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Abstract: Topological indices (molecular descriptors) are numerical values of a chemical structure
and represented by a graph. Molecular descriptors are used in QSPR/QSAR modeling to determine
a chemical structure’s physical, biological, and chemical properties. The cycle graphs are symmetric
graphs for any number vertices. In this paper, recently defined neighborhood degree sum-based
molecular descriptors and polynomials are studied. NM-polynomials and molecular descriptors of
some cycle-related graphs, which consist of the wheel graph, gear graph, helm graph, flower graph,
and friendship graph, are computed and compared.
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1. Introduction

Chemical graph theory is a field of graph theory with molecular graphs obtained by
representing chemical structures with graphs. Molecular descriptors or topological indices
are numerically representative of a chemical structure and represented by a graph. They are
used to predict the physical, biological, and chemical properties of new structures obtained
from the molecule or molecular compound [1,2]. The first-known application was studied
to find the physical properties of a chemical structure in 1947 [3].

Molecular descriptors depend on the vertex degree of the graph, the distance between
the two vertices, the eigenvalues of the graph, etc. Finding the topological polynomials
instead of calculating the molecular descriptors one by one makes it easier to provide
information about the molecular graph. M-polynomials are polynomials of molecular
descriptors based on the vertex degree of a G graph and were defined by Deutsch and
Klavžar [4]. Using this definition, NM-polynomials are defined. These polynomials depend
on the sum of adjacent vertex degrees [5,6].

The quality of a molecular descriptor is measured by its ability to successfully predict
molecules. Kirmani et al. argued that the neighborhood second-modified Zagreb index is
best to predict the index for the molar refractivity and polarizability properties of COVID-19
drugs [6]. Havare argued that the neighborhood harmonic index is the best-predicting
index for the molar volume of cancer drugs [7]. NM-polynomials and these molecular
descriptors for various chemical graphs were studied (see for detail [8–11]).

Cycle-related graphs are molecular graphs of many chemical structures in chemistry,
such as cycloalkanes. It is also a graph representation of many networks [12]. Sowmya
studied total-eccentricity polynomials [13]. Asif et al. computed the Mostar index of
cycle-related chemical structures [14]. Natarajan et al. computed leap-Zagreb indices
of cycle-related special graphs [15]. Basanagoud et al. studied the M-polynomials of
cycle-related graphs [16]. Havare computed the Mostar index and edge-Mostar index
of cycle-related graphs [17]. Javaraju et al. studied the reciprocal-leap indices of wheel
graphs [18].
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2. Materials and Methods

If the G graph has v ∈ V(G) and uv ∈ E(G), then the numbers of these sets are
defined as n and m, respectively. The degree of the vertex v of the G graph is denoted
by d(v). The neighborhood of a vertex v in a graph G, NG(v), is the set of all vertices
adjacent to v [19]. See Reference [19] for basic definitions and notations on graph theory.
Let ℵu = ∑v∈NG(u) d(v) and τ∗ ij =

{∣∣N Ei,j
∣∣ |ℵ(u) = i, ℵ(v) = j

}
.

The neighborhood M-polynomial is defined by Verma et al. [20] as

NM(G, r, s) = ∑i≤j τ∗ ijrisj (1)

Table 1 shows descriptors based on the sum of neighborhood degrees.

Table 1. Molecular descriptors and NM(G) expressions.

Molecular Descriptors Mathematical Expressions Derivation from NM(G)

Third version of Zagreb [21] ´M1(G) = ∑uv∈E(G)(µ(u) + µ(v)) (Dr + Ds)(NM(G, r, s))r=s=1
Neighborhood Harmonic [20] H́(G) = ∑uv∈E(G)

2
(µ(u)+µ(v)) (2Ex J)(NM(G, r, s))r=1

Neighborhood Second Zagreb [22] ´M2(G) = ∑uv∈E(G)(µ(u)µ(v)) (DrDs)(NM(G, r, s))r=s=1
Neighborhood Second modified Zagreb

[20] mḾ2(G) = ∑uv∈E(G)
1

(µ(u)µ(v)) (ErEs)(NM(G, r, s))r=s=1

Neighborhood inverse sum indeg [20] ´ISI(G) = ∑uv∈E(G)

(
µ(u)µ(v)

µ(u)+µ(v)

)
(Er JDrDs)(NM(G, r, s))r=1

Neighborhood Forgotten [22] F́(G) = ∑uv∈E(G)

(
µ(u)2 + µ(u)2) (

Dr
2 + Ds

2)(NM(G, r, s))r=s=1

Third NDe [23] NDe3(G) =
∑uv∈E(G)(µ(u)µ(v))(µ(u) + µ(v)) DrDs(Dr + Ds)(NM(G, r, s))r=s=1

Fifth NDe [23] ND5(G) = ∑uv∈E(G)

(
µ(u)
µ(v) +

µ(v)
µ(u)

)
(DrEs + ErDs)(NM(G, r, s))r=s=1

The following operators are used in Table 1:

Dr = r
(

∂(NM(G,r,s))
∂r

)
, Ds = s

(
∂(NM(G,r,s))

∂s

)
,

Er =
∫ r

0
NM(G,t,r)

t dtEs =
∫ s

0
NM(G,r,t)

t dt, J(NM(G, r, s)) = NM(G, r, r).

If µ(u) = ℵ(p) and µ(v) = ℵ(q), then neighborhood degree sum-based molecular
descriptors are obtained.

3. Results

In this section, NM-polynomials of the wheel, gear, helm, friendship, and flower
graphs are obtained. Molecular descriptors based on the neighborhood degree sum using
these polynomials are computed.

The wheel graph for n ≥ 3 is obtained from the cycle with n orders and a central
vertex v. The orders of the wheel graph are n + 1 and the size of it is 2n [19].

Theorem 1. Let Wn be the wheel graph with n + 1 orders. The neighborhood M-polynomial of Wn
is

NM(Wn, r, s) = nr3s3 + nr3sn.

Proof of Theorem 1. From the definition of the wheel graph, it is divided as |N E3,3| =
n|N E3,n| = n. From Equation (1),

NM(Wn, r, s) = ∑3≤3 τ∗33r3s3 + ∑3≤n τ∗3nr3sn

or
NM(Wn, r, s) = nr3s3 + nr3sn.
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�

Corollary 1. The molecular descriptors based on the neighborhood degree of the Wn graph are

1. Ḿ1(Wn) = n2 + 9n
2. Ḿ2(Wn) = 3n2 + 9n
3. mḾ2(Wn) =

n
9 + 1

3
4. F́(Wn) = n3 + 27n

5. NDe3(Wn) = 3n3 + 9n2 + 54n
6. ND5(Wn) =

n2

3 + 2n + 3

7. ´ISI(Wn) =
3n
2 + 3n2

3+n
8. H́(Wn) =

n
3 + 2n

n+3

Proof of Corollary 1. Using the formulas in Table 1, the following equations can be written.

Dr(M(Wn, r, s)) = 3nr3s3 + 3nr3sn,
Ds(M(Wn, r, s)) = 3nr3s3 + n2r3sn,
DrDs(M(Wn, r, s)) = 9nr3s3 + 3n2r3sn,
ErEs(M(Wn, r, s)) = n

9 r3s3 + 1
3 r3sn,

Dr
2(M(Wn, r, s)) = 9nr3s3 + 9nr3sn,

Ds
2(M(Wn, r, s)) = 9nr3s3 + n3r3sn,

DrDs(Dr + Ds)(M(Wn, r, s)) = 54nr3s3 + 3n
(
3n + n2)r3sn,

(DrEs + ErDs)(M(Wn, r, s)) = 2nr3s3 +
(

n2

3 + 3
)

r3sn,

(Er JDrDs)(M(Wn, r, s)) = 3n
2 r6 + 3n2

3+n r3+n,
(2Er J)(M(Wn, r, s)) = n

3 r6 + 2n
3+n r3+n,

Using the above equations and Table 1, the following equations are obtained.

Ḿ1(Wn) =
(
6nr3s3 +

(
3n + n2)r3sn)(1, 1) = n2 + 9n,

Ḿ2(Wn) =
(
9nr3s3 + 3n2r3sn)(1, 1) = 3n2 + 9n,

mḾ2(Wn) =
(

n
9 r3s3 + 1

3 r3sn
)
(1, 1) = n

9 + 1
3 ,

F́(Wn) =
(
18nr3s3 +

(
n3 + 9n

)
r3sn)(1, 1) = n3 + 27n,

NDe3(Wn) =
(
54nr3s3 +

(
3n3 + 9n2)r3sn)(1, 1) = 3n3 + 9n2 + 54n,

ND5(Wn) =
(

2nr3s3 +
(

n2

3 + 3
)

r3sn
)
(1, 1) = n2

3 + 2n + 3,

´ISI(Wn) =
(

9n
6 r6 + 3n2

3+n r3+n
)
(1) = 3n

2 + 3n2

3+n ,

H́(Wn) =
(
2
( n

6 r6 + n
3+n r3+n))(1) = n

3 + 2n
n+3 .

The Helm graph is obtained by joining a pendant edge attached to each vertex of Cn
of the wheel graph [24]. The orders of the helm graph are 2n + 1 and the size of the helm
graph is 3n. �

Theorem 2. Let Hn be the helm graph with 2n + 1 orders. Then,

NM(Hn, r, s) = nrs4 + nr4s4 + nr4sn

for n ≥ 3.

Proof of Theorem 2. From the definition of the helm graph, it is divided as |N E1,4| =
n,|N E4,4| = n, |N E4,n| = n. From Equation (1),

NM(Hn, r, s) = ∑1≤4 τ∗14r1s4 + ∑4≤4 τ∗44r4s4 + ∑4≤n τ∗4nr4sn.

or
NM(Hn, r, s) = nr1s4 + nr4s4 + nr4sn.

�
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Corollary 2. The molecular descriptors based on the neighborhood degree of the Hn graph are

1. Ḿ1(Hn) = n2 + 17n
2. Ḿ2(Hn) = 4n2 + 20n
3. mḾ2(Hn) =

5n
16 + 1

4
4. F́(Hn) = n3 + 65n

5. NDe3(Hn) = 4n3 + 16n2 + 148n
6. ND5(Hn) =

n2

4 + 25
4 n + 4

7. ´ISI(Hn) =
14n

5 + 4n2

4+n
8. H́(Hn) =

26n
40 + 2n

n+4

Proof of Corollary 2. Using the formulas in Table 1, the following equations can be written.

Ḿ1(Hn) =
(
5nrs4 + 8nr4s4 +

(
4n + n2)r4sn)(1, 1) = n2 + 17n,

Ḿ2(Hn) =
(
4nrs4 + 16nr4s4 + n2r4sn)(1, 1) = 4n2 + 20n,

mḾ2(Hn) =
(

n
4 rs4 + n

16 r4s4 + 1
4 r4sn

)
(1, 1) = 5n

16 + 1
4 ,

F́(Hn) =
(
17nrs4 + 32nr4s4 +

(
16n + n3)r4sn)(1, 1) = n3 + 65n,

NDe3(Hn) =
((

4nrs4 + 16nr4s4 + 4nr4sn)(5nrs4 + 8nr4s4 +
(
4n + n2)r4sn))(1, 1) = 4n3 + 16n2 + 148n,

ND5(Hn) =
(

17n
4 rs4 + 2nr4s4 +

(
4 + n2

4

)
r4sn

)
(1, 1) = n2

4 + 25
4 n + 4,

´ISI(Hn) =
(

4n
5 r5 + 2nr8 + 4n2

4+n r4+n
)
(1) = 14n

5 + 4n2

4+n ,

H́(Hn) =
( 2n

5 r5 + n
4 r8 + n

4+n r4+n)(1) = 26n
40 + 2n

n+4 .

�

The gear graph is obtained by a vertex added between each pair of adjacent vertices of
Cn of the wheel graph [24]. The orders of the gear graph are 2n + 1 and the size of the helm
graph is 3n.

Theorem 3. Let Gn be the helm graph with 2n + 1 orders. Then,

NM(Gn, r, s) = 2nr2s3 + nr3sn

for n ≥ 3.

Proof of Theorem 3. From the definition of the gear graph, it is divided as |N E2,3| =
2n, |N E3,n| = n. From Equation (1),

NM(Gn, r, s) = ∑2≤3 τ∗23r2s3 + ∑3≤n τ∗3nr3sn

or
NM(Gn, r, s) = 2nr2s3 + nr3sn.

�

Corollary 3. The molecular descriptors based on the neighborhood degree of the Gn graph are

1. Ḿ1(Gn) = n2 + 13n
2. Ḿ2(Gn) = 3n2 + 12n
3. mḾ2(Gn) =

n
3 + 1

3
4. F́(Gn) = n3 + 35n

5. NDe3(Gn) = 3n3 + 9n2 + 60n
6. ND5(Gn) =

n2

3 + 13
3 n + 3

7. ´ISI(Gn) =
6n
5 + 3n2

3+n
8. H́(Gn) =

4n
5 + 2n

n+3
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Proof of Corollary 3. Using the formulas in Table 1, the following equations can be written.

Ḿ1(Gn) =
(
10nr2s3 +

(
3n + n2)r3sn)(1, 1) = n2 + 13n,

Ḿ2(Gn) =
(
12nr2s3 + 3n2r3sn)(1, 1) = 3n2 + 12n,

mḾ2(Gn) =
( n

3 r2s3 + n
3n r2s3)(1, 1) = n

3 + 1
3 ,

F́(Gn) =
(
26nr2s3 +

(
9n + n3)r3sn)(1, 1) = n3 + 35n,

NDe3(Gn) =
((

12nr2s3 + 3n2r3sn)(10nr2s3 +
(
3n + n2)r3sn))(1, 1) = 3n3 + 9n2 + 60n,

ND5(Gn) =
(

13n
3 r2s3 +

(
3 + n2

3

)
r3sn

)
(1, 1) = n2

3 + 13
3 n + 3,

´ISI(Gn) =
(

12n
5 r5 + 3n2

3+n r3+n
)
(1) = 12n

5 + 3n2

3+n ,

H́(Gn) =
(

4n
5 r5 + 2n

3+n r3+n
)
(1) = 4n

5 + 2n
n+3 .

�

The flower graph is obtained from a helm by combining the pendant vertices of the
helm graph with the central vertex of the helm graph with one edge [24]. The orders of the
flower graph are 2n + 1 and the size of the flower graph is 4n.

Theorem 4. Let Fln be the flower graph with 2n + 1 orders. Then,

NM(Fln, r, s) = nr2s4 + nr2s2n + nr4s4 + nr4s2n

for n ≥ 3.

Proof of Theorem 4. From the definition of Fln, it is divided as |N E2,4| = n, |N E2,2n| =
n, |N E4,4| = n, |N E4,2n| = n. From Equation (1),

NM(Fln, r, s) = ∑2≤4 τ∗24r2s4 + ∑2≤2n τ∗2,2nr2s2n + ∑4≤4 τ∗44r4s4 + ∑4≤2n τ∗4,2nr4s2n

or
NM(Fln, r, s) = nr2s4 + nr2s2n + nr4s4 + nr4s2n.

�

Corollary 4. The molecular descriptors based on the neighborhood degree of the Fln graph are

1. Ḿ1(Fln) = 4n2 + 20n
2. Ḿ2(Fln) = 12n2 + 24n
3. mḾ2(Fln) = 3n

16 + 3
8

4. F́(Fln) = 8n3 + 72n

5. NDe3(Fln) = 24n3 + 40n2 + 176n
6. ND5(Fln) = 3n2

2 + 9
2 n + 3

7. ´ISI(Fln) = 10n
3 + 4n2

2+n + 2n2

1+n
8. H́(Fln) = 7n

12 + n
n+2 + n

n+1

Proof of Corollary 4. Using the formulas in Table 1, the following equations can be written.

Ḿ1(Fln) =
(
6nr2s4 + 8nr4s4 +

(
4n + 2n2)r4s2n +

(
2n + 2n2)r2s2n)(1, 1) = 4n2 + 20n,

Ḿ2(Fln) =
(
8nr2s4 + 16nr4s4 + 8n2r4s2n + 4n2r2s2n)(1, 1) = 12n2 + 24n,

mḾ2(Fln) =
(

n
8 r2s4 + n

16 r4s4 + 1
8 r4s2n + 1

4 r2s2n
)
(1, 1) = 3n

16 + 3
8 ,

F́(Fln) =
(
20nr2s4 + 32nr4s4 +

(
16n + 4n3)r4s2n +

(
4n3 + 4n

)
r2s2n)(1, 1) = 8n3 + 72n,

NDe3(Fln) =
(
48nr2s4 + 128nr4s4 + 8n2(2n + 4)r4s2n + 4n2(2 + 2n)r2s2n)(1, 1) = 24n3 + 40n2 + 176n,

ND5(Fln) =
(

5n
2 r2s4 + 2nr4s4 +

(
2 + n2

2

)
r4s2n +

(
1 + n2)r2s2n

)
(1, 1) = 3n2

2 + 9
2 n + 3,

´ISI(Fln) =
(

4n
3 r6 + 2nr8 + n

4+2n r4+2n + 4n2

2+2n r2+2n
)
(1) = 10n

3 + 4n2

2+n + 2n2

1+n ,

H́(Fln) =
( n

3 r6 + n
4 r8 + 2n

4+2n r4+2n + 2n
2+2n r2+2n)(1) = 7n

12 + n
n+2 + n

n+1 .

�
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The friendship graph is obtained by deleting the alternate edges of the C2n of W2n [24].
The orders of the friendship graph are 2n + 1 and the size of the friendship graph is 3n.

Theorem 5. Let Frn be the friendship graph with 2n + 1 orders. Then,

NM(Frn, r, s) = nr2s2 + 2nr2s2n

for n ≥ 3.

Proof of Theorem 5. From the definition of Frn, it is divided as |N E2,2| = n, |N E2,2n| = 2n.
From Equation (1),

NM(Frn, r, s) = ∑2≤2 τ∗22r2s2 + ∑2≤2n τ∗2,2nr2s2n

or
NM(Frn, r, s) = nr2s2 + 2nr2s2n.

�

Corollary 5. The molecular descriptors based on the neighborhood degree of the Frn graph are

1. Ḿ1(Frn) = 4n2 + 8n
2. Ḿ2(Frn) = 8n2 + 4n
3. mḾ2(Frn) =

n
4 + 1

2
4. F́(Frn) = 8n3 + 16n

5. NDe3(Frn) = 16n3 + 16n2 + 16n
6. ND5(Frn) = 2n2 + 2n + 2

7. ´ISI(Frn) = n + 8n2

2+2n
8. H́(Frn) =

n
2 + 2n

n+1

Proof of Corollary 5. Using the formulas in Table 1, the following equations can be written.

Ḿ1(Frn) =
(
4nr2s2 +

(
4n + 4n2)r2s2n)(1, 1) = 4n2 + 8n,

Ḿ2(Frn) =
(
4nr2s2 + 8n2r2s2n)(1, 1) = 8n2 + 4n,

mḾ2(Frn) =
(

n
4 r2s2 + 1

2 r2s2n
)
(1, 1) = n

4 + 1
2 ,

F́(Frn) =
(
8nr2s2 +

(
8n + 8n3)r2s2n)(1, 1) = 8n3 + 16n,

NDe3(Fln) =
(
16nr2s2 + 8n2(2 + 2n)r2s2n)(1, 1) = 16n3 + 16n2 + 16n,

ND5(Frn) =
(
2nr2s2 +

(
2 + 2n2)r2s2n)(1, 1) = 2 + 2n + 2n2,

´ISI(Frn) =
(

nr4 ++ 8n2

2+2n r2+2n
)
(1) = n + 8n2

2+n ,

H́(Frn) =
( n

2 r4 ++ 2n
1+n r2+2n)(1) = n

2 + 2n
n+1 .

�

Figures 1–3 show the 3D plots of the NM-polynomial of the wheel, helm, gear, flower,
and friendship graphs.
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4. Discussion and Conclusions

This paper shows that the gear, helm, and friendship graphs have the same orders and
size, but NM-polynomials are different from each other. In Figures 4–6, green * = NDe3,
blue − = F́, blue * = Ḿ2, red * = Ḿ1, black * = ND5, red + = ´ISI, red − =mḾ2, and blue + =
H́.
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If it is compared, topological indices depend on the sum of the neighboring degrees of
the wheel graph; the NDe3 index has a very large value and creates a very fast curve, while
mḾ2 has the lowest value. Although the ND5 index is close to the ´ISI index, it has larger
values and creates a faster curve (see Figure 4a).
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Figure 4b shows the molecular descriptors based on the neighborhood sum degree of
the Hn graph. Figure 4b shows that NDe3 is the fastest curve-forming index. The index
that produces values closest to zero is the mM index. If we order the indices from that with
the largest value to that with the smallest value, the list would be as follows: NDe3, F́, Ḿ2,
Ḿ1, ND5, ´ISI, H́, and mḾ2.
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For indices dependent on the sum of the adjacent vertex degrees of the gear graph,
NDe3 is the most curvilinear-growing, followed by F́. The most linear-growing is mḾ2. If
they are sorted in order from the index with the lowest value to the index with the highest
value, the list would be as follows: mḾ2, H́, ´ISI, ND5, Ḿ1, Ḿ2, F́, and NDe3.

If we list the indices for the flower graph, as the number increases, the index with the
smallest value would be mḾ2, H́, ND5, ´ISI, Ḿ1, Ḿ2, F́, and NDe3.

From Figure 6, if the topological index values for Frn are ordered from smallest to the
largest, the list would be as follows: mḾ2, H́, ´ISI, ND5, Ḿ1, Ḿ2, F́, and NDe3.

For the NM-polynomials of the cycle-related graphs and the topological indices based
on them, the index with the fastest increasing NDe3 and the slowest increasing values is
mḾ2. These results can be used to predict the properties of new cycle-related molecules in
QSPR/QSPR studies.
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