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Abstract: A fuzzy soft set is a mathematical tool used to deal with vagueness and uncertainty. Pa-
rameter reduction is an important issue when applying a fuzzy soft set to handle decision making.
However, existing methods neglect newly added parameters and have higher computational com-
plexities. In this paper, we propose a new S-Score table-based parameter-reduction approach for
fuzzy soft sets. Compared with two existing methods of parameter reduction for a fuzzy soft set,
our method takes newly added parameters into account, which brings about greater flexibility and
is beneficial to the extension of fuzzy soft sets and a combination of multiple fuzzy soft sets. Addi-
tionally, our method accesses fewer elements from the dataset, which results in lower computation
compared with the two existing approaches. The experimental results from two applications show
the availability and feasibility of our approach.

Keywords: soft set; fuzzy soft set; redundancy; parameter reduction

1. Introduction

Molodtsov [1,2] proposed soft set theory as a novel concept in 1999 to handle vague-
ness and uncertainty. Mathematical tools using a combination of the soft set model and
other mathematical models have since been developing rapidly, such as the fuzzy soft set [3],
the intuitionistic fuzzy soft set [4], the interval-valued fuzzy soft set [5], the interval-valued
intuitionistic fuzzy soft set [6,7], the belief interval-valued soft set [8], the confidence soft
sets [9], the linguistic value soft set [10], separable fuzzy soft sets [11], dual hesitant fuzzy
soft sets [12], the Z-soft fuzzy rough set [13], the fuzzy parameterized fuzzy soft set [14–17],
interval-valued q-rung orthopair fuzzy soft sets [18], the interval-valued multi-polar fuzzy
soft set [19], the soft rough set [20], etc. The fuzzy soft set is one of the most important
branches of soft sets. Maji et al. [21] was the first to combine a fuzzy set with a soft set
and put forward the idea of a fuzzy soft set. This concept has been further developed
in [22]. There are many practical and valuable applications based on fuzzy soft sets. Sadiq
et al. [23] proposed an approach for ranking the functional requirements of software using
fuzzy soft set theory. A novel time-varying weight determination method based on a fuzzy
soft set was given in [24]. A combination of the association rule method and the fuzzy
soft set model was proposed in [25]. It is worth mentioning that the concept of a fuzzy
soft set has been widely used in the field of decision making. Maji and Roy [26] proposed
a target-recognition method based on a fuzzy soft set for imprecise multi-observer data,
which has been improved in [27]. Another author [28] discussed the fuzzy soft aggregation
operator, which supports the creation of more effective decision making approaches. Using
the horizontal soft set in [29], an adjustable decision method based on the fuzzy soft set was
proposed. Authors of [30] described the concept of fuzzy soft matrices and their related
operations, which allowed them to propose a new decision-making method. The authors
of [31] showed a process of information fusion that provides a more reliable resultant fuzzy
soft set from an input dataset. Tang et al. [32] proposed the gray relational analysis method
based on a fuzzy soft set in decision making. Deng et al. [33] proposed an object-parameter
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method to predict missing data in incomplete fuzzy soft sets. Uncertainty handling is one
of the most important and difficult tasks in medical decision-making. The authors of [34]
improved the decision algorithm based on a fuzzy soft set using a fuzzy measure and D-S
evidence theory, which is often applied to medical diagnoses. The authors of [35] proposed
a chest X-ray-enhanced diagnosis method for pneumonia malformations based on a fuzzy
soft set and D-S evidence theory. Chen et al. [36] proposed a group decision-making algo-
rithm based on an extended fuzzy soft set in order to identify cognitive differences among
different decision makers.

Nevertheless, there are some redundant parameters in the actual decision-making
process. A parameter-reduction set is the smallest subset of parameters that exhibit the
same reduction results or descriptions as the original parameter set. Parameter reduction
is one of important research issues involving applications of these tools that deal with
uncertainty [37,38]. Kong et al. [39] first proposed the normal parameter reduction of fuzzy
soft set theory. Ma et al. [40] proposed an efficient distance-based parameter-reduction
algorithm for this model. In [41], a reduction in the parameters of fuzzy soft sets was
studied from a new perspective on scoring criteria and was improved in [42]. However,
the two existing algorithms do not consider newly added parameters and have higher
computation, which lead to low extendibility.

To address these issues, we propose a S-Score table-based parameter-reduction method
for fuzzy soft sets. Our contributions are as follows:

(1) A new S-Score table-based parameter-reduction method for fuzzy soft sets is presented.
(2) The proposed approach has relatively lower computation in comparison with the two

existing algorithms in [41,42].
(3) The proposed approach considers newly added parameters. Due to this consideration

of the added parameters, our proposed approach has much better flexibility and is
beneficial to the extension of fuzzy soft sets and a combination of multiple fuzzy
soft sets.

(4) The experimental results on two real-life applications show the availability and feasi-
bility of our approach.

The rest of this paper is organized as follows. Section 2 reviews the basic concepts
of soft set theory and fuzzy soft set theory and discusses the two parameter-reduction
methods for fuzzy soft set proposed in [41,42]. In Section 3, our parameter-reduction
algorithm for fuzzy soft sets based on an S-Score table is proposed. In Section 4, this newly
proposed algorithm is compared with the two existing methods in two real-life applications.
Finally, Section 5 concludes the paper.

2. Related Work

In the current section, we briefly recall the basic ideas and notion of soft sets, fuzzy
soft sets, and related parameter-reduction methods for fuzzy soft sets.

2.1. Basic Notions

First, we recall the basic definition of fuzzy sets initially developed by Zadeh [43]
in 1965.

Definition 1. ([43]). A fuzzy set F in the universe U is defined as F = {(x, µF(x)/x ∈ U ,
µF(x) ∈ [0, 1])}. UF is called the membership function of F, and UF indicates the membership

degree from X to F. The family of all fuzzy sets on U is denote by F(U).

Molodtsov [1] defined soft sets in the following way. Let U be an initial universe of
objects and E be the set of parameters in relation to objects in U.

Parameters are often regarded as attributes, characteristics, or properties of objects.
Let P(U) denote the power set of U and A ⊆ E.

Definition 2. A pair (F, A) is called a soft set over U, where F is a mapping given by F : A→ P(U) .
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Maji et al. [21] initiated the study on hybrid structures involving both fuzzy sets and
soft sets. They introduced the notion of fuzzy soft sets, which can be seen as the fuzzy
generalization of a classical soft set. Maji et al. [21] proposed the concept of a fuzzy soft set
as follows.

Definition 3. (See [21]). Let U be an initial universe of objects, E be a set of parameters in relation
to objects in U, and ξ(U) be the set of all fuzzy subsets of U. A pair (F, E) is called a fuzzy soft set
over ξ(U), where F̃ is a mapping given by F̃ : E→ ξ(U) .

2.2. Existing Parameter-Reduction Methods for Fuzzy Soft Sets

Parameter reduction is an important process of decision-making applications for fuzzy
soft sets. Here, we mainly recall two existing methods of parameter reduction.

Kong et al. [41] combined the score decision criterion with the standard parameter
reduction method of a soft set and developed a score decision criterion parameter-reduction
algorithm based on a fuzzy soft set, which is abbreviated as the S-normal reduction algo-
rithm (SNR).

However, this method has high computation. To simplify the calculation, an improved
parameter-reduction method for score decision criteria of a fuzzy soft set (ISNR) was
presented in [42].

However, the two existing Algorithm 1 and Algorithm 2 presented above do not con-
sider newly added parameters and has higher computation, which lead to low extendibility
when multiple datasets are combined. As a result, we propose a new parameter-reduction
method that takes the added parameters into account.

Algorithm 1: S-normal reduction algorithm [41] (SNR).

Step 1: Input a fuzzy soft set (F, A);
Step 2: Compute the comparison table WE−T and check the matrix WE−WE−T for any subset
T ⊂ U. If this matrix is symmetric, T is put into redundant set R;
Step 3: Check if T is the largest non-essential subset of E; in that case, E-T is an S-normal
parameter reduction of R.

Algorithm 2: ISNR [42].

Step 1: Input a fuzzy soft set (F, A);
Step 2: Compute the comparison matrix WT′ (T′ ⊂ U). If this matrix is symmetric, T′ can
be reduced;
Step 3 : E− T′ is the parameter-reduction result of a fuzzy soft set.

3. Our Proposed Method

By introducing a new concept called an S-Score table in this section, we provide a new
approach that successfully overcomes the limitations of the S-normal and I-S-normal methods.

Let U = {α1, α2, . . . , αn} be the universe and A = {e1, e2, . . . em} be the attribute set.
µF(el)

(αi) is the membership value of object αi for parameter el . R(αi)(el) is the number of
objects for which the membership value of αi is equal to or greater than the membership
value of αj and T(αi)(el) is the number of objects for which the membership value of αi is
equal to or less than the membership value of αj.

The S-Score value of object αi on el is denoted by S(αi)(el) and defined by

S(ai)(el) = R(ai)(el)− T(ai)(el) (1)

The overall S-Score of object αi is denoted by Si and defined as

Si =
m

∑
l=1

S(ai)(el) (2)
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The S-Score table is a table in which the rows are labeled by the attribute e1, e2, . . . em
and the columns are labeled by the objects α1, α2, . . . , αn. An entry corresponding to
attribute el and object αi is denoted by S(αi)(el).

To illustrate our method in Algorithm 3, we give the following example.

Algorithm 3: The proposed reduction algorithm based on S-Score table.

Step 1: Input a fuzzy soft set (F, A);
Step 2: Compute the S-Score value S(ai)(el) of ai to attribute el and create the S-Score table for
(F, A);
Step 3: Compute ST for any subset of T ⊂ A; if ST = 0 for all objects, then T is called a
non-essential set in E.
Step 4: Check whether the non-essential subset T is the largest non-essential subset. If so, A-T is
the final parameter-reduction result.

Example 1. There are six objects U = {P1, P2, P3, P4, P5, P6 }, and E = {e1, e2, e3, e4, e5, e6, e7 }
is a collection of parameters. The fuzzy soft set (S, P) is shown in Table 1.

Table 1. Fuzzy soft set (S, P).

U e1 e2 e3 e4 e5 e6 e7

P1 0.3 0.1 0.8 0.3 0.2 0.4 0.7
P2 0.3 0.3 0.6 0.2 0.5 0.2 0.3

P3 0.4 0.2 0.7 0.8 0.2 0.9 0.9

P4 0.7 0.4 0.5 0.5 0.4 0.3 0.8

P5 0.2 0.5 0.4 0.4 0.7 0.1 0.2

P6 0.6 0.7 0.3 0.1 0.6 0.5 0.4

According to our Algorithm 3, the following steps are given:
Step 1: Input a fuzzy soft set (S, P) as shown in Table 1;
Step 2: Compute the S-Score valve S(pi)(el) for each object Pi to the attribute el using

Equation (1);
Hence, we can obtain the following:

S(p1)(e1) = R(pi)(e1)− T(pi)(e1) = 2− 4 = −2; S(p1)(e2) = R(pi)(e2)− T(pi)(e2) = 0− 5 = −5;
S(p1)(e3) = R(pi)(e3)− T(pi)(e3) = 5− 0 = 5; S(p1)(e4) = R(pi)(e4)− T(pi)(e4) = 2− 3 = −1;
S(p1)(e5) = R(pi)(e5)− T(pi)(e5) = 1− 5 = −4; S(p1)(e6) = R(pi)(e6)− T(pi)(e6) = 3− 2 = 1;

S(p1)(e7) = R(pi)(e7)− T(pi)(e7) = 3− 2 = 1

Similarly, we calculate the remaining S-Score valves as shown in Table 2.

Table 2. The S-Score table of (S, P).

U e1 e2 e3 e4 e5 e6 e7

P1 −2 −5 5 −1 −4 1 1
P2 −2 −1 1 −3 1 −3 −3

P3 1 −3 3 5 −2 5 5

P4 5 1 −1 3 −1 −1 3

P5 −5 3 −3 1 5 −5 −5

P6 3 5 −5 −5 3 3 −1

Step 3: Compute ST for any subset of T ⊂ E; if ST = 0 for all objects, then T is called a
non-essential set in E.
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In this process, we find that T = {e2, e3} for all of objects ST = 0, which is illustrated in
Table 3.

Table 3. The reduced parameters.

U e2 e3 ST

P1 −5 5 0
P2 −1 1 0
P3 −3 3 0
P4 1 −1 0
P5 3 −3 0
P6 5 −5 0

Step 4: We find that the reduced subset T = {e2, e3} is the largest non-required subset.
If so, the remaining parameter subset E-T = {e1, e4, e5, e6, e7 } is the final reduction result.

We also apply SNR and ISNR to Example 4.1. As a result, the parameter-reduction
results are {e1, e4, e5, e6, e7 }. That is, three methods provide equivalent reduction results.
In order to verify this point, we give the following Theorem.

Theorem 1. Suppose that (F, E) is a fuzzy soft set on U; U = P1, P2, . . . , Pn; and E = e1, e2, . . . em.
For any Pi ∈ U, calculating its score Si and priority ranking PRi using the SNR algorithm, its
score S′i and priority rank PR′i using the ISNR algorithm, and its overall S-Score S′′i and priority
rank PR′′i using our algorithm, we have Si = S′i = S′′i and PRi = PR′i = PR′′i .

Proof . Since ∑n
j=1 cij = ∑m

l=1 R(pi)(ei) and ∑n
j=1 cji = ∑m

l=1 T(pi)(el), we can obtain the
following:

Si = ri − ti =
n
∑

j=1
cij −

n
∑

j=1
cji =

m
∑

l=1
R(pi)(el)−

m
∑

l=1
T(pi)(el)

=
m
∑

l=1
(R(pi)(ei)− T(pi)(el)) =

m
∑

l=1
S(pi)(el) = S′′i .

In the same way, we can obtain S′i = S′′i . To sum up, we can have Si = S′i = S′′i .
We use Equations (1) and (2) to create the S-Score table of the fuzzy soft set (F, E),

which is shown in Table 4. We can obtain the rank of objects PR′′i according to SEi . �

Table 4. S-Score table of fuzzy soft set (F, E).

U E1 E2 . . . Em−1 Em SEi

P1 S(a1)(e1) S(a1)(e2) . . . S(a1)(em−1) S(a1)(em) SE1

P2 S(a2)(e1) S(a2)(e2) . . . S(a2)(em−1) S(a2)(em) SE2

. . . . . . . . . . . . . . . . . . . . .
Pn−1 S(an−1)(e1) S(an−1)(e2) . . . S(an−1)(em−1) S(an−1)(em) SEn−1

Pn S(an)(e1) S(an)(e2) . . . S(an)(em−1) S(an)(em) SEn

According to our method, we should find the subset T ⊂ E that satisfies ST
1 = ST

2
= . . . = ST

n = 0. Because ST
1 = ST

2 = . . . = ST
n = 0, it is clear that the rank of objects PR′′i

based on sE
i is the same as the rank of objects according to sE−T

i. That is, the object priority
remains unchanged after the redundant parameter set is reduced, so PRi = PR′i = PR′′i .
This completes the proof.

From the above theorem, we can conclude that the three reduction algorithms provide
equivalent reduction results.

4. Comparison Results among Three Methods

In this section, first, we compare the proposed algorithm with the two existing
methods—SNR (Algorithm 1) and ISNR (Algorithm 1)—on two real-life applications.
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As a result, we summarize the comparison among three methods from aspects such as
consideration of the added parameters, flexibility, and computational complexity.

4.1. Case 1: Personal Postgraduate Enrollment for the Supervisors

After the postgraduate entrance examination, one supervisor who works at Northwest
Normal University plans to recruit one graduate student majoring in computer science.
He receives five emails with resumes. That is, there are five candidates. Furthermore, this
supervisor examines the five resumes and summarizes seven appraisal items as diverse
as “reputation of the university at which the candidate studied their bachelor’s degree”,
“international ranking of their computer science major”, “GPA”, “English reading ability”,
“English writing ability”, “academic performance”, and “internship experience” to evaluate
the five candidates. We apply a fuzzy soft set to display the performances of the five
candidates about the seven aspects. Suppose that U = {p1, p2, p3, p4, p5} is the set of five
candidates, and E = {e1, e2, e3, e4, e5, e6, e7} is the set of seven appraisal items. Table 5
presents the data records for the personal postgraduate enrollment system used by the
supervisor as a fuzzy soft set (F, E).

Table 5. Fuzzy soft set (F, E).

U e1 e2 e3 e4 e5 e6 e7

P1 0.18 0.82 0.45 0.45 0.15 0.55 0.85
P2 0.54 0.75 0.70 0.25 0.45 0.35 0.55
P3 0.62 0.50 0.30 0.75 0.15 0.85 0.85
P4 0.85 0.45 0.78 0.60 0.35 0.45 0.80
P5 0.89 0.32 0.89 0.50 0.80 0.25 0.25
P6 0.18 0.82 0.45 0.45 0.15 0.55 0.85

4.1.1. Three Methods on the Original Dataset
SNR

According to the algorithm of SNR, first, we calculate the comparison and score table
of a fuzzy soft set (F, E), which is shown in Table 6. We can see that the scores of each object
are −2, −6, 4, 4, and 0, respectively. The priority ranking is p3 = p4 > p5 > p1 > p2.

Table 6. The comparison and score table of (F, E).

U P1 P2 P3 P4 P5 Row-Sum (ri) Column-Sum (ti) Score (si)

P1 7 4 4 3 3 21 23 −2
P2 3 7 3 2 3 18 24 −6
P3 5 4 7 4 4 24 20 4
P4 4 5 3 7 4 23 19 4
P5 4 4 3 3 7 21 21 0

We check the matrix WE-WE-T for subset T = e1, e2, e5, e7 ⊂ U and find that this matrix
is symmetric. As a result, the final S-normal reduction result is { e3, e4, e6 }.

In this algorithm, we first calculate the comparison table of the fuzzy soft set, the
number of elements accessed is 25 × 7 = 175. Next, we check the matrix WE−WE−T for
subset T = {e1, e2, e5, e7} ⊂ U, In this step, the number of elements accessed is 2 × 25 × 5 +
6 × 25 = 400. From the above steps, we can conclude that the total number of elements
accessed for S-normal is 575.

ISNR

First, the special subset T′ = e1, e2, e5, e7 is found; then, we calculate the fuzzy soft
set (F, T′) from the comparison table and the score table, which are shown in Table 7. The
number of elements accessed for this step is 100. The difference is calculated from the score
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table, and the number of elements accessed is 50. From the above steps, we can obtain that
the total number of elements accessed by ISNR is 150.

Table 7. The comparison and score table of (F, T′).

U P1 P2 P3 P4 P5 Row-Sum (ri) Column-Sum (ti) Score (si)

P1 4 2 1 2 2 11 11 0
P2 2 4 2 2 2 12 12 0
P3 1 2 4 2 2 11 11 0
P4 2 2 2 4 2 12 12 0
P5 2 2 2 2 4 12 12 0

The New Proposed Algorithm

According to our proposed algorithm, the following steps are given: a special subset
T = {e1, e2, e5, e7} is found, the number of elements accessed is 80 when comparing the
difference between the membership degrees of different objects using Equation (1) in this
step. Additionally, the number of elements accessed, shown in Table 8 using Equation (2) is
20. From the above steps, the total number of elements assessed is up to 100.

Table 8. The S-Score table of (F, T′).

U e1 e2 e5 e7 Sk

P1 −4 4 −3 3 0
P2 −2 2 2 −2 0
P3 0 0 −3 3 0
P4 2 −2 0 0 0
P5 4 −4 4 −4 0

Compared with the SNR algorithm, it is clear that the improvement in the total number
of elements accessed is up to 42% in this process, while the improvement in the total number
of elements accessed is 21% compared with ISNR.

4.1.2. Three Methods on the Extended Dataset

Suppose that (F, E) is an original fuzzy soft set and that the new attribute set
E′ =

{
e′1, e′2 . . . , e′r

}
should be added to E. If parameter reduction is performed using

SNR, you have to assemble two parameter sets into a parameter set and to compute a new
comparison table for the new fuzzy soft set (H, E ∪ E′). Here, after face-to-face interviews
for the five candidates, the supervisor considers adding two new attributes such as “ex-
pression ability” and “interest in research” to evaluate the applicants shown in Table 9.
However, for the newly added parameters

{
e′1, e′2

}
, three methods have different reduction

processes and number of elements accessed.

Table 9. Fuzzy soft set (F, E′).

U e’
1 e’

2

P1 −4 4
P2 −2 2
P3 0 0
P4 2 −2
P5 4 −4

SNR

According to SNR, the following steps are given:
Step 1: Combine Tables 5 and 9 into a new fuzzy soft set, as shown in Table 10.
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Table 10. Fuzzy soft set (F, E ∪ E′).

U e1 e2 e3 e4 e5 e6 e7 e’
1 e’

2

P1 0.18 0.82 0.45 0.45 0.15 0.55 0.85 0.70 0.20
P2 0.54 0.75 0.70 0.25 0.45 0.35 0.55 0.35 0.80
P3 0.62 0.50 0.30 0.75 0.15 0.85 0.85 0.80 0.15
P4 0.85 0.45 0.78 0.60 0.35 0.45 0.80 0.60 0.50
P5 0.89 0.32 0.89 0.50 0.80 0.25 0.25 0.40 0.60

Step 2: Table 11 presents a comparison table of the fuzzy soft set (F, E ∪ E′), and the
number of elements accessed for this step is 250.

Table 11. The comparison and score table of (F, E ∪ E′).

U P1 P2 P3 P4 P5 Row-Sum (ri) Column-Sum (ti) Score (si)

P1 9 5 5 4 4 32 34 −2
P2 5 9 5 4 5 29 35 −6
P3 7 6 9 6 6 35 31 4
P4 6 7 5 9 6 34 30 4
P5 6 6 5 5 9 32 32 0

Step 3: Calculate the score table according to the comparison table in Step 2, the
number of elements accessed for this step is 2 × 25 = 50.

As you can see from Table 11, after adding a new attribute, the object score list and
prioritization are consistent with the results of the original dataset, so the newly added
attribute set is not a necessary set and can be reduced. In the extended dataset, the total
elements accessed for S-normal is 300.

ISNR

According to ISNR, the following steps are given:
Step 1: Calculate the comparison and score tables of the new attribute sets, as shown

in Table 12, and the number of elements accessed in this step is 50;

Table 12. The comparison and score table of (F, E′).

U P1 P2 P3 P4 P5 Row-Sum (ri) Column-Sum (ti) Score (si)

P1 2 1 1 1 1 6 6 0
P2 1 2 1 1 1 6 6 0
P3 1 1 2 1 1 6 6 0
P4 1 1 1 2 1 6 6 0
P5 1 1 1 1 2 6 6 0

Step 2: Calculate the difference based on the score table in Step 1, and the number of
elements accessed is 50;

Step 3: As you can see from Table 12, the newly added attribute set can be reduced
because all of the object scores are 0. Therefore, the total number of elements accessed
is 100.

Our Proposed Algorithm

According to our proposed algorithm, the following steps are given:
Step 1: Compute the S-Score table for the two newly added attributes, as shown in

Table 13;
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Table 13. The S-Score table of (F, E′).

U e’
1 e’

2 Si

P1 2 −2 0
P2 −4 4 0
P3 4 −4 0
P4 0 0 0
P5 −2 2 0

Step 2: For the newly added parameters
{

e′1, e′2
}

, obtain Si = 0 for all of objects, so the
newly added attributes can be reduced;

Using this method, we create an S-Score table for the two newly added attributes, and
the number of elements accessed in this step is 40. Additionally, then, we obtain Si for
the two added parameters, and the number of elements accessed is 10. Finally, the total
number of elements accessed from the extended dataset is 40 + 10 = 50.

Table 14 shows the comparative results of the three reduction algorithms. Both the
original dataset and the extended dataset, the three methods have the same reduction
results, so the three reduction algorithms are equivalent.

Table 14. Comparison results among the three algorithms for case 1.

Comparison SNR ISNR Our Algorithm Improvement vs. SNR/ISNR

Reduction result
{

e1, e2, e5,
e7, e′1, e′2

} {
e1, e2, e5,
e7, e′1, e′2

} {
e1, e2, e5,
e7, e′1, e′2

}
The same

Flexibility and extendibility Weak Weak Strong Stronger

Considering the added parameters No No Yes -

The total number of element access
on the original dataset 575 150 100 82.6%/33.3%

The total number of element access
on the extended dataset 300 100 50 83.3%/50%

Compared with SNR, the improvement of the total number of element access is up to
83% in this decision process after adding new parameters; while the improvement of the
total number of element access is up to 50% compared with ISNR. The proposed approach
considers the newly added parameters. Due to considering the added parameters, our
proposed approach has the much higher flexibility and is beneficial to the extension of
fuzzy soft set and combination of multiple fuzzy soft sets.

4.2. Case 2: Evaluation for Academic Papers

Researchers usually use many measurement indicators to evaluate the academic pa-
pers. A researcher as a beginner wants to read an excellent scientific journal paper on the
research topic of “data mining”, so he collects five academic papers from Baidu scholar. He
cares about the performances of these academic papers from the seven aspects including
“downloads”, “cited frequency”, “number of results”, “H-index”, “number of cited”, “read-
ing volume” and “impact factor”. Here, we employ a fuzzy soft-set model to describe five
academic papers. U is a collection of five academic papers, and U = {p1, p2, p3, p4, p5} =
{“Design and Application of Teaching Quality Monitoring and Evaluation System Based on
Data Mining”, “Study on Data Mining for Combat Simulation”, “Research on Intrusion
Detection of Data Mining Model Based on Improved Apriori Algorithm”, “Construction of
Cloud Service Platform for Network Big Data Mining”, “Overview of Data Mining”} [42].
E = {e1, e2, e3, e4, e5, e6, e7} = {“downloads”, “cited frequency”, “number of results” ,
“H-index”, “number of cited”, “reading volume”, “impact factor”} as a set of parame-
ters. All of datasets are normalized and transformed into a unit entity between 0 and
1. The specific data are shown in Table 15 below. However, because some measurements
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tend to be similar, there are some redundant data in the evaluation. We use the three
methods to get the parameter reduction results.

Table 15. Fuzzy soft set of Evaluation System for Academic papers [42].

U e1 e2 e3 e4 e5 e6 e7

P1 0.05 0.09 0.12 0.16 0.05 0.95 0.44
P2 0.17 0.95 0.95 0.95 0.23 0.75 0.95
P3 0.22 0.40 0.11 0.61 0.23 0.55 0.05
P4 0.72 0.43 0.08 0.50 0.05 0.15 0.18
P5 0.95 0.05 0.05 0.05 0.95 0.05 0.63

By comparing the above three algorithms, it can be found:

(1) The three algorithms can obtain the same reduction results as {e2, e3, e4, e5, e7};
(2) In this case, the number of elements accessed by SNR, ISNR and our method are 350,

100 and 60, respectively;
(3) For the number of element access, the newly proposed reduction algorithm are

improved by 83% and 40% over SNR and ISNR, respectively.

The comparison results of the three reduction algorithms on the evaluation of academic
papers are shown in Table 16 below.

Table 16. Comparison result for case 2.

Algorithm Comparison SNR ISNR Our Algorithm

Parameter reduction results {e2, e3, e4, e5, e7} {e2, e3, e4, e5, e7} {e2, e3, e4, e5, e7}
Number of element access 350 100 60

4.3. Computational Complexity

Assuming a fuzzy soft set with an initial theoretical field is U, in fuzzy soft set (F, E),
the objects and parameters are n rows and m columns, respectively. There are non-essential
parameter sets in the original dataset E. The next three reduction algorithms accessed the
elements only for a special subset of the original dataset, and the number of columns is
recorded as m′. The number of elements accessed by the three reduction algorithms from
the original dataset is analyzed as follows:

4.3.1. SNR

If a special subset T′ exists in the original parameters set E, m′ represents the number
of columns of a special subset T′,using big O notation, the computational complexity of
SNR is O(n2m).

4.3.2. ISNR

For ISNR, if special subset T′ has m′ columns, using big O notation, the computational
complexity of ISNR is O(n2m′).

4.3.3. The Newly Proposed Algorithm

For the reduction algorithm of this study, only the comparison table of special subset
T′ is calculated, special subset T′ has m′ columns, the number of elements accessed for this
step is n2m′, we need to sum up the score table, and the calculation number of this step
is nm′. In summary, the total number of elements accessed for the reduction algorithm in
this study is n2m′. Using big O notation, the computational complexity of the proposed
algorithm is O(n2m′).

Finally, we summarize the comparison results among the three methods as shown in
Table 17.
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Table 17. Summary of comparison results.

Comparison SNR ISNR Our Algorithm

Reduction result the same the same the same

Flexibility and extendibility Weak Weak Strong

Considering the added parameters No No Yes

Computational complexity O
(
n2m ) O

(
n2m′ ) O

(
n2m′ )

5. Conclusions

In this paper, we proposed a new parameter-reduction method for fuzzy soft sets. As
can be learned from the above two datasets, our proposed method has the same reduction
results as two existing parameter reduction approaches for fuzzy soft sets; SNR and ISNR.
However, it is clear that our method outperforms SNR and ISNR in terms of the number
of elements accessed. When we have to add new parameters, our method takes the
added parameters into account. Hence, our method has better flexibility and extendibility
compared with SNR and ISNR. Our method can be applied to the extension of fuzzy soft
sets and a combination of multiple evaluation systems. However, the proposed approach
has limitations regarding computation when the number of attributes is very large. In
future work, we will extend this parameter-reduction method to other mathematical models
such as the interval-valued fuzzy soft set, the soft rough set, etc.
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30. Çağman, N.; Enginoğlu, S. Fuzzy Soft Matrix Theory and Its Application in Decision Making. Iran. J. Fuzzy Syst. 2012, 9, 109–119.
31. Carlos, J.; Alcantud, R. A novel algorithm for fuzzy soft set based decision making from multiobserver input parameter data set.

Inf. Fusion 2016, 29, 142–148.
32. Tang, H. A novel fuzzy soft set approach in decision making based on grey relational analysis and Dempster–Shafer theory of

evidence. Appl. Soft Comput. 2015, 31, 317–325. [CrossRef]
33. Deng, T.; Wang, X. An object-parameter approach to predicting unknown data in incomplete fuzzy soft sets. Appl. Math. Model.

2013, 37, 4139–4146. [CrossRef]
34. Wang, J.; Hu, Y.; Xiao, F.; Deng, X.; Deng, Y. A novel method to use fuzzy soft sets in decision making based on ambiguity measure

and Dempster–Shafer theory of evidence: An application in medical diagnosis. Artif. Intell. Med. 2016, 69, 1–11. [CrossRef]
[PubMed]

35. Biswajit, B.; Swarup, K.G.; Siddhartha, B.; Jan, P.; Vaclav, S.; Amlan, C. Chest X-ray enhancement to interpret pneumonia
malformation based on fuzzy soft set and Dempster–Shafer theory of evidence. Appl. Soft Comput. 2020, 86, 105889.

36. Chen, W.; Zou, Y. Group decision making under generalized fuzzy soft sets and limited cognition of decision makers. Eng. Appl.
Artif. Intell. 2020, 87, 103344. [CrossRef]

37. Akram, M.; Ali, G.; Alcantud, J.C.R. Attributes reduction algorithms for m-polar fuzzy relation decision systems. Int. J. Approx.
Reason. 2022, 140, 232–254. [CrossRef]

38. Akram, M.; Ali, G.; Alcantud, J.C.R.; Fatimah, F. Parameter reductions in N-soft sets and their applications in decision-making.
Expert Syst. 2021, 38, e12601. [CrossRef]

39. Kong, Z.; Gao, L.; Wang, L.; Li, S. The normal parameter reduction of soft sets and its algorithm. Comput. Math. Appl. 2008,
56, 3029–3037. [CrossRef]

40. Ma, X.; Qin, H. A distance-based parameter reduction algorithm of fuzzy soft sets. IEEE Access 2018, 6, 10530–10539. [CrossRef]
41. Kong, Z.; Ai, J.; Wang, L.; Li, P.; Ma, L.; Lu, F. New normal parameter reduction method in fuzzy soft set theory. IEEE Access 2018,

7, 2986–2998. [CrossRef]
42. Ma, X.; Fei, Q.; Qin, H.; Zhou, X.; Li, H. New Improved Normal Parameter Reduction Method for Fuzzy Soft Set. IEEE Access

2019, 7, 154912–154921. [CrossRef]
43. Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [CrossRef]

http://doi.org/10.1016/j.engappai.2018.03.019
http://doi.org/10.1016/j.asoc.2017.03.038
http://doi.org/10.1109/ACCESS.2021.3089849
http://doi.org/10.1007/s00500-021-06553-z
http://doi.org/10.1016/j.neucom.2022.05.041
http://doi.org/10.55730/1300-0632.3816
http://doi.org/10.1007/s10462-021-10027-x
http://doi.org/10.1016/j.asoc.2016.09.012
http://doi.org/10.1016/j.camwa.2009.12.006
http://doi.org/10.1016/j.eswa.2021.116452
http://doi.org/10.1016/j.eswa.2021.115998
http://doi.org/10.1016/j.cam.2008.01.011
http://doi.org/10.1016/j.cam.2009.11.055
http://doi.org/10.1016/j.asoc.2015.03.015
http://doi.org/10.1016/j.apm.2012.09.010
http://doi.org/10.1016/j.artmed.2016.04.004
http://www.ncbi.nlm.nih.gov/pubmed/27235800
http://doi.org/10.1016/j.engappai.2019.103344
http://doi.org/10.1016/j.ijar.2021.10.005
http://doi.org/10.1111/exsy.12601
http://doi.org/10.1016/j.camwa.2008.07.013
http://doi.org/10.1109/ACCESS.2018.2800017
http://doi.org/10.1109/ACCESS.2018.2888878
http://doi.org/10.1109/ACCESS.2019.2949142
http://doi.org/10.1016/S0019-9958(65)90241-X

	Introduction 
	Related Work 
	Basic Notions 
	Existing Parameter-Reduction Methods for Fuzzy Soft Sets 

	Our Proposed Method 
	Comparison Results among Three Methods 
	Case 1: Personal Postgraduate Enrollment for the Supervisors 
	Three Methods on the Original Dataset 
	Three Methods on the Extended Dataset 

	Case 2: Evaluation for Academic Papers 
	Computational Complexity 
	SNR 
	ISNR 
	The Newly Proposed Algorithm 


	Conclusions 
	References

