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Abstract: In this review, we trace the evolution of the quantum spin-wave theory treating non-
collinear spin configurations. Non-collinear spin configurations are consequences of the frustration
created by competing interactions. They include simple chiral magnets due to competing nearest-
neighbor (NN) and next-NN interactions and systems with geometry frustration such as the triangular
antiferromagnet and the Kagomé lattice. We review here spin-wave results of such systems and also
systems with the Dzyaloshinskii–Moriya interaction. Accent is put on these non-collinear ground
states which have to be calculated before applying any spin-wave theory to determine the spectrum
of the elementary excitations from the ground states. We mostly show results obtained by the use
of a Green’s function method. These results include the spin-wave dispersion relation and the
magnetizations, layer by layer, as functions of T in 2D, 3D and thin films. Some new unpublished
results are also included. Technical details and discussion on the method are shown and discussed.

Keywords: quantum spin-wave theory; Green’s function theory; frustrated spin systems; non-collinear
spin configurations; Dzyaloshinskii–Moriya interaction; phase transition; Monte Carlo simulation

1. Introduction

In a solid the interactions between its constituent atoms or molecules gives rise to
elementary excitations from its ground state (GS) when the temperature increases from
zero. One has examples of elementary excitations due to atom-atom interactions, known
as phonons, or due to spin-spin interactions, known as magnons. Note that magnons are
spin waves (SW) when they are quantized. Elementary excitations are defined also for
interactions between charge densities in plasma, or for electric dipole-dipole interactions
in ferroelectrics, among others. Elementary excitations are thus collective motions which
dominate the low-temperature behaviors of solids in general.

For a given system, there are several ways to calculate the energy of elementary
excitations from classical treatments to quantum ones. Since those collective motions are
waves, their energy depends on the wave vector k. The k-dependent energy is often called
the SW spectrum for spin systems. Note that though the calculation of the SW spectrum is
often for periodic crystalline structures, it can also be performed for symmetry-reduced
systems such as in thin films or in semi-infinite solids in which the translation symmetry is
broken by the presence of a surface.

In this review we focus on the SW excitations in magnetically ordered systems. The his-
tory began with ferromagnets and antiferromagnets with collinear spin GSs, parallel or
antiparallel configurations in the early 1950s. Most of the works on the SW used either the
classical method or the quantum Holstein–Primakoff transformation. The Green’s function
(GF) technique has also been introduced in a pioneering paper of Zubarev [1]. The first
application of this method to thin films has been done [2]. Note that unlike the SW theory,
the GF can treat the SW up to higher temperatures. We will come back to this point later.

Let us recall some important breakthroughs in the study of non-collinear spin con-
figurations. The first discovery of the helical spin configuration has been published in
1959 [3,4]. Some attempts to treat this non-collinear case have been done in the 1970 and
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1980. Let us cite two noticeable works on this subject in Refs. [5,6]. In these works, a local
system of spin coordinates have been introduced in the way that each spin lies on its
quantization axis. One can therefore use the commutation relations between spin deviation
operators. These works took into account magnon-magnon interactions by expanding the
Hamiltonian up to three-operator terms at temperature T = 0 [5] or up to four-operator
terms at low T [6]. Nevertheless, since these works used the Holstein–Primakoff method,
the case of higher T cannot be dealt with. In Ref. [7], the GF method has been employed
for the first time to calculate the SW spectrum in a frustrated system where the GS spin
configuration is non-collinear. Using the SW spectrum, the local order parameters and
the specific heat were calculated. Since this work, we have applied the GF method to a
variety of systems where the GS is non-collinear. In this review, we will recall results of
some of these published works.

Let us comment on the frustration which is the origin of the non-collinear GS. The frus-
tration is caused by either the competing interactions in the system or a geometry frustration
as in the triangular lattice with only the antiferromagnetic interaction between the nearest
neighbors (NN) (see Ref. [8]). The frustration causes high GS degeneracy, and for the
vector spins (XY and Heisenberg cases) the spin configurations are non-collinear, making
the calculation of the SW spectrum harder. A number of examples will be shown in this
review paper.

In addition to competing interactions, the Dzyaloshinskii–Moriya (DM) interaction [9,10]
is also the origin of non-collinear spin configurations in spin systems. While the Heisenberg
model between two spins is written as −JijSi · Sj giving rise to two collinear spins in the
GS, the DM interaction is written as Dij · Si × Sj giving rise to two perpendicular spins.
The DM model was historically proposed to explain the phenomenon of weak ferromagnetism
observed in Mn compounds [11]. However, the DM interaction is at present known in various
materials, in particular at the interface of a multilayer [12–16]. Although in this review we do
not show the effect of the DM interaction in a magnetic field which gives rise to topological
spin swirls known as skyrmions, we should mention a few of the important works given in
Refs. [17–21]. Skyrmions are among the most studied subjects at the time being due to their
potential applications in spin electronics [22]. We refer the reader to the rich biography given
in our recent papers in Refs. [23,24].

Since this paper is a review on the method and the results of published works on
SW in non-collinear GS spin configurations, it is important to recall the method and show
main results of some typical cases. We would like to emphasize that, on the GF technique,
to our knowledge there are no authors other than us working with this method. Therefore,
the works mentioned in the references of this paper are our works published over the
last 25 years. The aim of this review is two-fold. First we show technical details of the
GF method by selecting a number of subjects which are of current interest in research:
helimagnets, systems including a DM interaction, and surface effects in thin films. Second,
we show that these systems possess many striking features due to the frustration.

This paper is organized as follows. In Section 2, we express the Hamiltonian in a
general non-collinear GS and define the local system of spin coordinates. Here, we also
present the calculation of the GS and the foundation of the self-consistent GF technique
and the calculation of the SW dispersion relation and layer magnetizations at arbitrary
temperature (T). We show in Section 3 the numerical results obtained from the GF. Section 4
shows interesting examples using various kinds of interaction including the DM interaction
in a variety of systems from two dimensions, to thin films and superlattices. Section 5 treats
a case where the DM interaction competes with the antiferromagnetic interaction in the
frustrated antiferromagnetic triangular lattice. Section 6 presents the surface effect in a thin
film where its surface is frustrated. Concluding remarks are given in Section 7.

2. Hamiltonian of a Chiral Magnet—Local Coordinates

Chiral order in helimagnets has been subject of recent extensive investigations. In Ref. [25],
the surface structure of thin helimagnetic films has been studied. In Ref. [26] exotic spin
configurations in ultrathin helimagnetic holmium films have been investigated. In Refs. [27,28]
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chiral structure and spin reorientations in MnSi thin films have been theoretically studied.
In these works, the chiral structures have been considered at T = 0, but not the SW even at
T = 0. The main difficulty was due to the non-collinear, non-uniform spin configurations. We
have shown that this was possible using the GFs generalized for such spin configurations
given in Ref. [7].

To demonstrate the method, let us follow Ref. [29]: we consider the body-centered
tetragonal (bct) lattice with Heisenberg spins. Each spin interacts with its nearest neighbors
(NN) via the exchange constant J1 and with its next NN (NNN) on the c-direction via the
exchange J2 (see Figure 1).

Figure 1. Interactions J1 (thin solid lines) between nearest neighbors and J2 between next nearest
neighbors along the c axis in a bct lattice.

We consider the simplest model of a helimagnet, given by the following Hamiltonian

H = −J1 ∑
i,j

Si · Sj − J2 ∑
i,k

Si · Sk (1)

where Si is a quantum spin of magnitude 1/2, the first sum is performed over all NN pairs,
and the second sum over pairs on the c-axis (cf. Figure 1).

In the case of an infinite crystal, the chiral state occurs when J1 is ferromagnetic and J2
is antiferromagnetic and |J2|/J1 is larger than a critical value, as will be shown below.

Let us suppose that the energy of a spin EC in a chiral configuration when the angle
between two NN spin in the neighboring planes is θ, one has (omitting the factor S2)

E = −8J1 cos θ − 2J2 cos(2θ) (2)

The lowest-energy state corresponds to

dE
dθ

= 0

→ 8J1 sin θ + 4 sin(2θ) = 0 (3)

8J1 sin θ(1 +
J2

J1
cosθ) = 0

There are two solutions, sin θ = 0 and cos θ = − J1
J2

The first solution corresponds to

the ferromagnetic state, and the second solution exists if − J1
J2
≤ 1 which corresponds to the

chiral state.
For a thin helimagnetic film, the angle between spins in adjacent layers varies due to

the surface. We can use the method of energy minimization for each layer, then we have a
set of coupled equations to solve (see Ref. [29]). Figure 2 displays an example of the angle
distribution across the film thickness Nz.
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Figure 2. (a) Chiral structure along the c-axis for an infinite crystal, in the case θ = 2π/3, namely
J2/J1 = −2; (b) Cosine of α1 = θ1 − θ2, . . . , α7 = θ7 − θ8 across the film for several values
J2/J1 = −1.2,−1.4,−1.6,−1.8,−2 (from top) with Nz = 8: ai stands for θi − θi+1 and x indicates the
film layer i where the angle ai with the layer (i + 1) is shown. See text for comments.

In order to calculate the SW spectrum for systems of non-collinear spin configurations,
let us emphasize that the commutation relations between spin operators are established
when the spin lies on its quantization z. In the non-collinear cases, each spin has its own
quantization axis. It is therefore important to choose a quantization axis for each spin. We
have to use the system of local coordinates defined as follows. In the Hamiltonian, the spins
are coupled two by two. Consider a pair Si and Sj. As seen above, in the general case
these spins make an angle θi,j = θj − θi determined by the competing interactions in the
systems. For quantum spins, in the course of calculation we need to use the commutation
relations between the spin operators Sz, S+, S−. As said above, these commutation relations
are derived from the assumption that the spin lies on its quantization axis z. We show in
Figure 3 the local coordinates assigned to spin Si and Sj. We write

Si = Sx
i ξ̂i + Sy

i η̂i + Sz
i ζ̂i (4)

Sj = Sx
j ξ̂ j + Sy

j η̂j + Sz
j ζ̂ j (5)

Expressing the axes of Sj in the frame of Si one has

ζ̂ j = cos θi,j ζ̂i + sin θi,j ξ̂i (6)

ξ̂ j = − sin θi,j ζ̂i + cos θi,j ξ̂i (7)

η̂j = η̂i (8)

so that

Sj = Sx
j (− sin θi,j ζ̂i + cos θi,j ξ̂i)

+Sy
j η̂i + Sz

j (cos θi,j ζ̂i + sin θi,j ξ̂i) (9)
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Figure 3. Spin Si lies along the ~ζ axis (its quantization axis), while spin Sj lies along its quantization
axis ~ζ ′ which makes an angle θ with the ~ζ axis. The axes ~ξ and ~ξ ′ are perpendicular respectively to ~ζ

and ~ζ ′. The perpendicular axes η̂i and η̂j coincide with the~c axis, perpendicular to the basal plane of
the bct lattice.

Using Equation (9) to express Sj in the (ξ̂i, η̂i, ζ̂i) coordinates, we calculate Si · Sj, we
get the following Hamiltonian from (28):

He = − ∑
<i,j>

Ji,j

{
1
4
(
cos θi,j − 1

)(
S+

i S+
j + S−i S−j

)
+

1
4
(
cos θi,j + 1

)(
S+

i S−j + S−i S+
j

)
(10)

+
1
2

sin θi,j
(
S+

i + S−i
)
Sz

j −
1
2

sin θi,jSz
i

(
S+

j + S−j
)

+ cos θi,jSz
i Sz

j

}

This explicit Hamiltonian in terms of the angle between two NN spins is common
for a non-collinear spin configuration due to exchange interactions Ji,j. For other types of
interactions such as the DM interaction, the explicit Hamiltonian in terms of the angle will
be different as shown in Section 4.

We define the following GFs for the above Hamiltonian:

Gi,j(t, t′) = << S+
i (t); S−j (t

′) >>

= −iθ(t− t′) <
[
S+

i (t), S−j (t
′)
]
> (11)

Fi,j(t, t′) = << S−i (t); S−j (t
′) >>

= −iθ(t− t′) <
[
S−i (t), S−j (t

′)
]
> (12)

Writing their equations of motion we have

ih̄
d
dt

Gi,j
(
t, t′
)

=
〈[

S+
i (t), S−j

(
t′
)]〉

δ
(
t− t′

)
−

〈〈[
H, S+

i (t)
]
; S−j

(
t′
)〉〉

, (13)

ih̄
d
dt

Fi,j
(
t, t′
)

=
〈[

S−i (t), S−j
(
t′
)]〉

δ
(
t− t′

)
−

〈〈[
H, S−i (t)

]
; S−j

(
t′
)〉〉

, (14)
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where

S±j = Sx
j ξ̂ j ± iSy

j η̂j[
S+

j , S−l
]

= 2Sz
j δj,l[

Sz
j , S±l

]
= ±S±j δj,l

Note that the equation of motion of the G Green’s function generates the F Green’s func-
tions, and vice-versa. Performing the commutators in Equations (13) and (14), and using the
Tyablikov approximation [30] for higher-order GFs, for instance << Sz

i′S
+
i (t); S−j (t

′) >>'
< Sz

i′ ><< S+
i (t); S−j (t

′) >> etc., we obtain

ih̄
dGi,j(t, t′)

dt
= 2 < Sz

i > δi,jδ(t− t′)

− ∑
i′

Ji,i′ [< Sz
i > (cos θi,i′ − 1)×

× Fi′ ,j(t, t′)

+ < Sz
i > (cos θi,i′ + 1)Gi′ ,j(t, t′) (15)

− 2 < Sz
i′ > cos θi,i′Gi,j(t, t′)]

+ 2 ∑
i′

Ii,i′ < Sz
i′ > cos θi,i′Gi,j(t, t′)

ih̄
dFi,j(t, t′)

dt
= ∑

i′
Ji,i′ [< Sz

i > (cos θi,i′ − 1)×

× Gi′ ,j(t, t′)

+ < Sz
i > (cos θi,i′ + 1)Fi′ ,j(t, t′) (16)

− 2 < Sz
i′ > cos θi,i′Fi,j(t, t′)]

− 2 ∑
i′

Ii,i′ < Sz
i′ > cos θi,i′Fi,j(t, t′)

Note that the Tyablikov decoupling scheme is equivalent to the so-called “random-
phase-approximation” (RPA).

For the sake of clarity, we write separately the NN and NNN sums, we have

ih̄
dGi,j(t, t′)

dt
= 2 < Sz

i > δi,jδ(t− t′)

− ∑
k′∈NN

Ji,k′ [< Sz
i > (cos θi,k′ − 1)×

× Fk′ ,j(t, t′)

+ < Sz
i > (cos θi,k′ + 1)Gk′ ,j(t, t′)

− 2 < Sz
k′ > cos θi,k′Gi,j(t, t′)]

+ 2 ∑
k′∈NN

Ii,k′ < Sz
k′ > cos θi,k′Gi,j(t, t′) (17)

− ∑
i′∈NNN

Ji,i′ [< Sz
i > (cos θi,i′ − 1)×

× Fi′ ,j(t, t′)

+ < Sz
i > (cos θi,i′ + 1)Gi′ ,j(t, t′)

− 2 < Sz
i′ > cos θi,i′Gi,j(t, t′)]
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ih̄
dFk,j(t, t′)

dt
= ∑

i′∈NN
Jk,i′ [< Sz

k > (cos θk,i′ − 1)×

× Gi′ ,j(t, t′)

+ < Sz
k > (cos θk,i′ + 1)Fi′ ,j(t, t′)

− 2 < Sz
i′ > cos θk,i′Fk,j(t, t′)]

− 2 ∑
i′∈NN

Ik,i′ < Sz
i′ > cos θk,i′Fk,j(t, t′) (18)

+ ∑
k′∈NNN

Jk,k′ [< Sz
k > (cos θk,k′ − 1)×

× Gk′ ,j(t, t′)

+ < Sz
k > (cos θk,k′ + 1)Fk′ ,j(t, t′)

− 2 < Sz
k′ > cos θk,k′Fk,j(t, t′)]

For simplicity, we suppose in the following Jk,k′ are all equal to J1 for NN interactions
and to J2 for NNN interactions. Ik,k′ is taken to be I1 for NN pairs. In addition, in the film
coordinates defined above, we denote the Cartesian components of the spin position Ri by
three indices (`i, mi, ni) in three directions x, y and z.

Since there is the translation invariance in the xy plane, the in-plane Fourier transforms
of the above equations in the xy plane are

Gi,j
(
t, t′
)

=
1
∆

∫ ∫
BZ

dkxy
1

2π

∫ +∞

−∞
dωe−iω(t−t′)

×gni ,nj

(
ω, kxy

)
eikxy ·(Ri−Rj), (19)

Fk,j
(
t, t′
)

=
1
∆

∫ ∫
BZ

dkxy
1

2π

∫ +∞

−∞
dωe−iω(t−t′)

× fnk ,nj

(
ω, kxy

)
eikxy ·(Rk−Rj), (20)

where ω is the SW frequency, kxy the wave-vector parallel to xy planes and Ri the position
of Si. ni, nj and nk denote the z-components of the sites Ri, Rj and Rk. The integral over
kxy is performed in the first Brillouin zone (BZ) whose surface is ∆ in the xy reciprocal
plane. ni = 1 denotes the surface layer, ni = 2 the second layer etc.

In the 3D case, the Fourier transformation of Equations (17) and (18) in the three
(x, y, z) directions yields the SW spectrum in the absence of anisotropy:

h̄ω = ±
√

A2 − B2 (21)

where

A = J1〈Sz〉[cos θ + 1]Zγ + 2ZJ1〈Sz〉 cos θ

+J2〈Sz〉[cos(2θ) + 1]Zc cos(kza)

+2Zc J2〈Sz〉 cos(2θ)

B = J1〈Sz〉(cos θ − 1)Zγ

+J2〈Sz〉[cos(2θ)− 1]Zc cos(kza)

where Z = 8 is the NN coordination number, Zc = 2 the NNN number on the c-axis and
γ = cos(kxa/2) cos(kya/2) cos(kza/2) where a is the lattice constant taken the same in three
directions. Note that h̄ω is zero when A = ±B. This is realized at two points as expected in
helimagnets: kx = ky = kz = 0 (γ = 1) and kz = 2θ along the helical axis. It is interesting
to note that we recover the SW dispersion relation of ferromagnets (antiferromagnets) [2]
with NN interaction only by putting cos θ = 1 (−1) in the above coefficients.
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In the case of a thin film, the in-plane Fourier transformation yields the following
matrix equation

M(ω)h = u, (22)

where h and u are given by

h =



g1,n′

f1,n′
...

gn,n′

fn,n′
...

gNz ,n′

fNz ,n′


, u =



2
〈
Sz

1
〉
δ1,n′

0
...

2
〈

Sz
Nz

〉
δNz ,n′

0

, (23)

We take h̄ = 1 hereafter. Note that M(ω) is a (2Nz × 2Nz) matrix given by Equation (24)
where

M(ω) =



ω + A1 0 B+
1 C+

1 D+
1 E+

1 0 0 0 0 0 0
0 ω− A1 −C+

1 −B+
1 −E+

1 −D+
1 0 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · D−n E−n B−n C−n ω + An 0 B+

n C+
n D+

n E+
n · · ·

· · · −E−n −D−n −C−n −B−n 0 ω− An −C+
n −B+

n −E+
n −D+

n · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 D−Nz

E−Nz
B−Nz

C−Nz
ω + ANz 0

0 0 0 0 0 0 −E−Nz
−D−Nz

−C−Nz
−B−Nz

0 ω− ANz


(24)

An = −8J1(1 + d)
[〈

Sz
n+1
〉

cos θn,n+1

+
〈
Sz

n−1
〉

cos θn,n−1

]
− 2J2

[〈
Sz

n+2
〉

cos θn,n+2

+
〈
Sz

n−2
〉

cos θn,n−2

]
B±n = 4J1〈Sz

n〉(cos θn,n±1 + 1)γ

C±n = 4J1〈Sz
n〉(cos θn,n±1 − 1)γ

E±n = J2〈Sz
n〉(cos θn,n±2 − 1)

D±n = J2〈Sz
n〉(cos θn,n±2 + 1)

where we recall that n denotes the layer number, namely 1, 2, . . . , Nz and d = I1/J1. Note
that θn,n±1 denotes the angle between a spin in the layer n and its NN spins in adjacent

layers n± 1 etc. and γ = cos
(

kxa
2

)
cos
(

kya
2

)
.

In order to obtain the SW frequency ω, we solve the secular equation det |M| = 0
for each given (kx, ky). Since the linear dimension of the square matrix is 2Nz, we ob-
tain 2Nz eigen-values of ω, half positive and half negative, corresponding to two oppo-
site spin precessions as in antiferromagnets. These values depend on the input values
< Sz

n > (n = 1, . . . , Nz). Thus, we have to solve the secular equation by iteration until the
convergence of input and output values. Note that, even at T = 0, < Sz

n > are not equal to
1/2 due to the zero-point spin contraction [31]. In addition, because of the film surfaces,
the spin contractions are not uniform.
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The solution for gn,n can be calculated (see Ref. [29]). The spectral theorem [1] can be
used to obtain, after a somewhat lengthy algebra (see [29]),:

〈Sz
n〉 =

1
2
− 1

∆

∫ ∫
dkxdky

2Nz

∑
i=1

D2n−1(ωi)

eβωi − 1
(25)

where n = 1, . . . , Nz, and

D2n−1
(
ωi
(
kxy
))

=
|M|2n−1

(
ωi
(
kxy
))

∏j 6=i
[
ωj
(
kxy
)
−ωi

(
kxy
)] . (26)

As < Sz
n > depend each other in ωi(i = 1, . . . , 2Nz), their solutions should be obtained

by iteration at a given temperature T. In the particular case where T = 0 one has

〈Sz
n〉(T = 0) =

1
2
+

1
∆

∫ ∫
dkxdky

Nz

∑
i=1

D2n−1(ωi
(
kxy
)
) (27)

Note that the sum is performed over Nz negative ωi since positive ωi yields the zero
Bose–Einstein factor at T = 0).

The transition temperature Tc can be calculated self-consistently when all < Sz
n > tend

to zero.
We show in the following section, the numerical results using the above formulas.

3. Results for Helimagnets Obtained from the Green’s Function Technique

We use the ferromagnetic interaction between NN as unit, namely J1 = 1. Take the
helimagnetic case where J2 is negative with |J2| > J1. We have determined above the
spin configuration across the film for several values of p = J2/J1. Replacing the angles
θn,n±1 and θn,n±2 in the matrix elements of |M|, then calculating ωi(i = 1, . . . , 2Nz) for
each kxy. For the iterative procedure, the reader is referred to Ref. [29]. The solution
〈Sz

n〉(n = 1, . . . , Nz) is obtained when the input and the output are equal with a desired
precision P.

3.1. Spectrum

We calculate the SW spectrum as described above for each a given J2/J1. The SW
spectrum depends on T. We show in Figure 4 the SW spectrum ω versus kx = ky for an
eight-layer film with J2/J1 = −1.4 at T = 0.1 and T = 1.02 (in units of J1/kB = 1). We
observe that

(i) There are opposite-precession SW modes. Unlike ferromagnets, SW in antiferromag-
nets and non-collinear spin structures have opposite spin precessions [31]. The neg-
ative sign does not mean SW negative energy, but it indicates just the precession
contrary to the trigonometric sense,

(ii) There are two degenerate acoustic “surface” branches one on each side. These degen-
erate “surface” modes stem from the symmetry of the two surfaces. These surface
modes propagate parallel to the film surface but are damped when going to the bulk,

(iii) With increasing T, layer magnetizations decrease as seen hereafter, this reduces
therefore the SW frequency (see Figure 4b),

(iv) Surface and bulk SW spectra have been observed by inelastic neutron scattering
in collinear magnets (ferro- and antiferromagnetic films) [32,33]. However, such
experiments have not been reported for helimagnetic thin films.
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Figure 4. (a) Spectrum E = h̄ω versus k ≡ kx = ky for J2/J1 = −1.4 at T = 0.1 and (b) T = 1.02,
for Nz = 8 and d = 0.1. The surface branches are indicated by s.

3.2. Zero-Point Spin Contraction and Transition Temperature

It is known that, in antiferromagnetic materials, quantum fluctuations cause a contraction
of the spin length, namely the spin length is shorter than the spin magnitude, at T = 0 [31].
We demonstrate here that a spin with a stronger antiferromagnetic interaction has a stronger
contraction: spins in the first and in the second layers have only one antiferromagnetic NNN
on the c-axis while interior spins have two NNN. The contraction at a given J2/J1 is thus
expected to be stronger for interior spins. This is shown in Figure 5: with increasing |J2|/J1,
i.e., the antiferromagnetic interaction becomes stronger, the contraction is stronger. Of course,
there is no contraction when the system is ferromagnetic, namely when J2 → −1.

Figure 5. Spin lengths of the first four layers at T = 0 for several values of p = J2/J1 with d = 0.1,
Nz = 8. As seen, all spins are contracted to values smaller than the spin magnitude 1/2. Black circles,
void circles, black squares and void squares are for first, second, third and fourth layers, respectively.

3.3. Layer Magnetizations

We show now the layer ordering in Figures 6 and 7 where J2/J1 = −1.4 and −2,
respectively, in the case of Nz = 8. Consider first the case J2/J1 = −1.4. We note that the
surface magnetization, having a large value at T = 0 as seen in Figure 5, crosses the interior
layer magnetizations at T ' 0.42 to become much smaller than interior magnetizations
at higher temperatures. This crossover phenomenon is due to the competition between
quantum fluctuations, which dominate low-T behavior, and the low-lying surface SW
modes which reduce the surface magnetization at higher T. Note that the second-layer
magnetization makes also a crossover at T ' 1.3 which is more complicated to analyze.
Similar crossovers have been observed in other quantum systems such as antiferromagnetic
films [34] and superlattices [35].
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Figure 6. (a) Layer magnetizations as functions of T for J2/J1 = −1.4 with d = 0.1, Nz = 8, (b) Zoom
of the region at low T to show crossover. Black circles, blue void squares, magenta squares and red
void circles are for first, second, third and fourth layers, respectively. See text.

Figure 7. (a) Layer magnetizations as functions of T for J2/J1 = −2 with d = 0.1, Nz = 8, (b) Zoom
of the region at low T to show crossover. Black circles, blue void squares, magenta squares and red
void circles are for first, second, third and fourth layers, respectively. See text.

Similar remarks are also hold for J2/J1 = −2 shown in Figure 7.
Note that the results shown above have been calculated with an in-plane anisotropy

interaction d = 0.1. Larger d yields stronger layer magnetizations and larger Tc.
To close this section on SW in helimagnetic bct thin films, we mention that the same

investigation was done in the case of simple-cubic helimagnetic films where the surface
spin reconstruction and the surface SW have been shown [36]. We have also studied the
frustrated bct Heisenberg helimagnet in which the SW spectrum of the non-collinear spin
configuration has been calculated [37].

4. Dzyaloshinskii–Moriya Interaction in Thin Films

Let us consider a thin film made of N square lattices stacked in the y direction per-
pendicular to the film surface. The results for this system have been published in Ref. [38].
Hereafter, we review some of these important results. The Hamiltonian is given by

H = He +HDM (28)

He = −∑
〈i,j〉

Ji,jSi · Sj (29)

HDM = ∑
〈i,j〉

Di,j · Si × Sj (30)

where Ji,j and Di,j are the exchange and DM interactions, respectively, between two quan-
tum Heisenberg spins Si and Sj of magnitude S = 1/2.
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We suppose in this section the in-plane and inter-plane exchange interactions between
NN are both ferromagnetic and denoted by J1 and J2, respectively. The DM interaction
is defined only between NN in the plane for simplicity. The J term favors the collinear
spin configuration while the DM term favors the perpendicular one. This will lead to
a compromise where Si makes an angle θi,j with its neighbor Sj. It is obvious that the
quantization axes of Si and Sj are different. Therefore, the transformation using the local
coordinates, Equations (4)–(9), is necessary. Let us suppose that the vector Di,j is along the
y axis, namely the η̂i axis. We write

Di,j = Dei,jŷi (31)

where ei,j = +1(−1) if j > i (j < i) for NN j on the x̂ or ẑ axis. One has by definition
ej,i = −ei,j.

The easiest way to determine the GS is to minimize the local energy at each spin:
taking a spin and calculating the local field acting on it from its neighbors. Then, we align
the spin in its local-field direction to minimize its energy. Repeating this procedure for
all spins, we say we realize one sweep. We have to make a sufficient number of sweeps
to obtain the convergence with a desired precision (see details in Ref. [39]). This local
energy minimization is called “the steepest descent method”. We show in Figure 8 the
configuration obtained for D = −0.5 using J1 = J2 = 1.

Figure 8. The ground state is a planar configuration on the xz plane. The figure shows the case where
θ = π/6 (D = −0.577), J1 = J⊥ = 1 using the steepest descent method. The inset shows a zoom
around a spin with its nearest neighbors.

We see that each spin has the same angle with its four NN in the plane (angle between
NN in adjacent planes is zero). We demonstrate now the dependence of θ on J1: the energy
of the spin Si is written as

Ei = −4J1S2 cos θ − 2J2S2 + 4DS2 sin θ (32)

where θ = |θi,j|minimizing Ei with respect to θ one obtains

dEi
dθ

= 0 ⇒ −D
J1

= tan θ ⇒ θ = arctan(−D
J1
) (33)

The result is in agreement with that obtained by the steepest descent method. An ex-
ample has been shown in Figure 8.

We rewrite the DM term of Equation (30) as

Si × Sj = (−Sz
i Sy

j − Sy
i Sx

j sin θi,j + Sy
i Sz

j cos θi,j)ξ̂i

+(Sx
i Sx

j sin θi,j + Sz
i Sz

j sin θi,j)η̂i (34)

+(Sx
i Sy

j − Sy
i Sz

j sin θi,j − Sy
i Sx

j cos θi,j)ζ̂i
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From Equation (31), we obtain

HDM = ∑
〈i,j〉

Di,j · Si × Sj

= D ∑
〈i,j〉

(Sx
i Sx

j ei,j sin θi,j + Sz
i Sz

j ei,j sin θi,j) (35)

=
D
4 ∑
〈i,j〉

[(S+
i + S−i )(S+

j + S−j )ei,j sin θi,j

+4Sz
i Sz

j ei,j sin θi,j]

where we have replaced Sx by (S+ + S−)/2. Note that ei,j sin θi,j is always positive since for
a NN on the positive axis direction, ei,j = 1 and sin θi,j = sin θ where θ is positively defined,
while for a NN on the negative axis direction, ei,j = −1 and sin θi,j = sin(−θ) = − sin θ.

4.1. Formulation of the Green’s Function Technique for the Dzyaloshinskii–Moriya System

Using the transformation into the local coordinates, Equations (4)–(9), one has

H = − ∑
<i,j>

Ji,j

{
1
4
(
cos θi,j − 1

)(
S+

i S+
j + S−i S−j

)
+

1
4
(
cos θi,j + 1

)(
S+

i S−j + S−i S+
j

)
+

1
2

sin θi,j
(
S+

i + S−i
)
Sz

j −
1
2

sin θi,jSz
i

(
S+

j + S−j
)

(36)

+ cos θi,jSz
i Sz

j

}

+
D
4 ∑
〈i,j〉

[(S+
i + S−i )(S+

j + S−j )ei,j sin θi,j

+4Sz
i Sz

j ei,j sin θi,j]

Note that the quantization axes of the spins are in the xz planes as shown in Figure 3.
We emphasize that, while the sine terms of the DM Hamiltonian, Equation (35), remain

after summing over the NN, the sine terms of He, the 3rd line of Equation (36), are zero
after summing over opposite NN because there is no ei,j term.

It is very important to emphasize again that the commutation relations between spin
operators Sz and S± are valid when the spin lies on its local quantization axis. Therefore, it
is necessary ro use the local coordinates for each spin.

In two dimensions (2D) there is no long-range order at non-zero T for isotropic spin
models with short-range interaction [40]. Thin films have very small thickness, not far from
2D systems. Thus, in order to stabilize the ordering at very low T, we use a very small
anisotropy interaction between between Si and Sj as follows

Ha = − ∑
<i,j>

Ii,jSz
i Sz

j cos θi,j (37)

where Ii,j(> 0) is positive, small compared to J1, and limited to NN in the xz plane. For
simplicity, we suppose Ii,j = I1 for all such NN pairs. As we will see below, the small value
of I1 does stabilize the SW spectrum when D becomes large. The Hamiltonian is finally
given by

H = He +HDM +Ha (38)
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Using the two GF’s in the real space given by Equations (11) and (12) and using the
same method, we study the effect of the DM interaction. For the DM term, the commutation
relations [H, S±i ] lead to:

D ∑
l

sin θ[∓Sz
i (S

+
l + S−l ) +±2S±i Sz

l ] (39)

which gives rise, using the Tyablikov decoupling, to the following GF’s:

<< Sz
i S±l ; S−j >>'< Sz

i ><< S±l ; S−j >> (40)

These functions are in fact the G and F functions. There are thus no new GF’s generated
by the equations of motion.

As in Section 2, the Fourier transforms in the xz plane gn,n′ and fn,n′ of the G and F
lead to the matrix equation

M(E)h = u, (41)

M(E) being given by Equation (42) below



E + A1 B1 C1 0 0 0 0 0 0
−B1 E− A1 0 −C1 0 0 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · 0 Cn 0 E + An Bn Cn 0 0
· · · 0 0 −Cn −Bn E− An 0 −Cn 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 CN 0 E + AN BN
0 0 0 0 0 0 −CN −BN E− AN


(42)

where E = h̄ω is the SW energy and the matrix elements are given by

An = −J1[8 < Sz
n > cos θ(1 + dn)

−4 < Sz
n > γ(cos θ + 1)]

−2J2(< Sz
n−1 > + < Sz

n+1 >) (43)

−8D sin θ < Sz
n > γ

+8D sin θ < Sz
n >

Bn = 4J1 < Sz
n > γ(cos θ − 1)

−8D sin θ < Sz
n > γ (44)

Cn = 2J2 < Sz
n > (45)

where n = 1, 2, . . . , N denotes the layer numbers, dn = I1/J1, γ = (cos kxa + cos kza)/2,
kx and kz are the wave-vector components in the xz planes, a being the lattice constant.
Remarks: (i) if n = 1 (surface layer) then there are no n− 1 terms in the An, (ii) if n = N
then there are no n + 1 terms in An.

For a thin film, the SW frequencies at a given wave vector~k = (kx, kz) are obtained by
diagonalizing (42).

The magnetization of the layer n at finite T is calculated as in the helimagnetic case
shown in the previous section. The formula of the zero-point spin contraction is also
presented there. The transition temperature Tc can be also calculated by the same method.
Let us show in the following the results.

4.2. Results for 2D and 3D Cases

In the 2D case, one has only one layer. The matrix (42) is

(E + An)gn,n′ + Bn fn,n′ = 2 < Sz
n > δ(n, n′)

−Bngn,n′ + (E− An) fn,n′ = 0 (46)



Symmetry 2022, 14, 1716 15 of 35

where An is given by (43) but without J2 term for the 2D case. Coefficient Bn is given by (44)
and Cn = 0. The SW frequencies are determined by the following secular equation

(E + An)(E− An) + B2
n = 0

→ E2 − A2
n + B2

n = 0

→ E = ±
√
(An + Bn)(An − Bn) (47)

Several remarks are in order:

(i) when θ = 0, the last three terms of An and Bn are zero: one recovers the ferromagnetic
SW dispersion relation

E = 2ZJ1 < Sz
n > (1− γ) (48)

where Z = 4 is the coordination number of the square lattice (taking dn = 0),
(ii) when θ = π, one has An = 8J1 < Sz

n >, Bn = −8J1 < Sz
n > γ. One recovers then the

antiferromagnetic SW dispersion relation

E = 2ZJ1 < Sz
n >

√
1− γ2 (49)

(iii) when there is a DM interaction, one has 0 < cos θ < 1 (0 < θ < π/2). If dn = 0,
the quantity in the square root of Equation (47) becomes negative at γ = 1 when θ
is not zero. The SW spectrum is not stable at kx = ky = 0 because the energy is not
real. The anisotropy dn can remove this instability if it is larger than a threshold value
dc. We solve the equation (An + Bn)(An − Bn) = 0 to find dc. In Figure 9 we show dc
versus θ. As seen, dc increases from zero with increasing θ.

Figure 9. Value dc at which E = 0 at γ = 1 (~k = 0) vs. θ (in radian). Above this value, E is real. See
text for comments.

As we have anticipated, we need to include an anisotropy in order to allow for SW to
be excited even at T = 0 and for a long-range ordering at non-zero T in 2D as seen below.

We show in Figure 10 the SW dispersion relation calculated from Equation (47) for
θ = 0.2 and 0.6 (radian). As seen, the spectrum is symmetric for positive and negative wave
vectors. It is also symmetric for left and right precessions. One observes that for small θ,
namely small D, E(k) is proportional to k2 at low k (see Figure 10a). This behavior is that in
ferromagnets. For large θ, one observes that E(k) becomes linear in k as seen in Figure 10b.
This behavior is similar to that of antiferromagnets. Note that the change of behavior is
progressive with increasing θ, we do not observe a sudden transition from k2 to k behavior.
This behavior is also observed in 3D and in thin films as well.
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Figure 10. SW frequency E(k) as a function of k ≡ kx = kz in the case (a) θ = 0.2 and (b) θ = 0.6 in
2D. See text for detailed comments.

As said earlier, the inclusion of an anisotropy d permits a long-range ordering at T 6= 0
in 2D: Figure 11 displays the magnetization M (≡< Sz >) calculated by Equation (2) where
in each case the limit value dc has been used. We note that M depends strongly on θ: at
high T the larger θ the stronger M. However, at T = 0 the spin length is smaller for larger θ
due to the zero-point spin contraction [31] calculated by Equation (27). As a consequence
there is a cross-over of layer magnetizations at low T as shown in Figure 11b. The spin
length at T = 0 is shown in Figure 12 for several θ.

Figure 11. (a) Magnetization M as a function of T for the 2D case with θ = 0.1, θ = 0.3, θ = 0.4, θ = 0.6
(void magenta squares, blue filled squares, green void circles and filled black circles, respectively),
(b) Cross-over of magnetizations is enlarged at low T. See text for comments.

Figure 12. Spin length at T = 0 for the 2D case as a function of θ (radian).
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We now consider the 3D case. The crystal is infinite in three direction. The Fourier
transform in the y direction, namely gn±1 = gne±ikya and fn±1 = fne±ikya reduces the
matrix (23) to two coupled equations of g and f functions. One has

(E + A′)g + B f = 2 < Sz >

−Bg + (E− A′) f = 0 (50)

where

A′ = −J1[8 < Sz > cos θ(1 + d)

−4 < Sz > γ(cos θ + 1)]

−4J2 < Sz > (51)

+4J2 < Sz > cos(kya)

−8D sin θ < Sz > γ

+8D sin θ < Sz >

B = 4J1 < Sz > γ(cos θ − 1)

−8D sin θ < Sz > γ (52)

The spectrum is given by

E = ±
√
(A′ + B)(A′ − B) (53)

In the ferromagnetic case, cos θ = 1, thus B = 0. Arranging the Fourier transforms in
three directions, one gets the 3D ferromagnetic dispersion relation E = 2Z < Sz > (1− γ2)
where γ = [cos(kxa) + cos(kya) + cos(kza)]/3 and Z = 6, coordination number of the
simple cubic lattice.

As in the 2D case, we find a threshold value dc for which is the same for a given θ.
This is rather obvious because the DM interaction operates in the plane making an angle
θ between spins in the plane, therefore its effects act on SW in each plane, not in the y
direction perpendicular to the “DM planes”. Using Equation (53), we calculate the 3D
spectrum displayed in Figure 13 for a small and a large value of θ. As in the 2D case, we
observe E ∝ k when k→ 0 for large θ. The main properties of the system are thus governed
by the in-plane DM interaction.

Figure 13. Spin-wave spectrum E(k) versus k ≡ kx = kz for θ = 0.1 (red crosses) and θ = 0.6 (blue
circles) in three dimensions. Note the linear-k behavior at low k for the large value of θ. See text
for comments.

Figure 14 displays the magnetization M versus T for several values of θ. As in the
2D case, when the DM interaction is included, the spins undergo a zero-point contraction
which increases with increasing θ. The competition between quantum fluctuations at T = 0
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and thermal effects at high T gives rise to magnetization cross-over shown in Figure 14b.
The spin length at T = 0 vs. θ is shown in the inset of Figure 14b. Comparing these results
to those of the 2D case, we see that the spin contraction in 2D is stronger than in 3D. This is
physically expected because quantum fluctuations are stronger at lower dimensions.

Figure 14. (a) Magnetization M versus temperature T for a 3D crystal θ = 0.1 (radian), θ = 0.3,
θ = 0.4, θ = 0.6 (void magenta squares, blue filled squares, green void circles and filled black circles,
respectively), (b) Zoom to show the cross-over of magnetizations at low T for different θ, inset shows
S0 versus θ. See text for comments.

4.3. The Case of a Thin Film

As in the 2D and 3D cases, in the case of a thin film it is necessary to use a value for dn
larger or equal to dc given in Figure 9 to stabilize the SW at long wave-length. Note that for
thin films with more than one layer, the value of dc calculated for the 2D case remains valid.

Figure 15 displays the SW spectrum of a film of eight layers with J1 = J2 = 1 for a
small and a large θ. As in the previous cases, E is proportional to k for large θ (cf. Figure 15b)
but only for the first mode. The higher modes are proportional to k2.

Figure 15. Spin-wave spectrum E(k) versus k ≡ kx = kz for a thin film of eight layers: (a) θ = 0.2 (in
radian) (b) θ = 0.6, using dc for each case. Positive and negative branches correspond to right and
left precessions. Note the linear-k behavior at low k. See text for comments.

Figure 16 shows the layer magnetizations of the first four layers in a 8-layer film (the
other half is symmetric) for two values of θ. One observes that the surface magnetization is
smaller than the magnetizations of other interior layers. This is due to the lack of neighbors
for surface spins [2].
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Figure 16. Layer magnetizations M versus temperature T for a film with N = 8: (a) θ = 0.6 (radian),
(b) θ = 0.2, (c) S0 versus θ.

The spin contraction at T = 0 is displayed Figure 16c.
The effects of the surface exchange and the film thickness have been shown in Ref. [38].
To close this section, let us mention our work [41] on the DM interaction in magneto-

ferroelectric superlattices where the SW in the magnetic layer have been calculated. We
have also studied the stability of skyrmions at finite T in that work and in Refs. [42,43].

5. Effect of Dzyaloshinskii–Moriya Interaction in a Frustrated Antiferromagnetic
Triangular Lattice

The results of this section are not yet published [44]. We will not present this model in
details. We show the Hamiltonian, the GS and the SW spectrum.

5.1. Model—Ground State

We consider a triangular lattice occupied by Heisenberg spins of magnitude 1/2.
The DM interaction was introduced historically to explain the weak ferromagnetism in
compounds MnO. The superexchange between two Mn atoms is modified with the dis-
placement of the oxygen atom between them. If the displacement of the oxygen is in the
xy plane (see Figure 17a), then the DM vector Di,j is perpendicular to the xy plane and is
given by [45,46]

Di,j ∝ riO × rOj ∝ −rij × R (54)

where riO = rO − ri and rOj = rj − rO, rij = rj − ri. rO is the position of non-magnetic ion
(oxygen) and ri the position of the spin Si etc. These vectors are defined in Figure 17a in
the particular case where the displacements are in the xy plane. We have therefore Di,j
perpendicular to the xy plane in this case.
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Figure 17. (a) D vector along the z direction perpendicular to the xy plane. See the definition of the
D vector in the text, (b) In-plane Dij vector chosen along the direction connecting spin Si to spin Sj

in the xy plane.

Note, however, that if the atom displacements are in 3D space, Di,j can be in any
direction. In this paper, we consider also the case where Di,j lies in the xy plane as shown
in Figure 17b where Di,j is taken along the vector connecting spin Si to spin Sj.

Note that from Equation (54) one has

Dj,i = −Di,j (55)

In the case of perpendicular Di,j, let us define ui,j as the unit vector on the z axis.
From Equations (54) and (55) one writes

Di,j = Dui,j (56)

Dj,i = Duj,i = −Dui,j (57)

where D represents the DM interaction strength. Note however that the DM interaction goes
beyond the weak ferromagnetism and may find its origin in various physical mechanisms.
So, the form given in (56) is a model, a hypothesis.

In the case of in-plane Di,j, we suppose that Di,j is given as

Di,j = D(rj − ri)/|rj − ri| = Drij (58)

where D is a constant and rij denotes the unit vector along rj − ri. The case of in-plane Di,j
on the frustrated triangular lattice (see Figure 17b) has been recently studied since this case
gives rise to a beautiful skyrmion crystal composed of three interpenetrating sublattice
skyrmions in a perpendicular applied magnetic field [44,47,48]. A description of this case
is however out of the purpose of this review.

5.2. Ground State with a Perpendicular D in Zero Field

The Hamiltonian is given by

H = −J ∑
〈ij〉

Si · Sj − D ∑
〈ij〉

ui,j · Si × Sj

−H ∑
i

Sz
i (59)

where Si is a classical Heisenberg spin of magnitude 1 occupying the lattice site i. The first
sum runs over all spin nearest-neighbor (NN) pairs with an antiferromagnetic exchange
interaction J (J < 0), while the second sum is performed over all DM interactions between
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NN. H is the magnitude of a magnetic field applied along the z direction perpendicular to
the lattice xy plane.

In the absence of J, unlike the bipartite square lattice where one can arrange the NN
spins to be perpendicular with each order in the xy plane, the triangular lattice cannot fully
satisfy the DM interaction for each bond, namely with the perpendicular spins at the ends.
For this particular case of interest, we can analytically calculate the GS spin configuration
as shown in the following. One considers a triangular plaquette with three spins numbered
as 1, 2, and 3 embedded in the lattice. For convenience, in a hexagonal (or triangular) lattice,
we define the three sublattices as follows: consider the up-pointing triangles (there are
three in a hexagon, see the blue triangles in Figure 18). For the first triangle one numbers in
the counter-clockwise sense 1, 2, 3 then one does it for the other two up-pointing triangles
of the hexagon, one sees that each lattice site belongs to a sublattice. The DM energy of a
plaquette is written as

Hp = −2D[u1,2 · S1 × S2 + u2,3 · S2 × S3 + u3,1 · S3 × S1]

= −2D[sin θ1,2 + sin θ2,3 + sin θ3,1] (60)

where the factor 2 of the D term takes into account the opposite neighbors outside the
plaquette, and where θ1,2 = θ2 − θ1 is the oriented angle between S1 and S2, etc. Note that
the u vectors are in the same direction because we follow the counter-clockwise tour on
the plaquette.

Figure 18. Perpendicular Di,j: Ground-state spin configuration with only Dzyaloshinskii–Moriya
interaction on the triangular lattice (J = 0) is analytically determined. One angle is 120 degrees and
the other two are 60 degrees. Note that the choice of the 120-degree angle in this figure is along
the horizontal spin pair. This configuration is one GS and the other two GSs have the 120-degree
angles on respectively the two diagonal spin pairs. Note also that the spin configuration is invariant
under the global spin rotation in the xy plane. For convenience, the spins are decomposed into three
sublattices numbered 1, 2 and 3. See text for explanation.

The minimization of Hp yields

dHp

dθ1
= 0 = −2D[− cos(θ2 − θ1) + cos(θ1 − θ3)] (61)

dHp

dθ2
= 0 = −2D[cos(θ2 − θ1)− cos(θ3 − θ2)] (62)

dHp

dθ3
= 0 = −2D[cos(θ3 − θ2)− cos(θ1 − θ3)] (63)
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The solutions for the above equations are

θ1,2 = θ3,1 so that θ3,2 = θ3,1 + θ1,2 = 2θ1,2 (64)

θ2,3 = θ1,2 so that θ1,3 = θ1,2 + θ2,3 = 2θ2,3 (65)

θ3,1 = θ2,3 so that θ2,1 = θ2,3 + θ3,1 = 2θ3,1 (66)

Note that the second and third lines can be obtained by the circular permutation of the
indices 1, 2, and 3 using the first line. These three equations, Equations (64)–(66), should be
solved. There is more than one solution. We have from Equation (61) cos(θ1,2) = cos(θ3,1).
Using Equation (66) one obtains

cos(2θ3,1) = cos(θ3,1) → 2 cos2(θ3,1)− cos(θ3,1)− 1 = 0 (67)

This second-degree equation gives cos(θ3,1) =
1±
√

1+8
4 . Only the negative solution is

acceptable so that θ3,1 = θ2,3 = π/6. From Equation (66), one has θ2,1 = π/3. This is one
solution given by Equation (68) below. Note that we have taken one of them, Equation (66),
to obtain explicit solutions for the three angles given in Equation (68). We can do the
same calculation starting with Equations (64) and (65) to get explicit solutions given in
Equations (69) and (70). We note that when we make a circular permutation of the indices
of Equation (68) we get Equation (69), and a circular permutation of Equation (69) gives
Equation (70). One summarizes the three degenerate solutions below

θ3,1 = θ2,3 = π/6, θ2,1 = π/3 (68)

θ1,2 = θ3,1 = π/6, θ3,2 = π/3 (69)

θ2,3 = θ1,2 = π/6, θ1,3 = π/3 (70)

We show in Figure 18 the spin orientations of the solution (68). The GS energy is
obtained by replacing the angles into Equation (60). For the three solutions, one gets the
energy of the plaquette

Hp = −3D
√

3 (71)

We have three degenerate GSs.
Note that this solution can be numerically obtained by the steepest descent method

described above. The result is shown in Figure 19 for the full lattice. We see in the zoom
that the spin configuration on a plaquette is what is obtained analytically, with a global
spin rotation as explained in the caption of Figure 18.

As said above, to use the steepest descent method, we consider a triangular lattice
of lateral dimension L. The total number of sites N is given by N = L× L. To avoid the
finite size effect, we have to find the size limit beyond which the GS does not depend on
the lattice size. This is found for L ≥ 100. Most of calculations have been performed for
L = 100.
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Figure 19. Perpendicular Di,j: (a) Ground-state spin configuration with only Dzyaloshinskii–Moriya
interaction on the triangular lattice (J = 0) obtained numerically by the steepest descent method,
(b) a zoom on a hexagonal cell, this is exactly what obtained analytically shown in Figure 18 with a
global spin rotation in the xy plane: the angle of the horizontal pair (1,2) is 120 degrees, those of (2,3)
and (3,1) are equal to 60 degrees.

5.3. Ground State with Both Perpendicular D and J in Zero Field- Spin Waves

When both J and perpendicular D are present, a compromise is established between
these competing interactions. In zero field, the GS shows non-collinear but periodic in-
plane spin configurations. The planar spin configuration is easily understood: when D
is perpendicular and without J, the spins are in the plane. When J is antiferromagnetic
without D, the spins are also in the plane and form a 120-degree structure. When D and
J exist together the angles between NN’s change but they remain in the plane in order to
keep both D and J interactions as low as possible. An example is shown in Figure 20 where
one sees that the GS is planar and characterized by two angles θ = 102 degrees and one
angle β = 156 degrees formed by three spins on a triangle plaquette. Note that there are
three degenerate states where β is chosen for the pair (1,2) (Figure 20a) or the pair (2,3) or
the pair (3,1). Changing the value of D will change the angle values. Changing the sign of
D results in a change of the sense of the chirality, but not the angle values.

In the case of perpendicular Di,j in zero-field, as shown above we find the GS on a
hexagon of the lattice is defined by four identical angles β and two angles θ as shown in
Figure 20. The values of β and θ depend on the value of D. We take J = −1 (antiferromag-
netic) hereafter. For D = 0.5 we have β = 156 degrees and θ = 102 degrees. For D = 0.4
we obtain β = 108 degrees and θ = 144 degrees, using N = 60× 60.
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Figure 20. Perpendicular Di,j with antiferromagnetic J: (a) Ground-state spin configuration in zero
field for D = 0.5, J = −1 where the angles in a hexagon are shown in (b) with β = 156 degrees for
the pair (1,2) on the horizontal axis and θ = 102 degrees for the pairs (2,3) and (3,1) on the diagonals.
Note that there are two other degenerate states where β is chosen for the pair (2,3) or (3,1).

The periodicity of the GS allows us to calculate the SW spectrum in the following.
The model for the calculation of the SW spectrum uses quantum Heisenberg spins of

magnitude 1/2, it is given by

H = −J ∑
〈i,j〉

Si · Sj − D ∑
〈i,j〉

ui,j · Si × Sj − I ∑
〈i,j〉

Sz
i Sz

j cos θij (72)

where θij is the angle between Si and Sj and the last term is an extremely small anisotropy
added to stabilize the SW when the wavelength k tends to zero [31,40]. Note that ui,j points
up and down along the z axis for respective two opposite neighbors.

As before, in order to calculate the SW spectrum for systems of non-collinear spin
configurations, we have to use the system of local coordinates. The Hamiltonian becomes

H =− J ∑
〈i,j〉

1
4
(S+

i S+
j + S−i S−j )(cos θij − 1) +

1
4
(S+

i S−j + S−i S+
j )(cos θij + 1)

+
1
2

Sz
j sin θij(S+

i + S−i )− 1
2

sin θijSz
i (S

+
J + S−j ) + Sz

i Sz
j cos θij

− D ∑
〈i,j〉

Sz
i Sz

j sin θi,j +
1
4

sin θi,j(S+
i S+

j + S+
i S−j + S−i S+

j ) +
1
2

cos θi,j(Sz
i (S

+
j + S−j )− Sz

j (S
+
i + S−i ))

− I ∑
〈i,j〉

Sz
i Sz

j cos θi,j

We define the two GFs by Equations (11) and (12) and use the equations of motion of
these functions (13) and (14), we obtain

ih̄
dGi,j(t− t′)

dt
= 2 < Sz

i > δi,jδ(t− t′)− J ∑
〈l〉

< Sz
i > Fl,j(t− t′)(cos θi,l − 1)

+ < Sz
i > Gl,j(t− t′)(cos θi,l + 1)− 2 cos θi,l < Sz

l > Gi,j(t− t′)

+ D ∑
〈l〉

2 sin θi,l < Sz
i > Fl,j(t− t′)− sin θi,l < Sz

i > (Gl,j(t− t′) + Fl,j(t− t′))

− 2I ∑
〈l〉

cos θi,l < Sz
i > Fl,j(t− t′)
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ih̄
dFi,j(t− t′)

dt
= J ∑

〈l〉
< Sz

i > Gl,j(t− t′)(cos θi,l − 1)

+ < Sz
i > Fl,j(t− t′)(cos θi,l + 1)− 2 cos θi,l < Sz

l > Fi,j(t− t′)

− D ∑
〈l〉

2 sin θi,l < Sz
i > Gl,j(t− t′)− sin θi,l < Sz

i > (Gl,j(t− t′) + Fl,j(t− t′))

+ 2I ∑
〈l〉

cos θi,l < Sz
i > Gl,j(t− t′)

Note that < Sz
i > is the average of the spin i on its local quantization axis in the

local-coordinates system (see Ref. [38]). We use now the time Fourier transforms of the G
and F, we get

h̄ωgi,j = 2µiδi,j − J ∑
〈l〉

µi fl je−ik·(Ri−Rl)(cos θi,l − 1)

+ µigl je−ik·(Ri−Rl)(cos θi,l + 1)− 2µl cos θi,l gi,j

− D ∑
〈l〉

2 sin θi,lµl gi,j − sin θi,lµi(gl,je−ik·(Ri−Rl) + fl,je−ik·(Ri−Rl))

+ 2I ∑
〈l〉

µl cos θi,l gi,j

(73)

and
h̄ω fi,j = J ∑

〈l〉
µigl je−ik·(Ri−Rl)(cos θi,l − 1)

+ µi fl je−ik·(Ri−Rl)(cos θi,l + 1)− 2µl cos θi,l fi,j

+ D ∑
〈l〉

2 sin θi,lµl fi,j − sin θi,lµi(gl,je−ik·(Ri−Rl) + fl,je−ik·(Ri−Rl))

− 2I ∑
〈l〉

µl cos θi,l fi,j

(74)

where µi ≡< Sz
i >, k is the wave vector in the reciprocal lattice of the triangular lattice,

and ω the SW frequency. Note that the index z in Sz
i is not referring to the real space

direction z, but to the quantization axis of the spin Si. At this stage, we have to replace θi,j
by either β or θ according on the GS spin configuration given above (see Figure 20).

As in the previous sections, writing the above equations under a matrix form, we have

M(h̄ω)h = C, (75)

where M(h̄ω) is a square matrix of dimension 2× 2, h and C are given by

h =

(
gi,j
fi,j

)
, C =

(
2
〈
Sz

i
〉
δi,j

0

)
, (76)

and the matrix M(h̄ω) is given by

M(h̄ω) =

(
h̄ω + A B
−B h̄ω− A

)
The nontrivial solution of g and f imposes the following secular equation:

0 =

(
h̄ω + A B
−B h̄ω− A

)
(77)
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where

A = −J(8µi cos β(1 + I) + 4µi cos θ(1 + I)− 4µiγ(cos β + 1)− 2µiα(cos θ + 1))

− D(4µi sin βγ + 2µi sin θα) + D(8µi sin β + 4µi sin θ)
(78)

B = J(4µiγ(cos β− 1) + 2µiα(cos θ − 1))− D(4γµi sin β + 2µiα sin θ) (79)

where the sum on the two NN on the x axis (see Figure 20b) is

∑
l

e−ik·(Ri−Rl) = 2 cos(kx) ≡ 2α (80)

and the sum on the four NN on the oblique directions of the hexagon (see Figure 20b) is

∑
l

e−ik·(Ri−Rl) = 4 cos(kx/2) cos(
√

3ky/2) ≡ 4γ (81)

Solving Equation (77) for each given (kx, ky) one obtains the SW frequency ω(kx, ky):

(h̄ω)2 = A2 − B2 → h̄ω = ±
√

A2 − B2 (82)

Plotting ω(kx, ky) in the space (kx, ky) one obtains the full SW spectrum.
The spin length 〈Sz

i 〉 (for all i, by symmetry) is given by (see technical details in
Ref. [31]):

〈Sz〉 ≡ 〈Sz
i 〉 =

1
2
− 1

∆

∫ ∫
dkxdkz

2

∑
i=1

Q(Ei)

eEi/kBT − 1
(83)

where Ei(i = 1, 2) = ±
√

A2 − B2 are the two solutions given above, and Q(Ei) is the
determinant (cofactor) obtained by replacing the first column of M by C at Ei.

The spin length 〈Sz〉 at a given T is calculated self-consistently by following the
method given in Refs. [31,38].

Let us show the SW spectrum ω (taking h̄ = 1) for the case of J = −1 and D = 0.5
in Figure 21 versus ky with kx = 0 (Figure 21a) and versus kx for ky = 0 (Figure 21b).
In order to see the effect of the DM interaction alone we take the anisotropy I = 0. One
observes here that for a range of small wave-vectors the SW frequency is imaginary. The SW
corresponding to these modes do not propagate in the system. Why do we have this case
here? The answer is that when the NN make a large angle (perpendicular NN, for example),
one cannot define a wave vector in that direction. Physically, when k is small the B
coefficient is larger than A in Equation (82) giving rise to imaginary ω. Note that the
anisotropy I is contained in A so that increasing I for small k will result in A > B making
ω real.

We show now in Figure 22a the spectrum along the axis kx = ky at T = 0 for I = 0.
Again here the frequency is imaginary for small k, as in the previous figure. The spin length
< Sz > along the local quantization axis is shown in Figure 22b. Several remarks are in
order: (i) At T = 0, the spin length is not equal to 1/2 as in ferromagnets because of the
zero-point spin contraction due to antiferromagnetic interactions (see Ref. [31]), its length
is ' 0.40, quite small; (ii) the magnetic ordering is destroyed at T ' 1.2.

To close the present section, we note that in the case of perpendicular D considered
above, we did not observe skyrmion textures when applying a perpendicular magnetic
field: all spin configurations are no more planar, making the calculation of the SW spectrum
more difficult. This problem is left for a future investigation.
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Figure 21. (a) Spin-wave spectrum versus ky with kx = 0 at T = 0 for I = 0, (b) Spin-wave spectrum
versus kx with ky = 0 at T = 0 for I = 0. The magenta curves show the real frequency, while the
green ones show the imaginary frequency. See text for comments. Parameters: D = 0.5, J = −1,
H = 0 where θ = 102 degrees and β = 156 degrees (see the spin configuration shown in Figure 20),
h̄ = 1.
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Figure 22. (a) Spin-wave spectrum versus kx = ky at T = 0 for I = 0. The magenta curves show the
real frequency, while the green ones show the imaginary frequency. See text for comments, (b) The
spin length Sz versus temperature T (kB = 1). Parameters: D = 0.5, J = −1, H = 0 where θ = 102
degrees and β = 156 degrees (see the spin configuration shown in Figure 20).

6. Other Systems of Non-Collinear Ground-State Spin Configurations: Frustrated
Surface in Stacked Triangular Thin Films

In this section, we study by the GF technique the effect of a frustrated surface on
the magnetic properties of a film composed triangular layers stacked in the z direction.
Each lattice site is occupied by a quantum Heisenberg spin of magnitude 1/2. Let the in-
plane surface interaction be Js which can be antiferromagnetic or ferromagnetic. The other
interactions in the film are ferromagnetic. We show in the following that the GS spin
configuration is non-collinear when Js is lower than a critical value Jc

s . The film surfaces
are then frustrated. In the frustrated case, there are two phase transitions, one corresponds
to the disordering of the two surfaces and the other to the disordering of the interior layers.
The GF results agree qualitatively with Monte Carlo simulation using the classical spins
(see the original paper in Ref. [39]).

In this section we review some ot the results given in the original paper Ref. [39],
emphasizing the SW calculation and the important results. The Hamiltonian is written as

H = −∑
〈i,j〉

Ji,jSi · Sj − ∑
<i,j>

Ii,jSz
i Sz

j (84)

where the first sum is performed over the NN spin pairs Si and Sj, the second sum over their
z components. Ji,j and Ii,j are respectively their exchange interaction and their anisotropic
one. The latter is small, taken to ensure the ordering at finite T when the film thickness
goes down to a few layers, without this we know that a monolayer with vector spin models
does not have a long-range ordering at finite T [40].
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Let Js be the exchange between two NN surface spins. We suppose that all other
interactions are ferromagnetic and equal to J. We shall use J = 1 as the unit of energy in
the following.

6.1. Ground State

In the case where Js is ferromagnetic, the GS of the film is ferromagnetic. When Js is
antiferromagnetic, the situation becomes complicated. We recall that for a single triangular
lattice with antiferromagnetic interaction, the spins are frustrated and arranged in a 120-
degree configuration [8]. This structure is modified when we turn on the ferromagnetic
interaction J with the beneath layer. The competition between the non collinear surface
ordering and the ferromagnetic ordering of the bulk leads to an intermediate structure
which is determined in the following.

The GS configuration can be determined by using the steepest descent method de-
scribed below Equation (31). Let us describe qualitatively the GS configuration: when Js is
negative and Js < Jc

s where Jc
s (< 0) is a critical value, the GS is formed by pulling out the

planar 120◦ spin structure along the z axis by an angle β. This is shown in Figure 23.

Figure 23. Ground state of the film when Js is smaller than the critical value Jc
s . See text for description.

Figure 24 shows cos α and cos β versus Js obtained by the steepest descent method.
As seen for Js > Jc

s , the angles are zero, namely the GS is ferromagnetic. The critical value
Jc
s is numerically found between −0.18 and −0.19.

We show in the following that this value can be analytically calculated by assuming
the structure shown in Figure 23). We number the spins as in that figure: S1, S2 and S3 are
the spins in the surface layer, S′1, S′2 and S′3 are the spins in the second layer. The energy of
the cell is

Hp = −6[Js(S1 · S2 + S2 · S3 + S3 · S1)

+Is(Sz
1Sz

2 + Sz
2Sz

3 + Sz
3Sz

1)

+ J
(
S′1 · S′2 + S′2 · S′3 + S′3 · S′1

)
(85)

+I
(
S′z1 S′z2 + S′z2 S′z3 + S′z3 S′z1

)]
− 2J

(
S1 · S′1 + S2 · S′2 + S3 · S′3

)
−2I

(
Sz

1S′z1 + S′z2 S′z2 + Sz
3S′z3

)
,
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Figure 24. Ground state determined by cos(α) (diamonds) and cos(β) (crosses) as functions of Js.
Critical value of Jc

s is shown by the arrow.

We project the spins on the xy plane and on the z axis. One writes Si = (S‖i , Sz
i ).

One observes that only surface spins have non-zero xy vector components. Let the angle
between these xy components of NN surface spins be γi,j which is in fact the projection of
the angle α on the xy plane. By symmetry, we have

γ1,2 = 0, γ2,3 =
2π

3
, γ3,1 =

4π

3
. (86)

The angles βi and β′i of Si and S′i formed with the z axis are by symmetry{
β1 = β2 = β3 = β,
β′1 = β′2 = β′3 = 0,

The total energy of the cell (86), with Si = S′i =
1
2 , is thus

Hp = −9(J + I)
2

− 3(J + I)
2

cos β− 9(Js + Is)

2
cos2 β

+
9Js

4
sin2 β. (87)

The minimum of the cell energy verifies this condition:

∂Hp

∂β
=

(
27
2

Js + 9Is

)
cos β sin β +

3
2
(J + I) sin β = 0 (88)

One deduces
cos β = − J + I

9Js + 6Is
. (89)

This solution exists under the condition −1 ≤ cos β ≤ 1. The critical values are
determined from this condition. For I = −Is = 0.1, Jc

s ≈ −0.1889J which is in excellent
agreement with the results obtained from the steepest descent method.
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Now, using the GF method for such a film in the way described in the previous
sections, we obtain the full Hamiltonian (84) in the local framework:

H = − ∑
<i,j>

Ji,j

{
1
4
(
cos θij − 1

)(
S+

i S+
j + S−i S−j

)
+

1
4
(
cos θij + 1

)(
S+

i S−j + S−i S+
j

)
+

1
2

sin θij
(
S+

i + S−i
)
Sz

j −
1
2

sin θijSz
i

(
S+

j + S−j
)

+ cos θijSz
i Sz

j

}
− ∑

<i,j>
Ii,jSz

i Sz
j (90)

where cos
(
θij
)

is the angle between two NN spins. We define the two coupled GF, and we
write their equations of motions in the real space. Taking Tyablikov’s decoupling scheme
to reduce higher-order GFs, and then using the Fourier transform in the xy plane we arrive
at a matrix equation as in the previous section with the matrix M is defined as

M(ω) =



A+
1 B1 D+

1 D−1 · · ·

−B1 A−1 −D−1 −D+
1

...
... · · · · · · · · ·

...
... C+

Nz
C−Nz

A+
Nz

BNz

· · · −C−Nz
−C+

Nz
−BNz A−Nz


, (91)

where

A±n = ω±
[1

2
Jn〈Sz

n〉(Zγ)(cos θn + 1)

− Jn〈Sz
n〉Z cos θn − Jn,n+1

〈
Sz

n+1
〉

cos θn,n+1

− Jn,n−1
〈
Sz

n−1
〉

cos θn,n−1 − ZIn〈Sz
n〉

− In,n+1
〈
Sz

n+1
〉
− In,n−1

〈
Sz

n−1
〉]

, (92)

Bn =
1
2

Jn〈Sz
n〉(cos θn − 1)(Zγ), (93)

C±n =
1
2

Jn,n−1〈Sz
n〉(cos θn,n−1 ± 1), (94)

D±n =
1
2

Jn,n+1〈Sz
n〉(cos θn,n+1 ± 1), (95)

where Z = 6 is the in-plane coordination number, θn,n±1 denotes the angle between two
NN spins belonging to the adjacent layers n and n± 1, while θn is the angle between two
NN spins of the layer n, and

γ =
[
2 cos(kxa) + 4 cos

(
kya/2

)
cos
(

kya
√

3/2
)]

/Z.

Note that in the above coefficients, we have used the following notations:

(i) Jn and In are the in-plane interactions. Jn is equal to Js for the two surface layers and
equal to J for the interior layers. All In are taken equal to I.

(ii) The interlayer interactions are denoted by Jn,n±1 and In,n±1. Note that Jn,n−1 = In,n−1
= 0 if n = 1 and Jn,n+1 = In,n+1=0 if n = Nz.

As described in the previous sections, the SW spectrum ω is obtained by solving
det|M| = 0. Using ω we calculate the magnetizations layer by layer for typical values of
parameters. The results are shown in the following.
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6.2. Quantum Surface Phase Transition

Let us show a typical case in the region of frustrated surface where Js = −0.5 in
Figure 25. Several comments are in order:

(i) The surface magnetization is very small with respect to the magnetization of the
second layer,

(ii) At T = 0, the length of the surface spin is about 0.425, much shorter than the spin mag-
nitude 1/2. This is due to the antiferromagnetic interaction at the surface which causes
a strong spin contraction. For the second layer, the spins are aligned ferromagnetically,
their length is fully 0.5,

(iii) The surface undergoes a phase transition at T1 ' 0.2557 while the second layer
remains ordered up to T2 ' 1.522. The system is thus disordered at the surface and
ordered in the bulk, for temperatures between T1 and T2. This partial disorder is very
interesting. It gives another example of the partial disorder observed earlier in bulk
frustrated quantum spin systems.

(iv) One observes that between T1 and T2, the first layer has a small magnetization. This
is understood by the fact that the strong magnetization of the second layer acts as an
external field on the first layer, inducing therefore a small value of its magnetization.

Figure 25. First two layer-magnetizations obtained by the Green’s function technique vs. T for
Js = −0.5 with I = −Is = 0.1. The surface-layer magnetization (lower curve) is much smaller than
the second-layer one. See text for comments.

We plot the phase diagram in the space (Js, T) in Figure 26. Phase I denotes the surface
canted-spin state, phase IIA denotes the partially ordered phase: the surface is disordered
while the bulk is ordered. Phase IIB separated from phase IIA by a vertical line issued from
Jc
s ' −0.19 indicates the ferromagnetic state, and phase III is the paramagnetic phase.
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Figure 26. Phase diagram in the space (Js, T) for the quantum Heisenberg model with Nz = 4,
I = |Is| = 0.1. See text for the description of phases I to III.

6.3. Classical Phase Transition: Monte Carlo Results

In order to compare with the quantum model shown in the previous subsection, we
consider here the classical counterpart model, namely we use the same Hamiltonian (28)
but with the classical Heisenberg spin of magnitude S = 1. The aim is to compare their
qualitative features, in particular the question of the partial disordering at finite T.

We use Monte Carlo simulations for the classical model where the film dimensions are
N × N × Nz, Nz being the film thickness which is taken to be Nz = 4 as in the quantum
case shown above. We use here N = 24, 36, 48, 60 to see the lateral finite-size effect. Periodic
boundary conditions are used in the xy planes. We discard 106 MC steps per spin to
equilibrate the system and average physical quantities over the next 2× 106 MC steps
per spin.

We show in Figure 27 the result obtained in the same frustrated case as in the quantum
case shown above, namely Js = −0.5. we see that the surface magnetization falls at
T1 ' 0.25 while the second-layer magnetization stays ordered up to T2 ' 1.8. This surface
disordering at low T is similar to the quantum case. Between T1 and T2 the system is
partially disordered.

Figure 27. Magnetizations of layer 1 (circles) and layer 2 (diamonds) versus temperature T in unit of
J/kB for Js = −0.5 with I = −Is = 0.1.
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Figure 28 shows the phase diagram obtained in the space (Js, T). It is interesting to
note that the classical phase diagram shown here has the same feature as the quantum phase
diagram displayed in Figure 26. The difference in the values of the transition temperatures
is due to the difference of quantum and classical spins.

Figure 28. Phase diagram for the classical Heisenberg spin using the same parameters as in the
quantum case, i.e., Nz = 4, I = |Is| = 0.1. The definitions of phases I to III have been given in the
caption of Figure 26.

To close this review, we should mention a few works works where SW in the regime
of non-collinear spin configurations have been studied: the frustration effects in antiferro-
magnetic face-centered cubic Heisenberg films have been studied in Ref. [49], a frustrated
ferrimagnet in Ref. [50] and a quantum frustrated spin system in Ref. [51]. These results
are not reviewed here to limit the paper’s length. The reader is referred to those works
for details.

7. Concluding Remarks

As said in the Introduction, the self-consistent Green’s function theory is the only
one which allows to calculate the SW dispersion relation in the case of non-collinear spin
configurations, in two and three dimensions, as well as in thin films. The non-collinear spin
configurations are due to the existence of competing interactions in the system, to the ge-
ometry frustration such as in the antiferromagnetic triangular lattice, or to the competition
between ferromagnetic and/or antiferromagnetic interactions with the Dzyaloshinskii–
Moriya interaction. We have shown that without an applied magnetic field, the GS spin
configuration is non-collinear but periodic in space. We have, in most cases, analytically
calculated them. We have checked them by using the iterative numerical minimization
of the local energy (the so-called steepest-descent method). The agreement between the
analytical method and the numerical energy minimization is excellent. The determina-
tion of the GS is necessary because we need them to calculate the SW spectrum: SW are
elementary excitations of the GS when T increases.

The double-fold purpose of this review is to show the method and the interest of its
results. We have reviewed a selected number of works according to their interest of the
community: helimagnets, materials with the Dzyaloshinskii–Moriya interaction, and the
surface effects in thin magnetic films. The Dzyaloshinskii–Moriya interaction gives rise
not only a chiral order but also the formation of skyrmions in an applied magnetic field.
The surface effects in helimagnets and in films with a frustrated surface give rise to the
reconstruction of surface spin structure and many striking features due to quantum fluctu-
ations at low T such as the zero-point spin contraction and the magnetization crossover).
We have also seen above the surface becomes disordered at a low T while the bulk remains
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ordered up to a high T. This coexistence of bulk order and surface disorder in a temperature
region is also found in several frustrated systems [8].

To conclude, we say that the Green’s function theory for non-collinear spin systems is
laborious, but it is worthwhile to use it to get results with clear physical mechanisms lying
behind observed phenomena in frustrated spin systems.
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