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Abstract: In this paper, the Sharma-Tasso-Olver-Burgers (STOB) system is analyzed by the Lie point
symmetry method. The hypergeometric wave solution of the STOB equation is derived by symmetry
reductions. In the meantime, the consistent tanh expansion (CTE) method is applied to the STOB
equation. An nonauto-Bäcklund (BT) theorem that includes the over-determined equations and
the consistent condition is obtained by the CTE method. By using the nonauto-BT theorem, the
interactions between one-soliton and the cnoidal wave, and between one-soliton and the multiple
resonant soliton solutions, are constructed. The dynamics of these novel interaction solutions are
shown both in analytical and graphical forms. The results are potentially useful for explaining
ocean phenomena.

Keywords: STOB equation; Lie point symmetry method; symmetry reduction; consistent tanh
expansion method

1. Introduction

The study of exact solutions of integrable systems has been extensively investigated.
A number of mathematical physical equations have been investigated by various classical
methods, such as the inverse scattering transformation [1], the Painlevé property [2], the
Darboux transformation [3], the Bäcklund transformation (BT) [4], the Hirota bilinear
method [5], and the variable separation method [6], etc. [7–14]. Among these methods, the
Lie point symmetry approach plays key roles in studying the nonlinear partial differential
equation (NPDE) [13,14]. It can reduce the number of variables for the NPDE and the order
of the ordinary differential equation (ODE). One can use the symmetry to obtain the explicit
solutions. The group invariant solutions are obtained by the symmetry reduction equation.

On the other hand, in order to construct various interaction solutions between differ-
ent types of excitations, it is necessary to develop some methods for studying nonlinear
systems. The soliton solutions on a cnoidal waves background, which can treated as a
nonautonomous soliton solution, have been extensively investigated [15]. The interaction
between solitons and the cnoidal waves can be obtained by the Darboux transformation [16],
the symmetry reductions related by the nonlocal symmetry and the consistent tanh ex-
pansion (CTE) method [17–23]. The CTE method is a relatively simple method to obtain
various interaction solutions between different types of excitations. The exploration of the
Lie point symmetry method and the CTE method for the NPDE is an interesting topic [17].
These methods have been not applied to the Sharma-Tasso-Olver-Burgers (STOB) equation.
In this paper, the purpose of this study is mainly to apply the Lie point symmetry approach
and the CTE method to the STOB equation.

The STOB equation has the following form:

ut − α(2uux + uxx)− β(3u2ux + 3u2
x + 3uuxx + uxxx) = 0, (1)
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where α and β are arbitrary constants. It is obvious that (1) will degenerate to the usual
Burgers system with β = 0 and the STO system with α = 0, respectively. The integrability
properties and the nonlinear waves of these three integrable systems have been investigated
by using different approaches. Super extension of the Burgers equation is studied by the
bosonization approach [24,25]. The soliton fission and fusion of the STO equation is studied
by the symmetry reduction procedure [26]. The nonlocal symmetry and the CTE method
are applied to the STO equation [27,28]. Non-topological, topological and rogue waves
for the STO equation are constructed by the solitary wave ansatz approach [29]. For the
STOB equation, lump and diverse interaction solutions are obtained by means of the
corresponding bilinear form [30]. Soliton molecules of the STOB equation are constructed
by means of the velocity resonant mechanism [31]. Conservation laws and the kink solitons
are studied by the formal Lagrangian, the Kudryashov and exponential methods [32].

The paper is organized as follows. The preliminaries of the Lie point symmetry and
the CTE method are introduced in Section 2. In Section 3, the STOB equation is studied
by the Lie point symmetry method. In Section 4, the CTE method is applied to the STOB
equation. Some novel interaction solutions are constructed using the nonauto-BT theorem.
Section 5 is a simple summary and discussion.

2. Preliminaries of Lie Point Symmetry and CTE Method
2.1. Method of Lie Point Symmetry

One supposes the form of a derivative nonlinear polynomial equation as

~P(~x, t,~u) = 0, ~x = {x1, x2, . . . , xn}, ~P = {P1, P2, . . . , Pm}, ~u = {u1, u2, . . . , um}. (2)

A one-parameter Lie group of infinitesimal transformations on the system (2) reads

~x′ →~x + ε~X + o(ε2), t′ → t + ετ + o(ε2), ~u′ → ~u + ε~U + o(ε2), (3)

where ε is the parameter of the transformation and ~X, τ and ~U are the infinitesimals
of the transformations, respectively. A symmetry of (2) is defined as a solution of its
linearized equation

~P
′
(~x, t,~u)σ~u = lim

ε=0

d~P(~x′, t′,~u′)
dε

= 0. (4)

The general Lie point symmetry has the form

σ~u = ~Xux + τut − ~U. (5)

The corresponding vector with the group of transformations can be written as

V = ~X
∂

∂~x
+ τ

∂

∂t
+ ~U

∂

∂~u
. (6)

Substituting Equation (5) into the linearized Equation (4) and making the field~u to sat-
isfy Equation (2), we can obtain the infinitesimals ~X, τ and ~U. By using these infinitesimals,
some group invariant solutions can be constructed by the symmetry reductions.

2.2. Method of CTE Method

According to the CTE method [17], the expansion form of Equation (2) reads as

~u = ui =
Ji

∑
j=0

ui,j tanhj(χ), (7)
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where the positive integer Ji, i = 1, 2, . . . , m is determined by the leading order analysis,
and χ is an arbitrary function of ~{x, t}. Substituting Equation (7) into Equation (2) leads to

Pj(~x, t,~u) =
Nj

∑
i=0

Pj,i(~x, t, ul,k, χ) tanhi(χ) = 0, j = 1, 2, . . . , m, (8)

where Nj, j = 1, 2, . . . , m are dependent on the models, and Pj,i(~x, t, ul,k, χ) are functions of
{~x, t, ul,k, χ} and their derivatives. By vanishing different powers of tanhi(χ), we obtain
the over-determined system

Pj,i(~x, t, ul,k, χ) = 0, i = 0, 1, . . . , Nj, j = 1, 2, . . . , m. (9)

The nonlinear system (2) is called a CRE solvable system while system (9) is consistent.
In the following two sections, we apply the Lie point symmetry and CRE method to study
the STOB equation.

3. Lie Point Symmetry and Similarity Reductions of STOB Equation

Based on the Lie symmetry method [13], the STOB equation is invariant under
transformation

u→ u + εσu. (10)

The general vector field is given as

V = X
∂

∂x
+ T

∂

∂t
+ U

∂

∂u
, (11)

where X, T and U are the functions of x, t and u. The symmetry equation for σu is expressed
as a solution of the linearized system (1)

σu
t − α[2(σuu)x + σu

xx]− β[3(σuu)xx + 3(σuu2)x + σu
xxx] = 0. (12)

The symmetry σu has the form

σu = Xux + Tut −U. (13)

Over-determined equations of the STOB system can be obtained by substituting
Equation (13) into the symmetry Equation (12) and letting u satisfy the STOB system.
Solving the over-determined equations leads to the infinitesimals

X =
C1

3
x +

2C1α2

9β
t + C3, T = C1t + C2, U = −C1

3
u− C1α

9β
, (14)

where Ci (i = 1, 2, 3) are arbitrary constants. We can find the group invariant solutions by
solving the characteristic equation [25]

dx
X

=
dt
T

=
du
U

. (15)

The general symmetry reductions related with Equation (14) are studied in detail.
There are three cases for symmetry reductions.

Case I. By solving the characteristic Equation (15), the similarity solution is given as
the following form

u =
1

3
√

C1t + C2
U(ξ) +

α

3β
, (16)
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with the similarity variable ξ = 1
3√C1t+C2

(
x − α2

3β t− C2α2−3C3β
C1β

)
and the group invariant

function U(ξ). By substituting Equation (16) into the system (1), the invariant function
U(ξ) satisfies the variable coefficient of the ODE

d3U(ξ)
dξ3 + 3U(ξ) d2U(ξ)

dξ2 + 3U2(ξ) dU(ξ)
dξ + 3

(
dU(ξ)

dξ

)2
+ C1

3β ξ
dU(ξ)

dξ + C1
3β U(ξ) = 0. (17)

It is obvious that once the solution U(ξ) is solved by Equation (17), the the similarity
solution is given by using Equation (16).

By means of the MAPLE technique, the hypergeom solution of U(ξ) can be obtained
by solving Equation (17) directly

U(ξ) =
[
C6H

([
C4β
C1

+ 1
3

]
,
[

2
3 , 4

3

]
,−C1ξ3

27β

)
+ 2ξH

([
βC4
C1

+ 2
3

]
,
[

4
3 , 5

3

]
,−C1ξ3

27β

)
− (C4

20 + C1
30β )

ξ4H
([

βC4
C1

+ 5
3

]
,
[

7
3 , 8

3

]
,−C1ξ3

27β

)
− C6(

C1
24β + C4

8 )ξ3H
([

βC4
C1

+ 4
3

]
,
[

5
3 , 7

3

]
,−C1ξ3

27β

)
−C4C5

2 ξ2H
([

βC4
C1

+ 1
]
,
[

4
3 , 5

3

]
,−C1ξ3

27β

)]
/
[
C5H

([
C4β
C1

]
,
[

1
3 , 2

3

]
,−C1ξ3

27β

)
+C6ξH

([
βC4
C1

+ 1
3

]
,
[

2
3 , 4

3

]
,−C1ξ3

27β

)
+ ξ2H

([
3βC4

C1
+ 2

3

]
,
[

4
3 , 5

3

]
,−C1ξ3

27β

)]
,

(18)

where H denotes the generalized hypergeometric function. The solution of the STOB
Equation (1) can be obtained by using Equations (16) and (18). The type solution of the hy-
pergeometric function can be also obtained by means of the Hopf–Cole transformation [33].

Case II. C1 = 0. The group invariant solution reads as the following form after solving
the characteristic Equation (15)

u = U(η), (19)

with the similarity variable η = −C2
C3

x + t and the group invariant function U(η). Sub-
stituting Equation (19) into Equation (1), the invariant function U(η) satisfies the reduc-
tion system

d3U(η)

dη3 −
(3C3

C2
U(η) +

C3α

C2β

)d2U(η)

dη2 +
C2

3
C2

2

(
3U2(η) +

2
β

U(η) +
C3

C2β

)dU(η)

dη
− 3C3

C2

(dU(η)

dη

)2
= 0. (20)

As a similar procedure, the solution of the STOB equation can be derived by solving
the reduction system (20).

Case III. C1 = C3 = 0. The group invariant solution reads as the following form after
solving out the characteristic Equation (15),

u = U(x). (21)

The group invariant function U(x) satisfies the following reduction system

α
(d2U(x)

dx2 + 2U(x)
dU(x)

dx

)
+ β

(
3U2(x)

dU(x)
dx

+ 3U(x)
d2U(x)

dx2 + 3
(dU(x)

dx

)2
+

d3U(x)
dx3

)
= 0. (22)

The field of u can be obtained by solving the above reduction system.

4. CTE Solvability and Interaction Solutions of STOB Equation

Based on the CTE method [17], the generalized truncated tanh expansion of the STOB
equation is

u = u0 + u1 tanh(w), (23)

where u0, u1 and w are arbitrary functions of x and t. By substituting Equation (23) into the
STOB system (1) and vanishing the coefficients of the powers of tanh( f ), one obtains two
classes solutions.
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Case I. The functions u0 and u1 read as

u1 = 2wx, u0 = −wxx

wx
− α

3β
, (24)

and w satisfies the following over-determined equations

C + 2βK− 4βw2
x +

α2

3β
= 0, (25)

Kxx − 4Kw2
x − 10w2

xx = 0, (26)

where C = wt
wx

and K satisfies the Schwarzian derivative K = {w; x} = − 3w2
xx

2w2
x
+ wxxx

wx
[19].

Case II. The solutions of u0 and u1 are

u0 = wx, u1 = wx, (27)

and the consistent condition is

wt − α(wxx + 2w2
x)− β(wxxx + 4w3

x + 6wxwxx) = 0. (28)

From the above detailed calculations, an nonauto-BT theorem can be constructed.
Nonauto-BT theorem. One finds the solution w of the over-determined

Equations (25) and (26) or the consistent condition (28); then, the following forms of
u are also a solution of the STOB system

u = 2wx tanh(w)− wxx

wx
− α

3β
, (29)

and

u = wx tanh(w) + wx, (30)

respectively.
By using the above nonauto-BT theorem, some interactions between solitons and

other types of nonlinear waves are derived. One lists some novel interactions as fol-
lows. The interaction between one-soliton and the cnoidal wave for the over-determined
Equations (25) and (26) is assumed

f = k0x + ω0t + c0 + a0F(ς), ς = k1x + ω1t + c1, (31)

where k0, ω0, c0, a0, k1, ω1 and c1 are all free constants. Substituting Equation (31) into
Equation (25), one obtains the over-determined equations of F1(ς):

F 2
1ς − 4a2

0F4
1 − a0a1F3

1 − a2F2
1 − a3F1 − a4 = 0, F1 = Fς, (32)

(k0ω1 − k1ω0)(a3
0b1F4

1 + a2
0b2F3

1 + a0b3F2
1 + k0b4F1 + k2

0b5) = 0, (33)

with

a1 = C1a2
0k3

1 +
12k0

k1
, a2 = 3C1k0a2

0k2
1 +

12k2
0

k2
1

+
α2

3β2k2
1
+

ω1

βk3
1

,

a3 = 3C1k1a0k2
0 +

4k3
0

a0k3
1
+

2α2k0

3a0β2k3
1
+

3k0ω1

2a0βk4
1
+

ω0

2a0βk3
1

, a4 = 6C1k3
0 +

2k2
0α2

a2
0k4

1β2
+

3k2
0ω1

a2
0k5

1β
+

3k0ω0

a2
0k4

1β
,

b1 =
C2a2

0k4
1

4β
− k0

β
, b2 =

C2a2
0k0k3

1
β

−
4k2

0
k1β

+
α2

6k1β3 +
ω1

2β2k2
1

,
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b3 =
3C2k2

0a2
0k2

1
2β

−
6k3

0
k2

1β
+

α2k0

2k2
1β3

+
9ω1k0

8β2k3
1
+

3ω0

8k2
1β2

, b4 =
C2k1a2

0k2
0

β
−

4k3
0

βk3
1
+

α2k0

2k3
1β3

+
3k0ω1

4β2k4
1
+

3ω0

4β2k3
1

,

and

b5 =
C2a0k2

0
4β

−
k3

0

k4
1a0β

+
α2k0

6a0k4
1β3

+
k0ω1

8a0β2k5
1
+

3ω0

8a0β2k4
1

,

where C1 and C2 are arbitrary constants. Equation (32) is the standard elliptic function
equation, while Equation (33) becomes the identical equation with the constraint as

ω0 =
k0ω1

k1
. (34)

It indicates that the interaction between one soliton and the cnoidal wave is obtained
by solving the over-determined equations. This type of interaction solution is discussed
via the CTE method [34,35].

Besides solving over-determined equations, the interaction between one-soliton and
the cnoidal wave can be obtained by solving the consistent condition (28). The correspond-
ing solution form assumes

w = k0x + ω0t + c0 + EllipticPi
[
JacobiSN(k1x + ω1t + c1, m), n, m

]
, (35)

where EllipticPi and JacobiSN are the third kind of elliptic integral and the Jacobi elliptic
function, respectively. Substituting Equation (35) into Equation (28), one obtains

n2(2βk3
1m2 + nω0 − 4βnk3

0 − 2αnk2
0)Sn6(ζ) + n(6βk3

1m2 − 4βk3
1m2n + 12βk3

0n + 12βk2
0k1n

−4βk3
1n + 6αk2

0n + 4αk0k1n− 3nω0 − nω1)Sn4(ζ)− 2k2
1n2(6βk0 + α)Sn3(ζ)Cn(ζ)Dn(ζ)

−n(4βk3
1m2 − 6βk3

1n + 12βk3
0 + 24βk2

0k1 + 12βk0k2
1 + 4βk3

1 + 6αk2
0 + 8αk0k1 + 2αk2

1

−3ω0 − 2ω1)Sn2(ζ) + 2k2
1n(6βk0 + 6βk1 + α)Sn(ζ)Cn(ζ)Dn(ζ) + 2βk3

1n + 4βk3
0

+12βk2
0k1 + 12βk0k2

1 + 4βk3
1 + 2αk2

0 + 4αk0k1 + 2αk2
1 −ω0 −ω1 = 0,

(36)

where Sn(ζ), Cn(ζ) and Dn(ζ) represent the Jacobi elliptic functions of JacobiSN(k1x +
ω1t + c1, m), JacobiCN(k1x + ω1t + c1, m) and JacobiDN(k1x + ω1t + c1, m), respectively.
Vanishing the coefficients of the powers of Sn, the non-trivial constants are

n = 0, ω0 = 2α(k0 + k1)
2 + 4β(k0 + k1)

3 −ω1. (37)

Substituting (35) and (37) into (30), the interaction solution of the STOB Equation (1) reads

u = (k0 + k1) tanh{2(k0 + k1)
2(α + 2βk0 + 2βk1)t + k0x−ω1t + c0+

EllipticPi
[
JacobiSN(k1x + ω1t + c1, m), n, m

]
}+ k0 + k1. (38)

By selecting the parameters as

m =
49
50

, k1 = −1
2

, ω1 =
1
2

, k0 = 1, c0 = 2, c1 = 2, α = 1, β = 1, (39)

the interaction solution (38) becomes

u =
1
2

tanh
[

x +
t
2
+ 2 + EllipticF

(
JacobiSN

(
− x

2
+

t
2
+ 2,

49
50

)
,

49
50

)]
+

1
2

, (40)

with the first kind of incomplete elliptic integral of EllipticF. Figure 1 displays the three-
dimensional and the density plots of interaction solution (40).
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Figure 1. The graph of the propagation for u. (a) Three-dimensional plotting. (b) Density plotting.

The interaction between one soliton and multiple resonant soliton solutions of the
consistent condition (28) has the form

w = k0x + ω0t + c0 + a0 ln
(
1 +

n

∑
i=1

exp(kix + ωit + ci)
)
, (41)

where k0, ki, c0 and ci are arbitrary constants and a0, ω0 and ωi satisfy the relations

a0 =
1
2

, ω0 = 2αk2
0 + 4βk3

0, ωi = αki(4k0 + ki) + βki(12k2
0 + 6k0ki + k2

i ). (42)

By substituting Equations (41) and (42) into Equation (30), the interaction between
one-soliton and the multiple resonant soliton solutions can be written as

u =
k0 + k0 ∑n

i=1 exp(ϑi) +
1
2 ∑n

i=1 ki exp(ϑi)

1 + ∑n
i=1 exp(ϑi)

(
1 + tanh(w)

)
, (43)

with ϑi = kix + ki
(

β(12k2
0 + 6k0ki + k2

i ) + α(4k0 + ki)
)
t + ci. We show this type of solution

in Figure 2 by selecting the parameters as

n = 2, k0 = 1
9 , k1 = 1

4 , k2 = − 1
2 , c0 = 1, c1 = 1

2 , c2 = −6, α = 2, β = 1
2 . (44)

Figure 2a,b plot the solution of u and the potential of u, i.e., V = ux, respectively.
It is obvious that three solitary waves become a single wave with the time evolution.
This is called the fusion phenomena of the solitary waves, which have been studied both
theoretically and experimentally [36].

These types of interaction between solitons and the cnoidal periodic waves, and
interaction between solitons and the multiple resonant soliton solutions, may happen in
the ocean [18]. The results are useful for explaining ocean phenomena.
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Figure 2. The graph of the propagation of the interaction solution expressed by Equation (43) with
the parameters as Equation (44). (a) Three-dimensional plot of u. (b) Three-dimensional plot of the
potential of u, i.e., V = ux.

5. Conclusions and Discussion

In summary, the Lie point symmetry approach and the CTE method are applied for
solving the STOB equation. One obtains three classes of symmetry reduction equations
based on the infinitesimal generators. Some explicit solutions are derived by solving the
symmetry reduction equations. In addition, a nonauto-BT theorem that includes the types
of the over-determined Equations (25) and (26) and the consistent condition (28) is obtained
by the CTE method. The interaction between one-soliton and the cnoidal wave can be
obtained by solving the over-determined equations and the consistent condition. The
interaction between one-soliton and the multiple resonant soliton solutions is derived by
means of the consistent condition. These novel solutions are studied both in analytical and
graphical ways. The fusion phenomena of the solitary waves are shown in Figure 2. The
results are helpful in understanding some physical phenomena including fluid dynamics,
oceanography and related disciplines.

Besides the Lie point symmetry, the nonlocal symmetry is widely studied by the
Painlevé analysis, the Lax pair and so on [17–19]. Based on the the Painlevé analysis, the
solution of the STOB equation can be expanded as the following form about the singularity
manifold f (x, t)

u =
u0

f
+ u1, (45)

where u0 and u1 are functions with respect to x and t. By substituting Equation (45)
into Equation (1) and vanishing the coefficients of the powers of f (x, t) independently.
We obtain

u0 = fx, u1 = fx. (46)

This type of nonlocal symmetry, which is named the residual symmetry, can be read
out by the residual of the singularity manifold f (x, t) [17]. The nonlocal symmetry of the
STOB equation is written as σu = fx from the expression (46). The field of f satisfies the
following equation

ft − α( fxx + 2 f 2
x )− β( fxxx + 3 f 3

x + 6 fx fxx) = 0. (47)

The symmetry reductions related tp the nonlocal symmetry and the infinite many
nonlocal symmetries are worth studying.
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