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Abstract: We present the Lie symmetry analysis for a hyperbolic partial differential system known as
the one-dimensional Saint-Venant-Exner model. The model describes shallow-water systems with
bed evolution given by the Exner terms. The sediment flux is considered to be a power-law function
of the velocity of the fluid. The admitted Lie symmetries are classified according to the power index of
the sediment flux. Furthermore, the one-dimensional optimal system is determined in all cases. From
the Lie symmetries we derive similarity transformations which are applied to reduce the hyperbolic
system into a set of ordinary differential equations. Closed-form exact solutions, which have not been
presented before in the literature, are presented. Finally, the initial value problem for the similarity
solutions is discussed.
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1. Introduction

The Saint-Venant system is a set of hyperbolic nonlinear partial differential equations
known as the shallow-water equations. The Saint-Venant system describes the flow of a
fluid under a pressure surface and covers many applications in real-world systems; see
for instance [1–6] and references therein. There are various hyperbolic systems in the
literature that describe physical phenomena and can be seen as extensions of the Saint-
Venant system [7–11]. Because of the nonlinearity of the partial differential equations,
various techniques of mathematical analysis have been applied to the construction of
conserved quantities and for the determination of analytic and exact solutions [12,13].

A systematic mathematical approach which has been widely studied for the investiga-
tion of hyperbolic systems in fluid dynamics is Lie symmetry analysis. At the end of the
19th century, Sophus Lie published, in a series of books [14–16], the fundamental elements
of the modern treatment of symmetries. The idea of Lie’s approach is the invariance proper-
ties of differential equations which follow from the infinitesimal representations of the finite
transformations of continuous groups. The generator of the invariant transformation which
keeps a differential equation invariant is known as a Lie symmetry. The determination
of the Lie symmetries for a system of differential equations is essential because they can
be used to simplify the system by reducing the number of independent variables or by
reducing the order of the differential equations. In addition, symmetries can be used for
the construction of conservation laws. For more details on the modern treatment of Lie’s
approach to differential equations, we refer the reader to the following basic references of
symmetry analysis [17–20].

The Lie point symmetries for rotating shallow-water without a gravitational field were
studied in [21] while a nonzero constant gravitational field was introduced in [22]. It was
found that the existence of the gravitational field affects the admitted Lie point symmetries.
The Lie symmetries of shallow-water equations with a varying bottom were the subject
of study in [23,24]. Moreover, the algebraic properties for a one-dimensional Saint-Venant
system without a gravitational field and a constant bottom is presented in [25], while the
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analysis for a polytropic gas in Lorentz coordinates is given in [26]. For more studies, we
refer the reader to [27–30] and references therein.

In this piece of work, we are interested in the investigation of the algebraic properties
for the Saint-Venant-Exner system (SVE) [31]. The SVE system is an extension of the
shallow-water system, where a new dynamical variable is introduced that describes the
bed evolution of the bottom topography. The SVE system has been mainly considered
for the description of model bedload sediment transport phenomena that occur in large
time- and space-scale fluid dynamics systems [32–36]. In the following, we apply Lie’s
algorithm to determine the Lie point symmetries for the SVE system and then to determine
the one-dimensional optimal system. The latter is essential in order to determine all the
possible independent reductions, to perform a complete classification of the Lie symmetries
and of the invariant transformations, and, consequently, to determine new analytic and
exact solutions. The structure of the paper is as follows.

In Section 2, we present the basic properties and definitions for the Lie symmetry
analysis as we determine the Lie symmetries for the SVE system. In Section 3, we calculate
the invariants for the adjoint representation of the admitted Lie point symmetries and we
derive the one-dimensional optimal system. The application of the Lie point symmetries for
reductions is given in Section 4. Finally, in Section 5 we summarize the results and we dis-
cuss the families of initial and boundary conditions in which the similarity transformations
are solutions to the initial value problem.

2. Lie Symmetries for the Saint-Venant-Exner Model

The one-dimensional SVE model is defined by the following three nonlinear partial
differential equations [37]

∂h
∂t

+
∂

∂x
(uh) = 0 , (1)

∂

∂t
(uh) +

∂

∂x

(
hu2 +

1
2

gh2
)
+ gh

∂B
∂x

= 0 , (2)

∂B
∂t

+ ξ
∂Q
∂x

= 0. (3)

Parameters h(t, x), u(t, x) represent the height above the bottom of the surface and
the velocity in the x−direction, respectively; B(t, x) is the height of the bed, i.e., the bed
level, parameter ξ is defined as ξ = 1

1−ε , in which ε is the porosity of the bed, and g is the
gravitational constant. Finally, Q(t, x) = Q(u(t, x), h(t, x)) defines the volumetric bedload
sediment flux. Recall that when there is not any bed evolution, SVE systems (1)–(3) reduces
to the one-dimensional shallow-water system. In the following, for the bedload sediment
flux Q(t, x), we consider

Q(t, x) = Agum, (4)

where Ag, m are constants and m ≥ 1 [38]. From experimental data, parameter m is
constrained as 1 ≤ m ≤ 4 [37], while the case of m = 3 is considered in [37]. Formula (4)
for the description of the sediment flux is not the unique solution that has been proposed
in the literature, see for instance [39,40] and references therein. However, the power-law
expression (4) is the simplest that has been considered. Moreover, for special values of the
free parameters of the power-law expression (4) an analytic solution determined for the
first time in [41].

Consider now the infinitesimal point transformation

t′ = t + εξt(t, x, u, h, B) , (5)

x′ = x + εξx(t, x, u, h, B) , (6)

u′ = u + εηu(t, x, u, h, B) , (7)

h′ = h + εηh(t, x, u, h, B) , (8)

B′ = B + εηB(t, x, u, h, B) , (9)
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which form the infinitesimal generator defined as a vector field

X =
∂t′

∂ε
∂t +

∂x′

∂ε
∂x +

∂u′

∂ε
∂u +

∂h′

∂ε
∂h +

∂B′

∂ε
∂B , (10)

where O
(
ε2) ' 0.

By definition, the SVE system of nonlinear hyperbolic partial differential equations
H
(
yA, u, u,A, h, h,A, B, B,A

)
, yA = (t, x) is invariant under the action of the infinitesimal

transformation if and only if [18],

lim
ε→0

H
(

y′A, u′, u′,A, h′, h′,A, B′, B′,A; ε
)
−H

(
yA, u, u,A, h, h,A, B, B,A

)
ε

= 0 , (11)

or equivalently for the functions ξt, ξx, ηu, ηh and ηB which solve the following system

ξt = ξt(t, x) , ξx = ξx(t, x),

0 = ζum−1 ∂ηu

∂x
+

∂ηB

∂t
, (12)

0 = u1−mh
∂ηB

∂t
− ζ

(
∂

∂t
+ u

∂

∂x

)
ηh , (13)

0 = u2−mh
∂ηB

∂h
− u1−mh

∂ξx

∂t
+ ζ

(
∂

∂B
− ∂

∂h

)
ηu , (14)

0 = ζ

(
∂ηu

∂B
+ g

∂ξt

∂x

)
− u1−m

(
g

∂ηB

∂u
− ∂ξx

∂t

)
, (15)

0 = u1−mh
(

∂ηB

∂u
+

∂ξx

∂t

)
− ζ

(
g

∂

∂u
− u

∂

∂B

)
ηh , (16)

0 = ζ

(
u

∂ηu

∂t
− g

∂ηh

∂t

)
+

(
u1−m

(
gh− u2

) ∂

∂t
+ gu

∂

∂x

)
ηB , (17)

0 = ζ

((
∂

∂t
+ u

∂

∂x

)
ξx − u

(
∂

∂t
+ u

∂

∂x

)
ξt
)
+ ζu

∂ηh

∂B
− ζηu + u1−mh

(
∂ξx

∂t
− u

∂ηB

∂h

)
, (18)

0 = ζ

((
gh− u2

) ∂

∂B
− g
(

h
∂

∂h
− u

∂

∂u
+ (m− 1)

))
ηu −

ζgu
∂ηB

∂B
−
(

u1−m
(

gh− u2
) ∂

∂t
+ ζgu

∂

∂x

)
ξx + ζgu

∂ξt

∂t
, (19)

0 = g
((

u3−m − ghu1−m
) ∂

∂u
+ ζ

∂

∂B

)
ηB + ζg2 ∂ηh

∂u
+ ζgu

∂ξt

∂t

+

((
u3−m + ghu1−m

) ∂

∂t
+ ζgu

∂

∂x

)
ξx , (20)

0 =

((
ζu + u4−m − gu2−mh

) ∂

∂h
− ζgu

∂

∂B

)
ηB + ζgu

∂ηh

∂h
− ζ

(
g + u2 ∂

∂h

)
ηu

+

((
ζg + ghu1−m − u3−m

) ∂

∂t
+ ζgu

∂

∂x

)
ξx − ζg

∂ξt

∂t
, (21)
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0 = ζ

((
ζg− ghu1−m + u3−m

) ∂

∂B
+ gu1−m

(
h

∂

∂h
− 1
)
− gu2−m ∂

∂u

)
ηh + ζmghu−mηu

−ζghu1−m ∂ηB

∂B
− h
((

ζgu−m + hu1−2m − u3−2m
) ∂

∂t
+ ζg

∂

∂x

)
ξx − ζghu1−m ∂ξt

∂t
, (22)

0 = ζg2
(

ζ ∂
∂B − u1−m

)
ηh + ζg

((
(2−m)u2−m + mghu−m)− ζ ∂

∂B

)
ηu + ζg2u2−m ∂ηu

∂u

−
(

u−m(ζg
(

gh + u2)+ u5−m + ghu1−m(g− 2u2)) ∂
∂t + ζgu1−m(gh− u2) ∂

∂x

)
ξx(

ζgu1−m(gh− u2) ∂
∂t + g2ζ2 ∂

∂x

)
ξt ,

(23)

where the new parameter ζ is defined as ζ = mξ Ag. The latter system of partial differential
equations is also known as the determining system, or as the Lie symmetry conditions.

We observe that the resulting solution of the Lie symmetry conditions depends on the
value of the free parameter m. In the following proposition, the Lie symmetry classification
is presented, where the classification of Patera et al. [42] is used.

Proposition 1. The Lie point symmetries for the SVE systems (1)–(3) with sediment flux Q(t, x) =
Agum are the vector fields

X1 = ∂t , X2 = ∂x , X3 = t∂t + x∂x , X4 = ∂B, (24)

for arbitrary value of parameter m. The nonzero commutators for vector fields {X1, X2, X3, X4} are
[X1, X3] = X1, [X1, X3] = X2. Therefore, the vector fields {X1, X2, X3} form the A3,3 Lie algebra.
Consequently, the four Lie symmetry vectors {X1, X2, X3, X4} form A3,3 ⊗ A1 Lie algebra.

In the special case where m = 3, the SVE system admits the additional Lie point
symmetry

X5 = t∂t − 2u∂u − h∂h − 2B∂B. (25)

The additional nonzero commutators are [X1, X5] = X1, [X4, X5] = −2X4, that is, the
Lie point symmetries form the A3,3 ⊗s A2,1 Lie algebra.

3. One-Dimensional Optimal System

Lie symmetries are mainly applied for the construction of similarity transformations
and the definition of invariant functions. Therefore, the SVE systems (1)–(3) can be written
in a simpler form with the use of the Lie invariants. In order to calculate all the unique
similarity transformations, we calculate the adjoint representation of the admitted Lie
algebra. The later is essential in order to write down the one-dimensional optimal system.

Consider the two generic Lie symmetry vector fields Z, W defined as

Z =
n

∑
A=1

aAXA , W =
n

∑
i=1

bAXA , aA, bA are constants. (26)

We shall say that Z, W are equivalent if an only if W = ∏ Ad(exp(εAXA))Z , or
aA = cbA , c = const. Ad(exp(εAXA)) is the adjoint operator defined as [20]

Ad(exp(εXA))XB = XA − ε[XA, XB] +
1
2

ε2[XA, [XA, XB]] + . . . , (27)

where [XA, XB] is the commutator.
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As a first step the invariants φ(aA) of the adjoint action should be calculated. They
invariants given by the following system

∆A(φ) = CC
ABaB ∂

∂aC φ ≡ 0 , (28)

where CC
AB are the structure constants of the Lie algebra [XA, XB] = CC

ABXC . The commu-
tators for the admitted Lie symmetries are given in Table 1.

Table 1. Commutators of the admitted Lie point symmetries for the SVE system.

[ , ] X1 X2 X3 X4 X5

X1 0 0 X1 0 X1
X2 0 0 X2 0 0
X3 −X1 −X2 0 0 0
X4 0 0 0 0 −2X4
X5 0 0 0 2X4 0

Hence, from Table 1 and (28) we define the system

a3
∂φ

∂a1
= 0 , a3

∂φ

∂a2
= 0 , a5

∂φ

∂a1
= 0 , − 2a5

∂φ

∂a4
= 0. (29)

Therefore, for m 6= 3, we find φ = φ(a3, a4), that is, that the adjoint invariants are a3
and a4. On the other hand, for m = 3, it follows φ = φ(a3, a5) from where we infer that the
adjoint invariants are a3 and a5.

With the use of the adjoint representation given in Table 2 and the invariants we determine
the one-dimensional optimal system. The results are presented in the following proposition.

Table 2. Adjoint representation for the admitted Lie point symmetries of the SVE system.

Ad(exp(εXA))XB X1 X2 X3 X4 X5

X1 X1 X2 X3 − εX1 X4 X5 − εX1
X2 X1 X2 X3 − εX2 X4 X5
X3 eεX1 eεX2 X3 X4 X5
X4 X1 X2 X3 X4 X5 + 2εX4
X5 eεX1 X2 X3 e−2εX4 X5

Proposition 2. The one-dimensional optimal system for the SVE systems (1)–(3) with sediment
flux Q(t, x) = Agum consists of the one-dimensional Lie algebras

{X1} , {X2} , {X3} , {X4} , {X1 + αX2} , {X1 + αX4} ,

{X2 + αX4}, {X3 + αX4} , {X1 + αX2 + βX4}.

Furthermore, when m = 3, the extra one-dimensional Lie algebras exist

{X5}, {X2 + αX5}, {X3 + αX5}.

In the following Section we continue our analysis with the application of the Lie
symmetries to define similarity transformations in order to reduce the SVE system and to
determine similarity solutions.

4. Similarity Transformations

Consider a function F
(
yA, u

)
= 0 which is invariant under the action of a one-

parameter point transformation with generator X. By definition, it follows X(F) = 0,
that is,
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ξA ∂F
∂yA + ηu ∂F

∂u
= 0. (30)

Thus, the solution of the later system determines all the functions which are invariant
under the infinitesimal generator X.

From condition (30) we can define the associated Lagrange system

dyA

ξA(yA, u)
=

du
ηu(yA, u)

,

from where we define the invariant functions dWA = dyA

ξ A(yA ,u)
− du

ηu(yA ,u)
. For the invariant

functions WA holds X
(
WA) = 0. The invariant functions are used to define the similarity

transformations which are used to simplify the system of partial differential equations.

4.1. Reduction with X1

From the symmetry vector X1 we determine the invariant functions x, u, h, B. Thus, by
considering x to be the new independent variable, then u = u(x), h = h(x) and B = B(x).
We replace in the SVE system and we find

∂

∂x
(uh) = 0 , (31)

∂

∂x

(
hu2 +

1
2

gh2
)
+ gh

∂B
∂x

= 0 , (32)

ζum−1 ∂u
∂x

= 0. (33)

Consequently, we determine the similarity solution u = u0 , h = h0 , B = 0 with
u0 6= 0, or u = 0 , B = − ∂h

∂x .

4.2. Reduction with X2

From the symmetry vector X2 we find the invariant functions t, u, h, B. Thus, u = u(t),
h = h(t) and B(t). Hence, from the SVE system we find the reduced equations

∂h
∂t

= 0 ,
∂B
∂t

= 0 , (34)

∂

∂t
(uh) = 0 , (35)

from where we infer the similarity solutions

u = u0 , h = h0, B = B0. (36)

4.3. Reduction with X3

The Lie symmetry vector X3 provides u = u(χ), h = h(χ) and B = B(χ) with
χ = xt−1. In the new coordinates, the SVE system reads

− χ
dh
dχ

+
d

dχ
(uh) = 0 , (37)

− χ
d

dχ
(uh) +

d
dχ

(
hu2 +

1
2

gh2
)
+ gh

∂B
∂χ

= 0 , (38)

− χ
dB
dχ

+ ζum−1 du
∂χ

= 0. (39)
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Thus we end up with the reduced differential equation

χ
du
dχ

=
u2(2χ2u− 2χ3 + ζgum)

3χu2(u− χ) + ζgum((1−m)χ + (1 + m)u)
, (40)

with

h(χ) =
χ2u(2u− χ)− ζgum(u− χ)− χu3

gχu
, (41)

B(χ) =
ζ

m

∫ 1
χ

d
dχ

(um)dχ. (42)

4.4. Reduction with X4

Lie symmetry X4 does not apply a similarity transformation which reduces the number
of independent variables for the SVE system.

4.5. Reduction with X1 + αX2 Solution

Application of the vector field X1 + αX2 gives the travelling wave solution u = u(σ),
h = h(σ), B = B(σ) with σ = x− αt. The reduced SVE system is

d
dσ

((α− u)h) = 0 (43)

d
dσ

(
uh(u− α) +

1
2

gh2
)
+ gh

dB
dσ

= 0

d
dσ

(
B− ζ

m
um
)
= 0 (44)

Hence, we calculate the similarity solutions u = u0 , h = h0 and B = B0. In the special
case in which h = 0, the exact solution is B− ζ

m um = B0.

4.6. Reduction with X1 + αX4

Reduction with respect to the vector field X1 + αX4 gives the similarity transformation
u = u(x), h = h(x) and B = at + b(x). By replacing in the SVE system we find the
closed-form solution

u(x) = ζ
1
m u0(x0 − αmx)−

1
m , (45)

h(x) = ζ−
1
m (x0 − αmx)−

1
m ,

and
b(x) = b0 − u0ζ

1
m u0(x0 − αmx)−

1
m − 1

2g
ζ−

2
m (x0 − αmx)−

2
m . (46)

4.7. Reduction with X2 + αX4

From the symmetry vector X2 + αX4 it follows the similarity transformation u = u(t),
h = h(t) and B = αx + b(t). Hence, the similarity solution is written

u(t) = u0 , h(t) = h0 , b(t) = b0 − αgt , (47)

or
u(t) = u(t) , h(t) = h0 , b(t) = b0 . (48)

4.8. Reduction with X3 + αX4

Reduction with respect to the invariant functions provided by the Lie symmetry vector
field X3 + αX4 provides

K(χ)
du
dχ

= gα(u− χ), (49)
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K(χ)
dh
dχ

= gαh, (50)

K(χ)
db
dχ

= a
(
(χ− u)2 − gh

)
, (51)

in which
u = u(χ) , h = h(χ) , B = α ln t + b(χ) , χ =

x
t

, (52)

and function K(χ) is

K(χ) = χ
(
(χ− u)2 − gh

)
− ζgum−1(χ− u). (53)

4.9. Reduction with X1 + αX2 + βX4

We proceed by considering the vector field X1 + αX2 + βX4. We determine the invari-
ant functions u = u(σ) , h = h(σ), B = βt + b(σ) where σ = x− αt.

Hence, the SVE system under the application of the invariants reads

K̄(σ)
du
dσ

= βg(u− α) (54)

K̄(σ)
dh
dσ

= βgh (55)

K̄(σ)
db
dσ

= β
(
(a− u)2 − gh

)
(56)

where now
K̄(σ) = α

(
(α− u)2 − gu

)
− ζgum−1(α− u). (57)

We can define the new independent variable Σ, dσ = K̄(Σ)dΣ, such that the reduced
SVE system to be

du
dΣ

= βg(u− α) (58)

dh
dΣ

= βgh (59)

db
dΣ

= β
(
(a− u)2 − gh

)
(60)

from where we infer the closed-form solution

u(Σ) = α + u0eβgΣ , h(Σ) = h0eβgΣ , (61)

and

b(Σ) =
(u0)

2

2g
e2βgΣ − h0eβgΣ + b0 . (62)

4.10. Reduction with X5

For m = 3 and the symmetry vector X5 provides the similarity transformation
u = U(x)t−1, h = H(x)t−2 and B = b(x)t−2.

Thus, we replace it in the SVE system and we find the following set of ordinary
differential equations

d
dx

(uh)− 2h = 0, (63)

d
dx

(
HU2 +

1
2

gH2
)
+ gH

db
dx
− 3UH = 0 , (64)

ζU2 dU
dx
− 2b = 0. (65)
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or equivalently
dU
dX

=
2
ζ

, (66)

bU
dH
dX

= −2
ζ

H
(

b− ζU2
)

, (67)

bU
db
dX

=
1
gζ

(
ζU4 − 2

(
bU2 − 2gH

(
b− ζU2

)))
. (68)

where dX = bU−2dx. The latter system can be reduced to the following Abel equation

0 =
d

dX H+
3

8ζg
X
(

3gζ2X + 4gζ − 3
)
H3 − 1

8ζg

(
8ζg + 21ζg2X − 30

)
H2

− 1
2ζgX

(
4ζ2gX 2 + 2ζg− 7

)
H− ζ2gX − 2

2ζgX , (69)

where now

X =
H
X2 , H =

2X2

dH
dX X− 2H

(70)

and U(X) = 2
ζ X and b(X) = 8HX2

ζ( dH
dX X + 2H)

.

A closed form solution of the later system

U(X) =
2
ζ

X , b(X) =
4

3ζ
X2 , H(X) = −4gζ − 3

3gζ2 X2. (71)

4.11. Reduction with X2 + αX5

From the vector field X2 + αX5 we derive the invariant functions u = U(ω)t−1,
h = H(ω)t−2 and B = B(ω)t−2 with ω = x− 1

α ln t.
Thus, the reduced system reads

K̂(ω)
dU
dω

= α(U(αU − 1) + 2αg(αbU − H − b)) , (72)

K̂(ω)
dH
dω

= αH
(

2
(

1 + gα2b
)
− αU(2αgζU + 1)

)
, (73)

− 1
α

K̂(ω)
db
dω

= 2αbU(αU − 2)− 2α2gbH + 2b

+αζ(U(αU − 1)− 2αgH) , (74)

with
K̂(ω) = αU(αU − 2)− α2gH + 1 + α2ζgU2(αU − 1) .

4.12. Reduction with X3 + αX5

Finally, from the symmetry vector X3 + αX5 we find u = U(λ)t−
α

1+α , h = H(λ)t−
2α

1+α

and B = b(λ)t−
2α

1+α , with λ = xt−
α

1+α .
The reduced SVE system reads

−
(

λ
dH
dλ

+ 2αH
)
+ (1 + α)

d
dλ

(UH) = 0 (75)

−
(

λ
d

dλ
(UH) + 2α(UH)

)
+ (1 + α)

d
dx

(
HU2 +

1
2

gH2
)
+ gH

db
dλ

= 0 , (76)

−
(

λ
db
dλ

+ 2αb
)
+ ζ(1 + α)U2 dU

dλ
= 0 (77)
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For α = −1 we end up with the similarity transformation u = xU(t), h = x2H(t) and
B = x2B(t) where the reduced SVE system admits the closed-form solutions

U(λ) =
2
3

t−1 , H(λ) =
4

27
ζt−2 , b =

3− 4gζ

27g
t−2 , (78)

and
U(λ) = U0t−1 , H(λ) =

ζ

2
(U0)

3t−2 , b = 0 . (79)

5. Conclusions

In this work we investigated the algebraic properties of the SVE system with a power-
law sediment flux Q(t, x) ' um, m ≥ 1 [38]. Specifically we solved the Lie symmetry
conditions for the SVE model where we found that the SVE system admits four symmetry
vectors for an arbitrary value of the power index m, which forms the A3,3 ⊗ A1 Lie algebra.
However, in the special case where m = 3, the SVE system admits a fifth Lie point symmetry.
In this case, the admitted symmetry vectors form the A3,3 ⊗s A2,1 Lie algebra.

Furthermore, for the admitted Lie symmetries, we calculated the adjoint representa-
tion and its invariants. We used these results in order to determine the one-dimensional
optimal system. The latter is necessary in order to perform a complete classification of the
independent similarity transformations. Indeed, for all the elements of the one-dimensional
system we determined the invariant functions which are used to reduce the SVE model
from a system of hyperbolic partial differential equations into a system of ordinary dif-
ferential equations. New exact closed-form solutions derived which have not found be-
fore in the literature. These solutions can be related with numerical results presented in
previous studies.

However, what we have not discussed is the problem of the initial and boundary
conditions for the SVE model. It is true that for a given initial and value problem not all the
similarity transformations can be applied. Thus, if we assume the initial and boundary
problem with initial conditions sα

(
yA) = 0 and boundary constraints Cα

(
yA, u, h, B

)
= 0 ,

then the application of similarity transformation given by symmetry vector X for the dif-
ferential equation H

(
yA, u, u,A, h, h,A, B, B,A

)
= 0, provides a reduced system, a similarity

solution which solves the initial value problem if and only if sα

(
yA) and Cα

(
yA, u, h, B

)
are also invariant under the action of the symmetry vector X, that is, X

(
sα

(
yA)) = 0 and

X
(
Cα

(
yA, u, h, B

))
= 0 [43].

With the application of these two conditions, we are able to determine the initial
and boundary value problem for each element of the one-dimensional optimal system.
We present some of the initial and boundary conditions. For arbitrary value of the
power index m, and for the symmetry vector X1, the initial and boundary conditions
which provide a static solution are sa(x) = 0, Cα(x, u, h, B) = 0. Vector field X2 gives
sa(t) = 0, Cα(t, u, h, B) = 0. For the Lie symmetry vector X3, we calculate sα

( x
t
)
= 0,

Cα

( x
t , u, h, B

)
= 0. Similarly for the X1 + αX2 it follows sα(x− αt) = 0, Cα(x− αt, u, h, B) = 0.

In a similar way the initial value problem for the rest of the elements of the one-dimensional
optimal system can be constructed with the use of the Lie invariant functions.

This work contributes to the application of the Lie symmetries in fluid dynamics and
specifically in shallow-water systems. Inspired by the Ovsiannikov classification scheme [44],
in a future work we plan to perform a complete classification for the functional form of the
sediment flux Q(t, x) = Q(u(t, x), h(t, x)) where the SVE models admit Lie symmetries as
able to construct new conservation laws for the SVE models which will be useful for the
numerical analysis of the models.
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