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Abstract: Many aspects of the asymmetric organ system are controlled by the symmetry model (R&L)
of the disease-causing organism pathway, but sensitive matters like somites and limb buds need to
be shielded from its influence. Because symmetric and asymmetric structures develop from similar
or nearby matters and utilize many of the same signaling pathways, attaining symmetry is made
more difficult. On this note, we aim to generalize some important measurements in view of the
2D-quantum calculus (q-calculus, q-analogues or q-disease), including the dimensional of fractals
and Tsallis entropy (2D-quantum Tsallis entropy (2D-QTE)). The process is based on producing a
generalization of the maximum value of the Tsallis entropy in view of the quantum calculus. Then
by considering the maximum 2D-QTE, we design a discrete system. As an application, by using
the 2D-QTE, we depict a discrete dynamic system that is afflicted with a disease-causing organism
(DCO). We look at the system’s positive and maximum solutions. Studies are done on equilibrium
and stability. We will also develop a novel design for the fundamental reproductive ratio based on
the 2D-QTE.

Keywords: quantum calculus; fractal; Tsallis entropy; discrete dynamic system; equilibrium point

1. Introduction

The history of quantum calculus, often referred to as the q-derivative, Jackson deriva-
tive, or q-disease, and dating back three centuries to the works of Bernoulli and Euler, is
one of the most challenging math topics to grasp [1]. The q-derivative actions are now de-
veloping swiftly due to their versatility in fields like mathematics, mechanics, and physics.
Quantum mechanics, analytic number theory, special functions theory of finite differences,
Bernoulli and Euler polynomials, combinatory, entropy definition, information theory, the
theory of computer science, computational studies, image processing, chemical process-
ing, data sciences, umbral derivative, Sobolev fractional norms, operator principle, and
more recently, the idea of geometric functions theory, all benefit from the wide variety of
applications of q-derivative (see [2–5]).

For a very long time, discrete dynamic systems of DCO were the subject of intense
discussion because they were successful at describing the process of disease dissemination
(see [6]). The classic DCO was provided in the prior twenty centuries [7]. Following that, a
huge number of publications on DCO [8–10] were established. Overall, DCOs are thought
to be homogeneously mixed, which means that the same information is spread to those who
are susceptible. However, there are several systems of populations in humanoid society,
and linking between individuals is not always the same [11]. The fundamental reproductive
ratio [12] is used to study the stability and convergence of the structures. Depending on
the system and circumstances of the solution, this ratio is expressed in several formulas.
We propose novel formalization of this ratio based on the entropy idea in our argument.
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Pastor–Satorras and Vespignani [13] developed different studies of epidemics and
vaccination in scale-free networks. Colizza et al. [14] proposed a dynamic system of response-
dispersion procedures and met inhabitants’ simulations in heterogeneous networks. Kanget
et al. [15] investigated the diffusion dynamics of a model with a delay on scale-free networks.
Łukasz and Toyoizumi [16] analyzed the infection curvatures on human networks, which
indicated that they are linear only in the vicinity of the critical point. Bae and Lee investigated
the DCO epidemics on self-motivated network models with impermanent connection
deactivation control structures [17].

With regard to the 2D-quantum calculus, which includes the dimension of fractals and
2D-QTE, we intend to specify certain relevant measures in this annotation. As an example,
we illustrate a discrete dynamic system with a DCO utilizing the 2D-QTE. We consider
the system’s best and most ideal options. Stability and equilibrium are studied. We will
correspondingly enhance a novel 2D-QTE-based model for the basic reproductive ratio.

2. Methodology
2.1. Quantum Calculus

We start with the following definition. Jackson was the first to use the q-derivative [1]
as follows: for q ∈ (0, 1), a real interval, where 0 ∈ I, and a function ϕ : I → R, the
quantum derivative is given by the difference formula

Θq[ϑ](χ) =
ϑ(qχ)− ϑ(χ)

χ(q− 1)
, χ 6= 0, Θq[ϑ](0) = ϑ′(0).

Meanwhile, the h−derivative is formulated by the structure [18]

Σh[σ](χ) =
σ(χ + h)− σ(χ)

h
, χ 6= 0, h > 0.

In [19], Hahn proposed a difference operator as a method for building orthogonal
polynomial families. Jackson’s q-difference operator and the forward difference operator
are combined in Hahn’s quantum difference operator (in the limit)

∆q,ω [ f ](χ) =
f (qχ + ω)− f (χ)

χ(q− 1) + ω
, χ 6= ω0 :=

ω

1− q
.

More generalizations of two dimensional quantum calculus are given by Chakrabarti
and Jagannathan [20]

Dq,ω [ f ](χ) =
f (qχ)− f (ωχ)

χ(q−ω)

where
[n]q,ω =

qn −ωn

q−ω
, (q 6= ω).

Note that when ω = 1, the quantum number reduces to the Jackson definition

[n]q =
qn − 1
q− 1

, q ∈ (0, 1).

Based on the two-dimensional quantum structure, we shall generalize the definition
of Tsallis’ entropy to obtain 2D-QTE and the fractal dimension formula.

2.2. Quantum Entropy

The Rudolf Clausius proposed entropy function is interpreted as statistical entropy by
using probability theory in conventional statistical methods. The efforts of physicist Ludwig
Boltzmann in the 19th century created the statistical entropy viewpoint. Tsallis extended
this entropy to introduce the generalized fractional entropy, which is as follows [21]: let
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{ρi} be a discrete set of probabilities achieving the sum ∑n
i ρi = 1, and τ any real number,

and the Tsallis entropy can be realized by the structure

>τ(ρi) =
1

τ − 1

(
1−

n

∑
i

ρτ
i

)
, τ 6= 1

=

 1

τ(1− 1
τ
)

(
1−

n

∑
i

ρτ
i

)
=

1
τ

1−∑n
i ρτ

i

1− 1
τ

.

In view of [22], the maximum value determining when each micro-state is equiprobable
ρi = 1/ω; therefore

>τ(ρi)
max =

1−ω1−τ

τ − 1

Now the inequality 1/τ ≥ ω and the solvability of the inequality ω1−τ − ωτ ≥ 0
implies that

>τ(ω)max =
1
τ

(
1−ωτ

1−ω

)
.

Consequently, by considering the quantum discussion, we receive the 2D-QTE

[>τ ]q,ω =
1
τ

(
qτ −ωτ

q−ω

)
(1)

=
1
τ
[τ]q,ω, q 6= ω, ω < q < 1.

In applications, the value of ω is the total sum of the probability of the sample set
such that q > ω. Note that Equation (1) presents the maximum value of the Tsallis entropy
in quantum calculus. The maximum values of Tsallis entropy is given in [22]. Moreover,
Machado [23,24] proposed brand-new entropy formulations that were motivated by the
behavior of fractional calculus [25]. Both common probability distributions and data
series are used to explore the effects of the generalized fractional entropy. In addition,
the researchers in [26] presented a generalized one-dimensional q-entropy utilizing the
quantum deformed calculus.

2.3. 2D-Quantum Discrete System

In this part, we suggest the discrete system of the disease-causing organism (DCO) by
using the 2D-quantum discrete operator. The transmission of the virus from the afflicted to
the afflicted is governed by a number of factors. Additionally, illness dynamical systems
can be studied under different rules for a single distinct individual, a small group of
individuals, and a group of individuals as a whole. Depending on the complexity of
the provided documents, many representations are chosen. Processors that produce the
numbers and dispersion patterns of illnesses suggested systems in their modern incarnation
(f.r. one can see [27–30]).

The DCO model is presented with N members and all of them are separated into n
associations by their connections ı(ı = 1, 2, . . . , n). Thus, it has N = ∑n

ı=1 Nı, where Nı
indicates the accumulated number of the members with sing ı. It is assumed that every
member has two sings, the infected (F) and the susceptible (P). The infected model may
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enhance a vulnerable member with retrieval ratio $, and the susceptible member is infected
with conveyance ratio ρ. Thus, we arrive at the equality

Nı(χ) = Pı(χ) + Fı(χ)

and the discrete system

Pı(qχ + ω) = Pı(χ)
(

1− ρıU [>τ ]q,ω(Fı(χ))
)
+ $U Fı(χ)

Fı(qχ + ω) = Fı(χ)
(

1− $U
)
+ ρU Pı(χ) [>τ ]q,ω(Fı(χ)),

(2)

(
0 ≤ Pı(0) ≤ Nı, 0 ≤ Fı(0) ≤ Nı

)
where [>τ ]q,ω(Fı(χ)) is the 2D-QTE created by the likelihood that any joint that already
exists points to an infected node, where U denotes the time-step measure. It is a value
showing that the continuous DCO model can recognize the scheme (2) and that the equi-
librium points of the structure (2) are identical to those of the continuous equivalent.
Assume that

P(χ) =
n

∑
ı=1

Pı(χ), and F(χ) =
n

∑
ı=1

Fı(χ).

Then system (2) has the formula

P(qχ + ω) = P(χ)
(

1− ρıU [>τ ]q,ω(F(χ))
)
+ $U F(χ)

F(qχ + ω) = F(χ)
(

1− $U
)
+ ρU P(χ) [>τ ]q,ω(F(χ)),

(3)

(
0 ≤ P(0) ≤ N, 0 ≤ F(0) ≤ N, χ = 0, 1, 2, . . .

)
.

To roughly equal the entropy model, we have

P(qχ + ω) = P(χ)− ρıU Ψ
(
[>τ ]q,ω(F(χ), [>τ ]q,ω(P(χ)

)
+ $U F(χ)

F(qχ + ω) = F(χ)
(

1− $U
)
+ ρU Ψ

(
[>τ ]q,ω(F(χ), [>τ ]q,ω(P(χ)

)
,

(4)

where the likelihood (probability) that every particular connect leads to an infected node is
represented by the function F

[>τ ]q,ω(F(χ) =
1
τ

(
qτ −ωτ

F
q−ωF

)
, ωF = 1/F;

similarly, for P, where

[>τ ]q,ω(P(χ) =
1
τ

(
qτ −ωτ

P
q−ωP

)
, ωP = 1/P

and
Ψ
(
[>τ ]q,ω(F(χ), [>τ ]q,ω(P(χ)

)
= [>τ ]q,ω(F(χ))× [>τ ]q,ω(P(χ)).

Note that when q, ω → 1−1, we obtain the model in [12], as follows:

P(χ + 1) = P(χ)− ρıU Ψ
(
[>τ ]1,1(F(χ), [>τ ]1,1(P(χ)

)
+ $U F(χ)

F(χ + 1) = F(χ)
(

1− $U
)
+ ρU Ψ

(
[>τ ]1,1(F(χ), [>τ ]1,1(P(χ)

)
,

(5)
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It is well known that the entropy-based structure of the function Ψ describes the
interaction of susceptible and infected individuals in more generic terms. Entropy is an
effective tool for analyzing probability distributions of a system’s potential formal variables
and, consequently, the information that system may hold. However, important details
can be structured in time-based dynamics as well, a feature that is frequently overlooked.
To find spatial structures and processes, the idea of planning entropy due to non-linear
designs is used. Traditionally, linear spatial processes have been assumed, typically in
terms of a linear autoregressive or heartbreaking average mode. Furthermore, potential
spatial dynamics will demonstrate nonlinear types in a manner akin to time-based systems.
Science is increasingly documenting the capabilities of nonlinear systems as the limitations
of equilibrium representations in explaining real-world phenomena become more apparent.
As a result, the benefit to scientific growth research is rising.

We continue to draw the conclusion that the Equation (4) has a solution.

Proposition 1. Consider the model (4). Then it admits a set of bounded nonnegative solutions
whenever $U ∈ (0, 1) for all τ > 1.

Proof. System (4) satisfies the following inequality:

F(1) = F(0)
(

1− $U
)
+ ρıU Ψ

(
[>τ ]q,ω(F(0), [>τ ]q,ω(P(0)

)
≤ N(1) + ρıU [>τ ]q,ω(F)× [>τ ]q,ω(P)

≤ N(1) +
ρıU

(
[τ]q,ω

)2

τ2 .

By letting τ → ∞, we have F(1) is positive and bounded by N. Hence, by induction, we
confirm that 0 ≤ F(χ) ≤ N for all χ = 0, 1, 2, . . . . The above conclusion together with the
fact P(0) = 0, implies that P(χ) ≤ N for all χ = 0, 1, 2, . . . . In addition, because $U ∈ (0, 1)
then P(χ)→ $UF(χ) ≥ 0. We proved that model (4) admits a set of bounded nonnegative
solutions.

3. Stability of DCO

In this part, we study the stability of DCO (2). Replacing Fı(χ) = Nı(χ)− Pı(χ) in the
first equation of model (2), we get

Pı(qχ + ω) = Pı(χ)
(

1− ρıU [>τ ]q,ω(Fı(χ))
)
+ $U (Nı − Pı(χ))

Fı(qχ + ω) = Fı(χ)
(

1− $U
)
+ ρU Pı(t) [>τ ]q,ω(Fı(χ)),

(6)

which is equivalent to the following system:

Pı(qχ + ω) = Pı(χ)
(

1− $U − ρıU [>τ ]q,ω(Fı(χ))
)
+ $U Nı(χ)

Fı(qχ + ω) = Fı(χ)
(

1− $U
)
+ ρU Pı(t) [>τ ]q,ω(Fı(t)).

(7)

The disease-free equilibrium of DCO (7) can be calculated in view of the next formula-
tion,

Υ0(P1(0), . . . , Pn(0), F1(0), . . . , Fn(0)) = (N1, . . . , Nn, 0, . . . , 0).

Thus, the linearization matrix form of [31] on the model (7) at the point Υ0 is given,
as follows:

Π =

(
p + ` 0
−p `

)
2n×2n

, (8)
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where p indicates the vector of new infections and ` presents the vector of all other transi-
tions containing disease-connected deaths. Note that they are nonnegative such that p + `
is irreducible and Π is the Jacobi matrix at Υ0. Here, we suppose that this point is singular.
We inform the following matrix:

pq,ω =

 ρUN1[>τ ]q,ω . . . ρUnN1[>τ ]q,ω
. . .

ρUNn n[>τ ]q,ω . . . ρUNnn2[>τ ]q,ω


n×n

,

and

` =

1− $U 0 . . . 0
. . .

0 . . . 0 1− $U


n×n

.

Consequently, model (7) can be approximated by

∆(qχ + ω) ≈ Π∆(χ), ∆(χ) = (P(χ), F(χ)), χ = 0, 1, 2, . . . .

Because the proposed system is solely designed for diseased and susceptible indi-
viduals, we used the greatest value of 2D-QTE in it. The eliminated cases <(χ) were not
included (death and recovery). The 2D-QTE can be used to define the following variable
(see [32]):

<(χ) = [>τ ]q,ω(F(χ)).

It should be noted that 2D-QTE is significantly correlated with the number of indi-
viduals N and groups n, (1 ≤ n ≤ N); therefore one should anticipate the DCO model
conclusion to have non-linear incidence when n = N. Moreover, we can record that when
q→ 1, we obtain the stability of the system [12]

p1,ω =

 ρUN1[>τ ]1,ω . . . ρUnN1[>τ ]1,ω
. . .

ρUNn n[>τ ]1,ω . . . ρUNnn2[>τ ]1,ω


n×n

,

and

` =

1− $U 0 . . . 0
. . .

0 . . . 0 1− $U


n×n

.

The developers of [33] recently presented a q-statistical functional configuration that
operates to acceptably characterize the information currently available for all areas. Com-
putations of those peaks’ dates and elevations in severely impacted nations are expected
to occur unless well-planned interventions, vaccinations, or useful adjustments to the
established epidemiological methodologies materialize.

3.1. 2D-Quantum Reproductive Ratio

The predicted ratio of cases openly created by one situation in a locality where all
people are exposed to infection can be used to explain the elementary reproductive ratio
(ð0). Its name in mathematics is the spectral radius of the matrix p(F− `)− 1 (the major
absolute amount of the eigenvalues).

There are numerous more descriptions and formulations that can accurately explain
the circumstance. In order to achieve stability, this ratio is crucial. Much research has
demonstrated that if ð0 > 1, an unstable condition is indicated, and if ð0 < 1, the situation
is asymptotically stable, whereas if ð0 = 1, indicates stability but nothing asymptotic [31].
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Investigators recently proposed the situation casualty rate for the Corona virus (the aim is
to reduce this ratio) [34]:

R(χ) =
D(χ)

F(χ)
, χ = 0, 1, 2, . . . ,

where D designs the total record of the death. For instance, if we have the following data,
D = 6 and F = 130, then the ration is 1%. At the same time, if 130 of the 600 total susceptible
individuals are noted, then

RN(χ) =
D(χ)

F(χ) + P(χ)
=

6
600

= 1%.

The goal is to place the person in an isolated position and continuously clean their
surroundings in order to lower the rate ð0 or R. We recommend including the entropy
assessment for this rate in our discussion. The authors of [35] used the probability of the
survival function S to formulate ð0 as follows (for discrete data):

ð0 =
F(χ)× S(χ)

N(χ)
, χ = 0, 1, 2, . . . N(χ) = F(χ) + S(χ).

Consider the following data: F = 130, D = 6 and N = 600, and we have

ð0 =
130× 0.783

600
= 17%.

The concept of the survival function’s probability is inappropriate for the corona virus.
Consequently, based on our DCO model, we advise using the 2D-QTEQ [>τ ]q,ω as follows:

(ð0)
τ
q,ω =

F(χ)× [>τ ]q,ω(S(χ))
N(χ)

, χ = 0, 1, 2, . . . τ 6= 1.

The stability of the system can be measured by the minimization of the ratio (ð0)
τ
q,ω . In

view of our example, we check the ratio for the value 0.783, which represents the amount
of ω. Consequently, we obtain the following table for the 2D-QTE and the ratio (ð0)

τ
q,ω for

different values of τ > 1. Table 1 indicates some values of τ and the ratio (ð0)
τ
q,0.783. Clearly

increasing the value of τ implies decreasing the ratio (ð0)
τ
q,0.783. That is, the suggested

system is going well and healthy for analysis. As a conclusion, the system is stable whenever
τ > 1, whereas for τ < 1, the system is unstable. The same result is shown in [12]. Figures
refers the x-axis for q and the y-axis for ð0. We get the following conclusion from the
foregoing. Proposition 1 can be expanded to incorporate the stability as follows:

Proposition 2. Assume that the discreet model of DCO (4). If

$U ∈ (0, 1), τ > 1 (9)

then all solutions of (4) are bounded non-negative and stable achieving the following ratio

(ð0)
τ
q,ω =

F(χ)× [>τ ]q,ω(S(χ))
N(χ)

, χ = 0, 1, 2, . . . τ 6= 1. (10)

Proof. A direct application of Proposition 1.
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Remark 1.

• The survival function, also known as the reliability function, is one of the methods used to
formulate and display survival statistics. It provides the likelihood that a patient, plan, or
other object of concern would survive longer than any given time. It gives the likelihood that a
subject will live for more time than χ.

• A function like the exponential distribution may be able to accurately represent the survival
times distribution. There are many distributions frequently used in survival analysis. These
distributions are presented by parameters [36].

• Entropy is changed from a measure of information to a statistical tool by the entropy optimiza-
tion principle, which also incorporates the 2D-QTE. It is safe to use this knowledge to define
CFR because the greater maximum entropy belongs to fractional Tsallis entropy [37].

Table 1. The ratio (ð0)
τ
q,0.783.

τ minð0 Figure

2 0.4

3 0.21

4 0.12

3.2. 2D-Fractal Dimensions

Finally, the formal for a real number considers the extended structure (multi-dimensions
fractal ) (MDF) x ∈ R \ {1} (see [38–40])

Λ[(x) =
1

1− x
lim
[→0

(
log(Y(x, [))

log(1/[)

)
, (11)

where

Y(x, [) =
N([)

∑
k=1

ρx
k .

Verify that every MDF in the aforementioned list satisfies the inequality below, which
is a very helpful pattern for computing fractal dimensions in practice,

Λ0 ≥ Λ1 ≥, · · · ,≥ ΛN .
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According to information theory (also known as entropy theory) and using the item’s
values, the box-totaling dimension is determined as follows: [41,42]

Λ[(x) =
1

1− x
lim
[→0

(
log(Y(x, [))

log(1/[)

)
=

1
1− x

lim
[→0

(
log(T(x, [))

log(1/[)

)
, (12)

where T stands for any entropy type.
The general dynamical, topological, and geometric characteristics of a given arrange-

ment, as well as the higher order extensions Λ[(x), were each explained by using one
of these MDFs. However, it is essential to comprehend how these assets change across
different dimensions [43]. In this study, we suggest to improve (11) by utilizing the 2D-QTE,
as follows:

Λq,τ
[,ω(x) =

1
1− x

lim
[→0

(
log([>τ ]q,ω)

log(1/[)

)
, (13)

where

[>τ ]q,ω(x, [) =
1
τ

(
qτ −ωτ

x
q−ωx

)
,

with ωx = 1/ρx
N([)

.

4. Conclusions

The study mentioned above demonstrated how numerous concepts, such as fractal di-
mensions and Tsallis-type entropy, have been generalized when utilizing quantum calculus
in two dimensions. We used the suggested 2D-QTE in the DCO model’s discrete dynamic
system. Furthermore, we generalized the basic reproductive ratio. Under a straightforward
set of circumstances, we investigated the system’s existence and stability. Such a method
will pave the way for numerous applications that use entropy as a measurement, including
chaotic studies, image processing, and information theory.

The boundaries of many scientific disciplines, from computer science to mathematics
and statistics to physics, chemistry, and engineering, have all paid close attention to quan-
tum computation and quantum information. Data science integrates statistical techniques,
computer algorithms, and information from domain sciences to draw knowledge and
insights from large amounts of data and to address challenging real-world issues. Although
it is well-known that quantum computation has the potential to revolutionize data science,
much less has been said about the potential of data science to advance quantum compu-
tation. Yet because the stochasticity of quantum physics renders quantum computation
random, data science can play an important role in the development of quantum computa-
tion and quantum information. This article gives an overview of quantum computation
and promotes interplay between quantum science and data science. Overall, it advocates
for the development of quantum data science for advancing quantum computation and
quantum information.
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16. Kuśmierz, Ł.; Toyoizumi, T. Infection curves on small-world networks are linear only in the vicinity of the critical point. Proc. Natl.

Acad. Sci. USA 2021, 118, e2024297118. [CrossRef] [PubMed]
17. Bae, H.J.; Lee, S. Investigation of SIS epidemics on dynamic network models with temporary link deactivation control schemes.

Math. Biosci. Eng. 2022, 19, 6317–6330. [CrossRef]
18. Boole, G. A Treatise on the Calculus of Difference Equations; Cambridge University Press: Cambridge, UK, 1860; Volume 2, p. 17.
19. Wolfgang, H. Über Orthogonalpolynome, die q-Differenzengleichungen genügen. Math. Nachrichten 1949, 2, 4–34.
20. Chakrabarti, R.; Jagannathan, R. A (p, q)-oscillator realization of two-parameter quantum algebras. J. Phys. Math. Gen. 1991, 24,

L711. [CrossRef]
21. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [CrossRef]
22. Ramírez-Reyes, A.; Hernández-Montoya, A.R.; Herrera-Corral, G.; Domínguez-Jiménez, I. Determining the entropic index q of

Tsallis entropy in images through redundancy. Entropy 2016, 18, 299. [CrossRef]
23. Machado, J.T. Fractional order generalized information. Entropy 2014, 16, 2350–2361. [CrossRef]
24. Machado, J.T. Fractional Renyi entropy. Eur. Phys. J. Plus 2019, 134, 1–10. [CrossRef]
25. Ibrahim, R.W.; Moghaddasi, Z.; Jalab, H.A.; Noor, R.M. Fractional differential texture descriptors based on the Machado entropy

for image splicing detection. Entropy 2015, 17, 4775–4785. [CrossRef]
26. Hasan, A.M.; Al-Jawad, M.M.; Jalab, H.A.; Shaiba, H.; Ibrahim, R.W.; AL-Shamasneh, A.A.R. Classification of Covid-19 Coron-

avirus, Pneumonia and Healthy Lungs in CT Scans Using Q-Deformed Entropy and Deep Learning Features. Entropy 2020, 22, 517.
[CrossRef] [PubMed]

27. Ibrahim, R.W. The fractional differential polynomial neural network for approximation of functions. Entropy 2013, 15, 4188–4198.
[CrossRef]

28. Ibrahim, R.W. Utility function for intelligent access web selection using the normalized fuzzy fractional entropy. Soft Comput. 2020,
1–8. [CrossRef]

29. Jalab, H.A.; Subramaniam, T.; Ibrahim, R.W.; Kahtan, H.; Noor, N.F.M. New Texture Descriptor Based on Modified Fractional
Entropy for Digital Image Splicing Forgery Detection. Entropy 2019, 21, 371. [CrossRef]

30. Ibrahim, W.R.; Darus, M. Analytic study of complex fractional Tsallis’ entropy with applications in CNNs. Entropy 2018, 20, 722.
[CrossRef] [PubMed]

31. Allen, L.J.S.; Van den Driessche, P. The basic reproduction number in some discrete-time epidemic models. J. Differ. Equ. Appl.
2008, 14, 1127–1147. [CrossRef]

32. Yong, T. Maximum entropy method for estimating the reproduction number: An investigation for COVID-19 in China. Phys. Rev.
E 2020, 102 , 03216.

33. Tsallis, C.; Tirnakli, U. Predicting COVID-19 peaks around the world. Front. Phys. 2020, 8, 217. [CrossRef]

http://doi.org/10.1017/S0080456800002751
http://dx.doi.org/10.32604/cmes.2022.018348
http://dx.doi.org/10.7717/peerj-cs.553
http://dx.doi.org/10.32604/iasc.2022.021954
http://dx.doi.org/10.3390/e21100958
http://dx.doi.org/10.1016/j.aml.2018.07.014
http://dx.doi.org/10.1142/S1793524518500675
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.3390/e22070769
http://www.ncbi.nlm.nih.gov/pubmed/33286541
http://dx.doi.org/10.1038/nphys560
http://dx.doi.org/10.1109/TNSE.2018.2860988
http://dx.doi.org/10.1073/pnas.2024297118
http://www.ncbi.nlm.nih.gov/pubmed/33637610
http://dx.doi.org/10.3934/mbe.2022295
http://dx.doi.org/10.1088/0305-4470/24/13/002
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.3390/e18080299
http://dx.doi.org/10.3390/e16042350
http://dx.doi.org/10.1140/epjp/i2019-12554-9
http://dx.doi.org/10.3390/e17074775
http://dx.doi.org/10.3390/e22050517
http://www.ncbi.nlm.nih.gov/pubmed/33286289
http://dx.doi.org/10.3390/e15104188
http://dx.doi.org/10.1007/s00500-020-04858-z
http://dx.doi.org/10.3390/e21040371
http://dx.doi.org/10.3390/e20100722
http://www.ncbi.nlm.nih.gov/pubmed/33265810
http://dx.doi.org/10.1080/10236190802332308
http://dx.doi.org/10.3389/fphy.2020.00217


Symmetry 2022, 14, 1677 11 of 11

34. Pennings, P. COVID19 in numbers- R0, the case fatality rate and why we need to flatten the curve.webm Date: 11 March 2020.
35. Heffernan, J.M.; Smith, R.J.; Wahl, L.M. Perspectives on the basic reproduction ratio. J. R. Soc. Interface 2005, 2, 281–293. [CrossRef]

[PubMed]
36. Dayi, H.; Huang, Q.; Gao, J. A new entropy optimization model for graduation of data in survival analysis. Entropy 2012, 14,

1306–1316.
37. Vijay, P.S.; Sivakumar, B.; Cui, H. Tsallis entropy theory for modeling in water engineering: A review. Entropy 2017, 19, 641.
38. Talu, S. Multifractal geometry in analysis and processing of digital retinal photographs for early diagnosis of human diabetic

macular edema. Curr. Eye Res. 2013, 38, 781–792. [CrossRef] [PubMed]
39. Ott, E. Chaos in Dynamical Systems; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1993; ISBN 978-0-521-43799-8.
40. Sam, Y.; Lakshminarayanan, V. Fractal Dimension and Retinal Pathology: A Meta-Analysis. Appl. Sci. 2021, 11, 2376.
41. Huang, F.; Dashtbozorg, B.; Zhang, J.; Bekkers, E.; Abbasi-Sureshjani, S.; Berendschot, T.T.J.M.; Ter Haar Romeny, B.M. Reliability

of using retinal vascular fractal dimension as a biomarker in the diabetic retinopathy detection. J. Ophthalmol. 2016, 2016, 6259047.
[CrossRef]

42. Renyi, A. On the dimension and entropy of probability distributions. Acta Math. Acad. Sci. Hung. 1959, 10, 193–215. [CrossRef]
43. Alberti, T.; Donner, R.V.; Vannitsem, S. Multiscale fractal dimension analysis of a reduced order model of coupled ocean-atmosphere

dynamics. Earth Syst. Dyn. Discuss. 2021, 12, 1–24. [CrossRef]

http://dx.doi.org/10.1098/rsif.2005.0042
http://www.ncbi.nlm.nih.gov/pubmed/16849186
http://dx.doi.org/10.3109/02713683.2013.779722
http://www.ncbi.nlm.nih.gov/pubmed/23537336
http://dx.doi.org/10.1155/2016/6259047
http://dx.doi.org/10.1007/BF02063299
http://dx.doi.org/10.5194/esd-12-837-2021

	Introduction
	Methodology
	Quantum Calculus 
	Quantum Entropy
	2D-Quantum Discrete System 

	Stability of DCO 
	2D-Quantum Reproductive Ratio
	2D-Fractal Dimensions 

	Conclusions
	References

