}\right)_{L_{2}(\partial s)} d s-\int_{0}^{t}\left(g, w_{k}\right)_{L_{2}(\partial S)} d s \\
& -\int_{0}^{t}\left(F_{1}\left(v^{n_{j}}(s)\right), w_{k}\right)_{L_{2}(D)} d s-\left.\int_{0}^{t}\left(F_{2}\left(v^{n_{j}}(s)\right), w_{k}\right) d B_{n_{j}}\right|^{2} d t \tag{24}
\end{align*}
$$

we will show that,

$$
\begin{equation*}
\hat{\mathbb{E}} \frac{\mathrm{Y}^{n_{j}}}{1+\mathrm{Y}^{n_{j}}}=0 \tag{25}
\end{equation*}
$$

The main difficulty in the achievement of this is the that \aleph^{n} is a stochastic functional of v^{n} and B_{n}. To overcome this, we define a regularization of F_{2} by:

$$
\begin{equation*}
F_{2}^{\varepsilon}(v(t), t)=\frac{1}{\varepsilon} \int_{0}^{T} \gamma\left(-\frac{t-s}{\varepsilon}\right) F_{2}(v(s), s) d s, \tag{26}
\end{equation*}
$$

such that γ is the standard mollifier, from which we have:

$$
\begin{equation*}
\mathbb{E} \int_{0}^{T}\left|F_{2}^{\varepsilon}(v(t), t)\right|^{2} d t \leq \mathbb{E} \int_{0}^{T}\left|F_{2}(v(t), t)\right|^{2} d t \tag{27}
\end{equation*}
$$

and,

$$
F_{2}^{\varepsilon}(v(.), .) \rightarrow F_{2}(v(.), .) \quad \text { in } \quad L_{2}\left(\widehat{\Omega}, \widehat{\mathbb{P}}, L_{2}\left(0, T ; L_{2}(D)\right)\right),
$$

from this, we have for all $k \geq 1$,

$$
\begin{equation*}
\left(F_{2}^{\varepsilon}(v(.), .), w_{k}\right) \rightarrow\left(F_{2}(v(.), .), w_{k}\right) \text { in } L_{2}\left(\widehat{\Omega}, \widehat{\mathbb{P}}, L_{2}(0, T)\right) . \tag{28}
\end{equation*}
$$

By replacing F_{2} by its regularization in the stochastic term, we introduce the corresponding functionals $\aleph^{n, \varepsilon}$ and $\mathrm{Y}^{n_{j}, \varepsilon}$. We now define the application:

$$
\begin{gathered}
\psi^{n, \varepsilon}: C\left(0, T ; \mathbb{R}^{m}\right) \times L_{2}\left(0, T ; L_{2}((D))\right) \rightarrow(\widehat{\Omega}, \widehat{\mathbb{P}}, \widehat{\mathcal{F}}) \\
\psi^{n, \varepsilon}\left(B_{t}, v^{n}\right)=\frac{\aleph^{n, \varepsilon}}{1+\aleph^{n, \varepsilon}}
\end{gathered}
$$

This is a continuous bounded functional on B. Now, introduce,

$$
\psi^{n_{j}, \varepsilon}\left(B_{t}, v^{n_{j}}\right)=\frac{\aleph^{n_{j}, \varepsilon}}{1+\aleph^{n_{j}, \varepsilon}}
$$

we have:

$$
\begin{equation*}
\widehat{\mathbb{E}} \psi^{n_{j}, \varepsilon}\left(B_{n_{j}}, v^{n}\right)=\widehat{\mathbb{E}} \frac{\mathrm{Y}_{j, ~}^{n_{j}, \varepsilon}}{1+\mathrm{Y}^{n_{j}, \varepsilon}} . \tag{29}
\end{equation*}
$$

Since $\psi^{n_{j}, \varepsilon}\left(B_{n_{j}}, v^{n_{j}}\right)$ is bounded in \mathcal{B} and the law of $\psi^{n_{j}}\left(B_{n_{j}}, v^{n_{j}}\right)$ is $\Pi_{n_{j}}$, then:

$$
\begin{equation*}
\widehat{\mathbb{E}} \frac{\mathrm{Y}^{n_{j}, \varepsilon}}{1+\mathrm{Y}^{n_{j}, \varepsilon}}=\int_{\mathcal{B}} \psi(w, v) d \Pi_{n_{j}} . \tag{30}
\end{equation*}
$$

Further, the law of $\left(B_{t}, v^{n_{j}}\right)$ is $\Pi_{n_{j}}$, therefore,

$$
\begin{equation*}
\int_{\mathcal{B}} \psi(w, v) d \Pi_{n_{j}}=\widehat{\mathbb{E}} \psi^{n_{j}}\left(B_{t}, v^{n_{j}}\right)=\widehat{\mathbb{E}} \frac{\aleph^{n_{j}, \varepsilon}}{1+\aleph^{n_{j}, \varepsilon}} . \tag{31}
\end{equation*}
$$

From (24)and (31), we have:

$$
\widehat{\mathbb{E}} \frac{\mathrm{Y}_{j, \varepsilon}^{n_{j}}}{1+\mathrm{Y}^{n_{j}, \varepsilon}}=\widehat{\mathbb{E}} \frac{\aleph^{n_{j}, \varepsilon}}{1+\aleph^{n_{j}, \varepsilon}}
$$

Although,

$$
\begin{gathered}
\widehat{\mathbb{E}} \frac{\mathrm{Y}^{n_{j}}}{1+\mathrm{Y}^{n_{j}}}-\mathbb{E} \frac{\aleph^{n_{j}}}{1+\aleph^{n_{j}}}=\widehat{\mathbb{E}}\left(\frac{\mathrm{Y}^{n_{j}}}{1+\mathrm{Y}^{n_{j}}}-\frac{\mathrm{Y}^{n_{j}, \varepsilon}}{1+\mathrm{Y}^{n_{j}, \varepsilon}}\right)+\widehat{\mathbb{E}} \frac{\mathrm{Y}^{n_{j}, \varepsilon}}{1+\mathrm{Y}^{n_{j}, \varepsilon}} \\
-\mathbb{E} \frac{\aleph^{n_{j}, \varepsilon}}{1+\aleph^{n_{j}, \varepsilon}}+\mathbb{E}\left(\frac{\aleph^{n_{j}, \varepsilon}}{1+\aleph^{n_{j}, \varepsilon}}-\frac{\aleph^{n_{j}}}{1+\aleph^{n_{j}}}\right),
\end{gathered}
$$

furthermore,

$$
\begin{aligned}
& \widehat{\mathbb{E}}\left|\frac{\mathrm{Y}^{n_{j}}}{1+\mathrm{Y}^{n_{j}}}-\frac{\mathrm{Y}^{n_{j}, \varepsilon}}{1+\mathrm{Y}^{n_{j}, \varepsilon}}\right|=\widehat{\mathbb{E}}\left|\frac{\mathrm{Y}^{n_{j}}-\mathrm{Y}_{j, \varepsilon}^{n_{j}}}{\left(1+\mathrm{Y}^{n_{j}}\right)\left(1+\mathrm{Y}^{n_{j}, \varepsilon}\right)}\right| \\
& \leq \widehat{\mathbb{E}}\left|\mathrm{Y}^{n_{j}}-\mathrm{Y}^{n_{j}, \varepsilon}\right| \\
& \leq C\left(\mathbb{E} \int_{0}^{T} \left\lvert\,\left(F_{2}^{\varepsilon}\left(v^{n_{j}}(t), t\right)-F_{2}\left(v^{n_{j}}(t), t\right),\left.w_{k}\right|^{2} d t\right)^{\frac{1}{2}}\right.,\right.
\end{aligned}
$$

we also have,

$$
\mathbb{E}\left(\frac{\aleph^{n_{j}}}{1+\aleph^{n_{j}}}-\frac{\aleph^{n_{j}, \varepsilon}}{1+\aleph^{n_{j}, \varepsilon}}\right) \leq C\left(\mathbb{E} \int_{0}^{T} \left\lvert\,\left(F_{2}^{\varepsilon}\left(v^{n_{j}}(t), t\right)-F_{2}\left(v^{n_{j}}(t), t\right),\left.w_{k}\right|^{2} d t\right)^{\frac{1}{2}}\right.\right.
$$

The above estimates and (29), gives:

$$
\begin{aligned}
&\left|\left|\widehat{\mathbb{E}} \frac{\mathrm{Y}^{n_{j}}}{1+\mathrm{Y}^{n_{j}}}\right|-\left|\mathbb{E} \frac{\aleph^{n_{j}}}{1+\aleph^{n_{j}}}\right|\right| \\
& \leq C\left(\mathbb{E} \int_{0}^{T} \left\lvert\,\left(F_{2}^{\varepsilon}\left(v^{n_{j}}(t), t\right)-F_{2}\left(v^{n_{j}}(t), t\right),\left.w_{k}\right|^{2} d t\right)^{\frac{1}{2}} .\right.\right.
\end{aligned}
$$

Taking the limit as ε goes to zero, we get the relation (25). This proves the result.

5. Passage to the Limits

The following Theorem is given in [28]. We use this result in the prove of the existences of the strong probabilistic solutions.

Theorem 4. Let O be an open set in $\mathbb{R}^{n}, h: \mathbb{R} \longrightarrow \mathbb{R}$ a continuous function and $N: v \longrightarrow N(v)$ its associated Nemytskii operator (i.e., class of nonlinear operators on L_{P} spaces with continuity and boundedness properties). The following three equivalent:
(i) $\quad h: L_{p}(O) \longrightarrow L_{q}(O), \quad \frac{1}{p}+\frac{1}{q}=1$.
(ii) h is bounded and continuous from $L_{p}(O)$ to $L_{q}(O)$.
(iii) There exist $a>0$ and $b>0$ such that:

$$
|h(s)| \leq a+b|s|^{\frac{p}{q}} \quad \forall s \in \mathbb{R} .
$$

Now we are in the situation to pass to the limit in (3). From the Prokhorov and Skorokhod results, we have:

$$
\begin{equation*}
v^{n_{j}} \rightarrow v \quad \text { in } \quad L_{2}\left(0, T ; H_{0}^{1}(D)\right) \quad \mathbb{P} \text {-a.e. } \tag{32}
\end{equation*}
$$

Since $v^{n_{j}}$ verifies the Equation (22), then it satisfies the same estimates as v^{n}.
Thanks to the uniform integrability and the estimate in Lemma 3, we can use Vitali's theorem to conclude that:

$$
\begin{equation*}
v^{n_{j}} \rightarrow v \quad \text { in } \quad L_{2}\left(\Omega, \mathbb{P}, L_{2}\left(0, T ; H_{0}^{1}(D)\right)\right), \tag{33}
\end{equation*}
$$

which gives:

$$
\begin{equation*}
v^{n_{j}} \rightarrow v \quad \text { in } \quad L_{2}\left(\Omega, \mathbb{P}, L_{2}\left(0, T ; L_{2}(D)\right)\right) \tag{34}
\end{equation*}
$$

Thanks to (33), there exists a subsequence of $v^{n_{j}}$, which, for simplicity, has the same notation as $v^{n_{j}}$ such that for almost all (w, t) :

$$
\begin{equation*}
v^{n_{j}} \rightarrow v \quad \text { in } \quad L_{2}\left(\Omega, \mathbb{P}, L_{2}\left(0, T ; L_{2}(D)\right)\right) \tag{35}
\end{equation*}
$$

with respect to the measure $d t \times d \mathbb{P}$. It is easily seen that:

$$
\begin{equation*}
\left(v^{n_{j}}, w_{k}\right) \rightarrow\left(v, w_{k}\right) \quad \text { in } \quad L_{2}\left(\Omega, \mathbb{P}, L_{2}\left(0, T ; L_{2}(D)\right)\right) \tag{36}
\end{equation*}
$$

Using Lemma 3 and assumption on A, we get:

$$
\begin{equation*}
\left(A \nabla v^{n_{j}}, \nabla w_{k}\right) \rightarrow\left(A \nabla v, \nabla w_{k}\right) \quad \text { in } \quad L_{2}\left(\Omega, \mathbb{P}, L_{2}\left(0, T ; H^{-1}(D)\right)\right) . \tag{37}
\end{equation*}
$$

Lemma 3, convergence (35), hypothesis on F_{1} and Vitali's theorem imply:

$$
\begin{equation*}
F_{1}\left(v^{n_{j}}(.), .\right) \rightarrow F_{1}(v(.), .) \quad \text { in } \quad L_{2}\left(\Omega, \mathbb{P}, L_{2}\left(0, T ; H_{0}^{1}(D)\right)\right), \tag{38}
\end{equation*}
$$

from which, we have:

$$
\begin{equation*}
\left(F_{1}\left(v^{n_{j}}(.), .\right), w_{k}\right) \rightarrow\left(F_{1}(v(.), .), w_{k}\right) \quad \text { in } \quad L_{2}\left(\Omega, \mathbb{P}, L_{2}\left(0, T ; L_{2}(D)\right)\right), \tag{39}
\end{equation*}
$$

for all k. Let us know show that:

$$
\begin{equation*}
\left(h\left(v^{n_{j}}(.), .\right), w_{k}\right) \rightarrow\left(h(v(.), .), w_{k}\right) \quad \text { in } \quad L_{2}\left(\Omega, \mathbb{P}, L_{2}\left(0, T ; L_{2}(\partial S)\right)\right) . \tag{40}
\end{equation*}
$$

To do so, we define the nonlinear operator $N: u \in H_{S} \rightarrow N(v) \in H_{S}^{\prime}$ with:

$$
N(v): \phi \rightarrow \int_{\partial S} h(v) \phi d \sigma(x)
$$

where $H_{S}=\left\{\phi \in H^{1}(D) \mid \phi=0 \quad\right.$ on $\left.\quad \partial D \backslash \partial S\right\}$ and proves that it is continuous. From Theorem 4 we have that $v \in H_{S} \rightarrow v \in L_{2}(\partial S)$ and $h: v \in L_{2}(\partial S) \rightarrow h(v) \in L_{2}(\partial S)$ are continuous. Hence, the mapping,

$$
M: v \in H_{S} \rightarrow h(v) \in L_{2}(\partial S)
$$

is also continuous. If we consider (36), we have:

$$
\begin{aligned}
\mid\left\langle N\left(v^{n_{j}}(.), .\right), w_{k}\right) & \left.\left.-N(v(.), .), w_{k}\right), \phi\right\rangle_{H_{S}^{\prime}, H_{S}} \mid \\
& =\mid \int_{\partial S}\left(\left(h\left(v^{n_{j}}(.), .\right), w_{k}\right)-\left(h(v(.), .), w_{k}\right) \phi d \sigma \mid\right. \\
& \left.\left.\leq\|\phi\|_{L_{2}(\partial S)} \| M\left(v^{n_{j}}(.), .\right), w_{k}\right)-M(v(.), .), w_{k}\right) \|_{L_{2}(\partial S)}
\end{aligned}
$$

Since M is continuous, we obtain:

$$
\begin{aligned}
\left.\| N\left(v^{n_{j}}(.), .\right), w_{k}\right) & \left.-N(v(.), .), w_{k}\right) \| \\
& =\sup _{\phi \neq 0} \frac{\left.\left.\left\langle N\left(v^{n_{j}}(.), .\right), w_{k}\right)-N(v(.), .), w_{k}\right), \phi\right\rangle_{H_{S}^{\prime}, H_{S}}}{\|\phi\|_{H_{S}}} \\
& \left.\leq \| M\left(v^{n_{j}}(.), .\right), w_{k}\right)-M(v(.), .), w_{k} \|_{L_{2}(\partial S)} \longrightarrow 0 .
\end{aligned}
$$

Then Equation (40) is proved. Finally, we will show that:

$$
\begin{equation*}
\int_{0}^{t}\left(F_{2}\left(v^{n_{j}}, s\right), w_{k}\right) d B_{n_{j}} \rightharpoonup \int_{0}^{t}\left(F_{2}(v, s), w_{k}\right) d \widehat{B} \quad \text { in } \quad L_{2}\left(\Omega, \mathbb{P} ; L_{\infty}(0, T)\right), \tag{41}
\end{equation*}
$$

for any $t \in(0, T)$ and k as $j \rightarrow \infty$. Arguing as in [29], we will show that:

$$
\begin{equation*}
\int_{0}^{T}\left(F_{2}\left(v^{n_{j}}, s\right), w_{k}\right) d B_{n_{j}} \rightharpoonup \int_{0}^{T}\left(F_{2}(v, s), w_{k}\right) d \widehat{B} \quad \text { in } \quad L_{2}(\Omega, \mathbb{P}) \tag{42}
\end{equation*}
$$

from (35) the Lemma 3, the assumption on F_{1}, and Vitali's theorem, we have:

$$
\begin{equation*}
\left(F_{2}\left(v^{n_{j}}(.), .\right), w_{k}\right) \rightarrow\left(F_{2}(v(.), .), w_{k}\right) \quad \text { in } \quad L_{2}\left(\Omega, \mathbb{P}, L_{2}(0, T)\right), \tag{43}
\end{equation*}
$$

as $j \rightarrow \infty$. Considering the regularization $F_{2}^{\varepsilon}(v(),.$.$) in (26). We can easily show that:$

$$
\begin{equation*}
\left(F_{2}^{\varepsilon}(v(.), .), w_{k}\right) \rightarrow\left(F_{2}(v(.), .), w_{k}\right) \quad \text { in } \quad L_{2}\left(\Omega, \mathbb{P}, L_{2}(0, T)\right), \tag{44}
\end{equation*}
$$

and:

$$
\begin{align*}
\mathbb{E} \int_{0}^{T}\left|\left(F_{2}^{\varepsilon}\left(v^{n_{j}}, t\right)-F_{2}^{\varepsilon}(v, t), w_{k}\right)\right|^{2} d & \\
& \leq \mathbb{E} \int_{0}^{T}\left|\left(F_{2}\left(v^{n_{j}}, t\right)-F_{2}(v, t), w_{k}\right)\right|^{2} d t . \tag{45}
\end{align*}
$$

The difficulty is to show that:

$$
\begin{equation*}
\int_{0}^{T}\left(F_{2}^{\varepsilon}\left(v^{n_{j}}, s\right), w_{k}\right) d B_{n_{j}} \rightharpoonup \int_{0}^{T}\left(F_{2}^{\varepsilon}(v, s), B_{k}\right) d \widehat{B} \quad \text { in } \quad L_{2}(\Omega, \mathbb{P}) . \tag{46}
\end{equation*}
$$

Since:

$$
\begin{equation*}
\mathbb{E}\left|\int_{0}^{T}\left(F_{2}^{\varepsilon}\left(v^{n_{j}}, t\right), w_{k}\right) d B_{n_{j}}\right|^{2}=\mathbb{E}\left|\int_{0}^{T}\left(F_{2}^{\varepsilon}\left(v^{n_{j}}, t\right), w_{k}\right) d t\right|^{2}<\infty, \tag{47}
\end{equation*}
$$

then, the left-hand-side weakly converges to some α in $L_{2}(\Omega, \mathbb{P})$. An integration by parts gives:

$$
\begin{align*}
& \int_{0}^{T}\left(F_{2}^{\varepsilon}\left(v^{n_{j}}, t\right), w_{k}\right) d B_{n_{j}} \\
& \left.\quad=\left(F_{2}^{\varepsilon}\left(v^{n_{j}}(T), T\right), w_{k}\right)-\int_{0}^{T} B_{n_{j}} \frac{d}{d t} F_{2}^{\varepsilon}\left(v^{n_{j}}(t), t\right), w_{k}\right) d t \tag{48}
\end{align*}
$$

where:

$$
\begin{equation*}
\left.\frac{d}{d t} F_{2}^{\varepsilon}\left(v^{n_{j}}(t), t\right), w_{k}\right)=\frac{1}{\varepsilon} \int_{0}^{T} \frac{d}{d t} \gamma\left(-\frac{t-s}{\varepsilon}\right) F_{2}(v(s), s) d s \tag{49}
\end{equation*}
$$

From (17), we have:

$$
\begin{align*}
& \int_{0}^{T}\left(F_{2}^{\varepsilon}\left(v^{n_{j}}, t\right), w_{k}\right) d B_{n_{j}} \\
& \left.\quad \rightarrow\left(F_{2}^{\varepsilon}(v(T), T), w_{k}\right)-\int_{0}^{T} B(t) \frac{d}{d t} F_{2}^{\varepsilon}(v(t), t), w_{k}\right) d t \tag{50}
\end{align*}
$$

for almost all $w \in \Omega$. The term in the left-hand-side of (50) is equal to:

$$
\begin{equation*}
\int_{0}^{T}\left(F_{2}^{\varepsilon}(v(t), t), w_{k}\right) d \widehat{B} \tag{51}
\end{equation*}
$$

Now, let us choose an element $\xi \in L_{\infty}(\Omega, \mathbb{P})$, we have:

$$
\begin{equation*}
\int_{0}^{T}\left(F_{2}^{\varepsilon}\left(v^{n_{j}}, t\right), \xi w_{k}\right) d B_{n_{j}} \rightarrow \int_{0}^{T}\left(F_{2}^{\varepsilon}(v(t), t), \xi w_{k}\right) d \widehat{B} . \tag{52}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\alpha=\int_{0}^{T}\left(F_{2}^{\varepsilon}(v(t), t), w_{k}\right) d \widehat{B} \tag{53}
\end{equation*}
$$

Thanks to the estimate (27), Lemma 2 the sequence of random variables $\int_{0}^{T}\left(F_{2}^{\varepsilon}\left(v^{n_{j}}, t\right), \xi w_{k}\right) d B_{n_{j}}$ is uniformly integrable. Using convergence (50), and Vitali's Theorem, we get (52). We also have (46) since $L_{\infty}(\Omega, \mathbb{F}, \mathbb{P})$ is dense in $L_{2}(\Omega, \mathbb{P})$.

Let $\xi \in L_{\infty}(\Omega, \mathbb{P})$, we have:

$$
\begin{equation*}
\left|\mathbb{E} \int_{0}^{T}\left(F_{2}\left(v^{n_{j}}, t\right), \xi w_{k}\right) d B_{n_{j}}-\mathbb{E} \int_{0}^{T}\left(F_{2}(v(t), t), \xi w_{k}\right) d \widehat{B}\right| \leq I_{1}+I_{2}+I_{3} . \tag{54}
\end{equation*}
$$

where:

$$
\begin{array}{r}
I_{1}=\left|\mathbb{E} \int_{0}^{T}\left(F_{2}^{\varepsilon}\left(v^{n_{j}}, t\right), \xi w_{k}\right) d B_{n_{j}}-\mathbb{E} \int_{0}^{T}\left(F_{2}\left(v^{n_{j}}(t), t\right), \xi w_{k}\right) d B_{n_{j}}\right| \\
I_{2}=\left|\mathbb{E} \int_{0}^{T}\left(F_{2}^{\varepsilon}\left(v^{n_{j}}, t\right), \xi w_{k}\right) d B_{n_{j}}-\mathbb{E} \int_{0}^{T}\left(F_{2}^{\varepsilon}(v(t), t), \xi w_{k}\right) d B\right| \\
I_{3}=\left|\mathbb{E} \int_{0}^{T}\left(F_{2}^{\varepsilon}(v, t), \xi w_{k}\right) d B-\mathbb{E} \int_{0}^{T}\left(F_{2}(v(t), t), \xi w_{k}\right) d B\right| \tag{57}
\end{array}
$$

By the Cauchy-Schwarz's inequality, using estimate (45) and convergence (43) and (44), it easily seen that I_{1} tends to 0 when $\varepsilon \rightarrow 0$ and $j \rightarrow \infty$. Using (52) we get that I_{2} does converge to zero as $j \rightarrow \infty$. Again, from the Cauchy-Schwarz's inequality, and convergence (44), I_{3} tends to zero as $j \rightarrow \infty$. From these convergences, one can pass to the limit in (54) as $\varepsilon \rightarrow 0$ and $j \rightarrow \infty$; thus, we obtain (46). Collecting all those results and passing to the limit in (22), we show that v satisfies Problem I in the weak sense.

6. Proof of Uniqueness

Theorem 5. Suppose that the assumption of Theorem 1 can be fulfilled; furthermore, $F_{1}(v, t)$ is Lipschitz continuous. Then, v is a unique solution of problem (I).

Proof. Let v^{1} and v^{2} be solutions of Problem (I), we have:

$$
\begin{align*}
& \left\langle d\left(v^{1}-v^{2}\right), v\right\rangle_{H^{-1}(D), H_{0}^{1}(D)}+\int_{D} A \nabla\left(v^{1}-v^{2}\right) \nabla v d x \\
& \quad+\int_{D}\left(h\left(v^{1}, t\right)-h\left(v^{2}, t\right)\right) v d \sigma(x)=\int_{D}\left(F_{1}\left(v^{1}, t\right)-F_{1}\left(v^{2}, t\right)\right) v d x \\
& \quad+\int_{D}\left(F_{2}\left(v^{1}, t\right)-F_{2}\left(v^{2}, t\right) v\right) \widehat{B} . \tag{58}
\end{align*}
$$

Let $v=v^{1}-v^{2}$,

$$
\begin{aligned}
&\left\langle d\left(v^{1}-v^{2}\right), v^{1}-v^{2}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)}+\int_{D} A \nabla\left(v^{1}-v^{2}\right) \nabla\left(v^{1}-v^{2}\right) d x \\
&+\int_{D}\left(h\left(v^{1}, t\right)-h\left(v^{2}, t\right)\right)\left(v^{1}-v^{2}\right) d \sigma(x) \\
&=\int_{D}\left(F_{1}\left(v^{1}, t\right)-F_{1}\left(v^{2}, t\right)\right)\left(v^{1}-v^{2}\right) d x \\
&+\int_{D}\left(F_{2}\left(v^{1}, t\right)-F_{2}\left(v^{2}, t\right)\right)\left(v^{1}-v^{2}\right) d \widehat{B}
\end{aligned}
$$

so, we have,

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\|v^{1}-v^{2}\right\|_{L_{2}(D)}^{2}+\int_{D} A \nabla\left(v^{1}-v^{2}\right) \nabla\left(v^{1}-v^{2}\right) d x \\
&+\int_{D}\left(h\left(v^{1}, t\right)-h\left(v^{2}, t\right)\right)\left(v^{1}-v^{2}\right) d \sigma(x) \\
&=\int_{D}\left(F_{1}\left(v^{1}, t\right)-F_{1}\left(v^{2}, t\right)\right)\left(v^{1}-v^{2}\right) d x \\
&+\int_{D}\left(F_{2}\left(v^{1}, t\right)-F_{2}\left(v^{2}, t\right)\right)\left(v^{1}-v^{2}\right) d \widehat{B} .
\end{aligned}
$$

Now, integrating over $(0, t)$, using the assumption on A and taking the expectation we have:

$$
\begin{align*}
& \mathbb{E}\left\|\left(v^{1}-v^{2}\right)(t)-\left(v^{1}-v^{2}\right)(0)\right\|_{L_{2}(D)}^{2} \\
& \quad+\alpha \mathbb{E} \int_{0}^{t}\left[\left\|\left(v^{1}-v^{2}\right)(s)\right\|_{H_{0}^{1}(D)}^{2}+I_{1}\right] d s l e q \mathbb{E} \int_{0}^{t}\left|I_{2}+I_{3}\right| d s . \tag{59}
\end{align*}
$$

where:

$$
\begin{aligned}
& I_{1}=\int_{\partial S}\left(h\left(v^{1}, t\right)-h\left(v^{2}, t\right)\right)\left(v^{1}-v^{2}\right) d \sigma(x) \\
& I_{2}=\int_{D}\left(F_{1}\left(v^{1}, t\right)-F_{1}\left(v^{2}, t\right)\right)\left(v^{1}-v^{2}\right) d x \\
& I_{3}=\int_{D}\left(F_{2}\left(v^{1}, t\right)-F_{2}\left(v^{2}, t\right)\left(v^{1}-v^{2}\right)\right) d \widehat{B} .
\end{aligned}
$$

First, since h is a monotonously non-decreasing function, then the product $\left(h\left(v^{1}, t\right)-h\left(v^{2}, t\right)\right)\left(v^{1}-v^{2}\right) \geq 0$, so (59) becomes:

$$
\begin{align*}
\mathbb{E} \|\left(v^{1}-v^{2}\right)(t) & -\left(v^{1}-v^{2}\right)(0) \|_{L_{2}(D)}^{2} \\
& +\alpha \mathbb{E} \int_{0}^{t}\left\|\left(v^{1}-v^{2}\right)(s)\right\|_{H_{0}^{1}(D)}^{2} d s \leq \mathbb{E} \int_{0}^{t}\left|I_{2}+I_{3}\right| d s . \tag{60}
\end{align*}
$$

Now, we estimate I_{3}. Thanks to Burkhölder-Davis-Gundy's inequality, followed by the Cauchy-Schwarz's inequality, we can estimate:

$$
\begin{gathered}
\mathbb{E}\left|\int_{0}^{t}\left(F_{2}\left(v^{1}, t\right)-F_{2}\left(v^{2}, t\right)\left(v^{1}-v^{2}\right)\right) d B(s)\right| \\
\leq C \mathbb{E}\left(\int_{0}^{t}\left(F_{2}\left(v^{1}, t\right)-F_{2}\left(v^{2}, t\right)\left(v^{1}-v^{2}\right)\right)^{2}\right)^{\frac{1}{2}} d s \\
\leq \mathbb{C}\left(\int_{0}^{t}\left\|\left(v^{1}-v^{2}\right)(s)\right\|_{L_{2}(D)}^{2}\left\|\left(F_{2}\left(v^{1}, t\right)-F_{2}\left(v^{2}, t\right)\right)(s)\right\|_{L_{2}(D)}^{2} d s\right)^{\frac{1}{2}},
\end{gathered}
$$

using Young's inequality and the assumption on F_{2}, we get:

$$
\begin{array}{r}
\mathbb{E}\left(\int_{0}^{t}\left\|\left(v^{1}-v^{2}\right)(s)\right\|_{L_{2}(D)}^{2}\left\|\left(F_{2}\left(v^{1}, t\right)-F_{2}\left(v^{2}, t\right)\right)(s)\right\|_{L_{2}(D)}^{2} d s\right)^{\frac{1}{2}} \\
\leq \rho \mathbb{E}\left\|\left(v^{1}-v^{2}\right)(s)\right\|_{L_{2}(D)}^{2} \\
+C(\rho) \int_{0}^{t}\left\|\left(F_{2}\left(v^{1}, t\right)-F_{2}\left(v^{2}, t\right)\right)(s)\right\|_{L_{2}(D)}^{2} d s \\
\leq \rho \mathbb{E} \sup \left\|\left(v^{1}-v^{2}\right)(s)\right\|_{L_{2}(D)}^{2} \\
+C(\rho) T+C(\rho) \int_{0}^{T}\left\|\left(v^{1}-v^{2}\right)(s)\right\|_{L_{2}(D)} d s, \tag{61}
\end{array}
$$

for $\rho>0$.
Finally, let us estimate I_{2} by Cauchy-Schwarz's and the assumption on F_{1}, we get:

$$
\begin{gather*}
\mathbb{E}\left|\int_{0}^{t} \int_{D}\left(F_{1}\left(v^{1}, t\right)-F_{1}\left(v^{2}, t\right)\left(v^{1}-v^{2}\right)\right) d x d s\right| \\
\leq C \mathbb{E} \sup \left\|\left(v^{1}-v^{2}\right)(s)\right\|_{L_{2}(D)}^{2}+C T+C \int_{0}^{T}\left\|\left(v^{1}-v^{2}\right)(s)\right\|_{L_{2}(D)} d s \tag{62}
\end{gather*}
$$

considering (62) and (61) we have:

$$
\mathbb{E}\left\|\left(v^{1}-v^{2}\right)(t)-\left(v^{1}-v^{2}\right)(0)\right\|_{L_{2}(D)}^{2}+\alpha \mathbb{E} \int_{0}^{t}\left\|\left(v^{1}-v^{2}\right)(s)\right\|_{H_{0}^{1}(D)}^{2} d s \leq C .
$$

where C independent of s.

$$
\mathbb{E}\left\|\left(v^{1}-v^{2}\right)(t)-\left(v^{1}-v^{2}\right)(0)\right\|_{L_{2}(D)}^{2}+\alpha \mathbb{E} \int_{0}^{t}\left\|\left(v^{1}-v^{2}\right)(s)\right\|_{H_{0}^{1}(D)}^{2} d s \leq 0 .
$$

This implies that $v^{1}-v^{2} \equiv 0$.
Thanks to these pathwise uniqueness results, one can easily apply the celebrated result of Yamada-Watanabe, see [30], to obtain the existence of a strong probabilistic solution.

7. Conclusions

In this paper, we have investigated existence and uniqueness of strong probabilistic solutions for nonlinear parabolic stochastic partial differential equations with nonlinear Robin boundary condition in a domain with holes. The tools used are: Galerkin's approximation method, probabilistic compactness results, and some results from stochastic calculus. The problem considered in this paper describe interesting physical models such as the effect of external random forces on climatization or some chemical reaction, which is more realistic than the obtained deterministic models. As we mentioned in the Introduction, the results obtained in this paper are mainly keyed towards the study of homogenization
and asymptotic analysis. With this results in hand, one can derive homogenization results for linear and nonlinear stochastic PDES with nonlinear boundary conditions.

Funding: This research is supported by the deanship of scientific research in Majmaah University under project number R-2022-239.

Acknowledgments: The author thanks the anonymous reviewers for their useful comments that improved the paper. The author gratefully acknowledges the support of scientific research at Majmaah University for supporting this work under the project number R-2022-239.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Bensoussan, A.; Temam, R. Quations aux drives partielles stochastiques non linaires. Isr. J. Math. 1972, 11, 95-129. (In French) [CrossRef]
2. Bensoussan, A.; Temam, R. Equations Stochastiques du Type Navier-Stokes. J. Funct. Anal. 1973, 139, 195-222. [CrossRef]
3. Viot, M. Sur les Solutions Faibles des Equations aux Derivees Partielles Stochastiques non Lineaires. Ph.D. Thesis, Universite Paris-Sud, Paris, France, 1975.
4. Pardoux, E. Équations aux dérivées Partielles Stochastiques Non Linéaires Monotones. Ph.D. Thesis , Universite Paris, Paris, France, 1975.
5. Krylov, N.N.; Rozovskii, B.L. Stochastic evolution equations. J. Soviet Math. 1981, 14, 1233-1277. [CrossRef]
6. da Prato, G.; Zabczyk, J. Stochastic Equations in Infinite Dimensions; Cambridge University Press: Cambridge, UK, 1992.
7. Ondreját, M. Uniqueness for stochastic evolution equations in Banach spaces. Diss. Math. 2004, 426, 1-63. [CrossRef]
8. Prévôt, C.; Röckner, M. A Concise Course on Stochastic Partial Differential Equations; Springer: Berlin, Germany, 2007; Volume 1905.
9. Albeverio, S.; Brzeźniak, Z.; Daletskii, A. Stochastic Camassa-Holm equation with convection type noise. J. Differ. Equ. 2021, 276, 404-432. [CrossRef]
10. Baranovskii, E.S. Mixed initial-boundary value problem for equations of motion of Kelvin-Voigt fluids. Comput. Math. Math. Phys. 2016, 56, 1363-1371. [CrossRef]
11. Brzeźniak, Z.; Hausenblas, E.; Razafimandimby, A.P. Some results on the penalised nematic liquid crystals driven by multiplicative noise: Weak solution and maximum principle. Stoch. Partial Differ. Equ. Anal. Comput. 2019, 7, 417-475. [CrossRef]
12. Cipriano, N.C.F. Well-posedness of stochastic second grade fluids. J. Math. Anal. Appl. 2017, 454, 585-616.
13. Razafimandimby, P.A.; Sango, M. Strong solution for a stochastic model of two-dimensional second grade fluids: Existence, uniqueness and asymptotic behavior. Nonlinear Anal. 2012, 75, 4251-4270 [CrossRef]
14. Razafimandimby, P.A.; Sango, M. Asymptotic behaviour of solutions of stochastic evolution equations for second grade fluids. Comptes Rendus Math. 2010, 348, 787-790. [CrossRef]
15. Zakaria, A.; Sango, M. Weak and strong probabilistic solutions for a stochastic quasilinear parabolic equation with nonstandard growth. Russ. J. Math. Phys. 2016, 23, 283-308.
16. Cioranescu, D.; Donato, P.; Zaki, R. Asymptotic behaviour of elliptic problems in perforated domains with nonlinear boundary conditions. Asymptot. Anal. 2007, 53, 209-235.
17. Cioranescu, D.; Donato, P. An Introduction to Homogenization; Oxford Lecture Series in Mathematics and Its Applications 17; The Clarendon Press, Oxford University Press: New York, NY, USA, 1999.
18. Conca, C.; Diaz, J.I.; Linan, A.; Timofte, C. Homogenization in Chemical Reactive Flows. Electron. J. Differ. Equ. 2004, 2004, 1-22.
19. Mohammed, M.; Sango, M. Homogenization of linear hyperbolic stochastic partial differential equation with rapidly oscillating coefficients: The two scale convergence method. Asymptot. Anal. 2015, 91, 341-371. [CrossRef]
20. Mohammed, M.; Sango, M. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Netw. Heterog. Media 2019, 14, 341-369. [CrossRef]
21. Mohammed, M.; Ahmed, N. Homogenization and correctors of Robin problem for linear stochastic equations in periodically perforated domains. Asymptot. Anal. 2019, 120, 123-149. [CrossRef]
22. Sango, M. Asymptotic behavior of a stochastic evolution problem in a varying domain. Stoch. Anal. Appl. 2002, 20, 1331-1358. [CrossRef]
23. Timofte, C. Homogenization results for climatization problems. Ann. Dell Univ. Ferrara 2007, 53, 437-448. [CrossRef]
24. Billingsley, P. Convergence of Probability Measures, 2nd ed.; Wiley Series in Probability and Statistics: Probability and Statistics, a Wiley-Interscience Publication; John Wiley: Hoboken, NJ, USA, 2009.
25. Prokhorov, Y. Convergence of Random Processes and Limit Theorems in Probability Theory. Theory Probab. Its Appl. 1956, 1, 157-214. [CrossRef]
26. Bensoussan, A. Some Existence Results for Stochastic Partial Differential Equations; Pitman Res. Notes Math. Ser.; Longman Scientific \& Technical: Harlow, UK, 1990; Volume 268, pp. 37-53.
27. Sango, M. Splitting-up scheme for nonlinear stochastic hyperbolic equations. Forum Math. 2013, 25, 931-965. [CrossRef]
28. Krasnosel'skii, M.A. Topological Methods in the Theory of Nonlinear Integral Equations; International Series of Mono-Graphs in Pure and Applied Mathematics; Pergamon Press: Oxford, UK, 1964.
29. Temam, R. Sur la stabilite et la convergence de la methode des pas fractionnaires. Ann. Mat. Pura Appl. 1968, 79, 191-379. [CrossRef]
30. Rockner, M.; Schmuland, B.; Zhang, X. Yamada-Watanabe theorem for stochastic evolution equations in infinite dimensions. Condens. Matter Phys. 2008, 11, 247-259. [CrossRef]
