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Abstract: The main aim of this study is to define parametric kinds of λ-Array-type polynomials
by using q-trigonometric polynomials and to investigate some of their analytical properties and
applications. For this purpose, many formulas and relations for these polynomials, including
some implicit summation formulas, differentiation rules, and relations with the earlier polynomials
by utilizing some series manipulation method are derived. Additionally, as an application, the
zero values of q-Array-type polynomials are presented by the tables and multifarious graphical
representations for these zero values are drawn.
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1. Introduction

Recently, many authors [1–4] have introduced and constructed generating functions
for new families of special polynomials including two parametric kinds of polynomials,
such as Bernoulli, Euler, and Genocchi. They have given the fundamental properties of
these polynomials, and they have also established more identities and relations among
trigonometric functions with two parametric kinds of special polynomials by using gen-
erating functions. Special polynomials have important roles in several subjects, such as
mathematics, approximation theory, engineering, and theoretical physics. By applying
the partial derivative operator to these generating functions, some derivative formulas
and finite combinatorial sums involving the aforementioned polynomials and numbers
are obtained. In addition, these special polynomials allow the derivation of different use-
ful identities in a fairly straightforward way and help introduce new families of special
polynomials. The array-type polynomials can be seen in combinatorial mathematics and
play a crucial role in the principle and applications of arithmetic. Hence, a wide variety of
idea and combinatorics experts have extensively studied their residences and received a
series of exciting results (see [5–9]). By inspiring and motivating the above polynomials, in
this study, we propose defining a parametric type of λ-array-type polynomials by intro-
ducing the two specific q-exponential generating functions. In addition, we show many
formulations and family members for those polynomials, such as a few implicit summation
formulas, differentiation policies, and correlations with the earlier polynomials with the
aid of utilizing a collection manipulation approach.

The concern with q-calculus started in the 19th century due to its packages in various
fields such as mathematics, physics, and engineering. The definitions and notations of
q-calculus reviewed here are taken from [10,11].
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The q-analogue of the shifted factorial (α)ω is given by

(α; q)0 = 1, (α; q)ω =
ω−1

∏
γ=0

(1− qγα) ω ∈ N.

The q-analogue of a complex number α and of the factorial function is given by

[α]q =
1− qα

1− q
q ∈ C− {1}; α ∈ C,

[ω]q! =
ω

∏
γ=1

[γ]q = [1]q[2]q · · · [ω]q =
(q; q)ω

(1− q)ω
q 6= 1; ω ∈ N,

[0]q! = 1, q ∈ C; 0 < q < 1.

The Gauss q-binomial coefficient
(

ω
k

)
q

is given by

(
ω
γ

)
q
=

[ω]q!
[γ]q![ω− γ]q!

=
(q; q)ω

(q; q)γ(q; q)ω−γ
γ = 0, 1, · · · , ω.

The q-analogue of the function (x + y)ω
q is given by

(x + y)ω
q =

ω

∑
γ=0

(
ω
γ

)
q
qγ(γ−1)/2xω−γyγ ω ∈ N0. (1)

The q-analogues of exponential functions are given by

eq(x) =
∞

∑
ω=0

xω

[ω]q!
=

1
((1− q)x; q)∞

0 <| q |< 1; | x |<| 1− q |−1, (2)

Eq(x) =
∞

∑
ω=0

q(
ω
2 )

[ω]q!
xω = (−(1− q)x; q)∞ 0 <| q |< 1; x ∈ C. (3)

These two functions are related by the following equation (see [10–12]):

eq(x)Eq(−x) = 1.

Remark 1. It is not difficult to see that [10]

eq(x) =
1

((1− q)x; q)∞
, 0 <| q |< 1, | x |< 1

Eq(x) = (−(1− q)x; q)∞, 0 <| q |< 1.

Definition 1. Let x and y be two complex numbers and ω be a nonnegative integer. We define the
q-addition in the following way (see [13]):

(x⊕q y)ω =
γ

∑
γ

(
ω

γ

)
q
xγyω−γ. (4)

The q-derivative operator is defined by

Dq f (z) =
f (qz)− f (z)

qz− z
, 0 <| q |< 1,
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where Dq f (0) = f ′(0) provided that f is differentiable at x = 0.

The q-derivative fulfills the following product and quotient rules:

Dq,z( f (z)g(z)) = f (z)Dq,zg(z) + g(qz)Dq,z f (z), (5)

Dq,z

(
f (z)
g(z)

)
=

g(qz)Dq,z f (z)− f (qz)Dq,zg(z)
g(z)g(qz)

. (6)

Definition 2. The q-trigonometric functions are

sinq(x) =
eq(ix)− eq(−ix)

2i
, SINq(x) =

Eq(ix)− Eq(−ix)
2i

,

and

cosq(x) =
eq(ix) + eq(−ix)

2
, COSq(x) =

Eq(ix) + Eq(−ix)
2

,

where SINq(x) = sinq−1(x), COSq(x) = cosq−1(x).

Lemma 1. Let y ∈ R and i =
√
−1 ∈ C. Then, we have

(1)
Eq(ity) = COSq(ty) + iSINq(ty)

(2)
Eq(−ity) = COSq(ty)− iSINq(ty),

where SINq(x) = sinq−1(x), COSq(x) = cosq−1(x).

Lemma 2. Let y ∈ R and i =
√
−1 ∈ C. Then, we have

(1)
eq(tx)Eq(ity) = eq(t(x⊕ iy)q),

(2)
eq(tx)Eq(−ity) = eq(t(x	 iy)q).

The Apostol-type q-Bernoulli polynomials B(α)
ω,q(x; λ) of the order α, the Apostol-type q-

Euler polynomials E(α)
ω,q(x; λ) of the order α, and the Apostol-type q-Genocchi polynomials

G(α)
ω,q(x; λ) of the order α are defined as follows, respectively (see [14,15]):(

t
λeq(t)− 1

)α

ext =
∞

∑
ω=0

B(α)
ω,q(x; λ)

tω

[ω]q!
(| t + log λ |) < 2π, (7)

(
2

λeq(t) + 1

)α

ext =
∞

∑
ω=0

E(α)
ω,q(x; λ)

tω

[ω]q!
(| t + log λ |) < π, (8)

(
2t

λeq(t) + 1

)α

ext =
∞

∑
ω=0

G(α)
ω,q(x; λ)

tω

[ω]q!
(| t + log λ |< π), (9)

Clearly, we have

B(α)
ω,q(λ) = B(α)

ω,q(0; λ),E(α)
ω,q(λ) = E(α)

ω,q(0; λ),G(α)
n,q (λ) = G(α)

ω,q(0; λ). (10)

Kang and Ryoo [13] introduced the q-Bernoulli and q-Euler polynomials, defined by
the following respective equations:

t
eq(t)− 1

eq(xt)COSq(yt) =
∞

∑
j=0

Bj,q((x⊕ iy)q) +Bj((x	 iy)q)

2
tj

[j]q!
=

∞

∑
j=0

B(C)
j,q (x, y)

tj

[j]q!
, (11)
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t
eq(t)− 1

eq(xt)SINq(yt) =
∞

∑
j=0

Bj,q((x⊕ iy)q)−Bj,q((x	 iy)q)

2i
tj

[j]q!
=

∞

∑
j=0

B(S)
j,q (x, y)

tj

[j]q!
, (12)

and

2
eq(t) + 1

eq(xt)COSq(yt) =
∞

∑
j=0

Ej,q((x⊕ iy)q) +Ej,q((x	 iy)q)

2
tj

[j]q!
=

∞

∑
j=0

E(C)
j,q (x, y)

tj

[j]q!
, (13)

2
eq(t) + 1

eq(xt)SINq(yt) =
∞

∑
j=0

Ej((x⊕ iy)q)−Ej((x	 iy))q

2i
tj

[j]q!
=

∞

∑
j=0

E(S)
j,q (x, y)

tj

[j]q!
, (14)

Kang and Ryoo proved the following (see [13,16]):

eq(xt)COSq(yt) =
∞

∑
r=0

Cr,q(x, y)
tr

[r]q!
, (15)

and

eq(xt)SINq(yt) =
∞

∑
r=0

Sr,q(x, y)
tr

[r]q!
, (16)

where

Cr,q(x, y) =
[ r

2 ]

∑
j=0

(−1)j
(

r
2j

)
q
(−1)jq2j−1xr−2jy2j, (17)

and

Sr,q(x, y) =
[ r−1

2 ]

∑
j=0

(
r
2j + 1

)
q
(−1)jq(2j+1)jxr−2j−1y2j+1. (18)

For λ ∈ C, the generalized λ-Stirling numbers of the second kind Sn
m(λ) are given by the

following (see [17,18]):

(λet − 1)m

m!
=

∞

∑
ω=0

Sω
m(λ)

tω

ω!
m ∈ N0 = {0, 1, 2, · · · , }. (19)

Given that λ = 1, Equation (19) reduces to the Stirling numbers of the second kind as follows:

(et − 1)m

m!
=

∞

∑
ω=m

S2(ω, m)
tω

ω!
.

The λ-array-type polynomials Sn
m(x, λ) are defined by the following (see [6]):

(λet − 1)m

m!
ext =

∞

∑
ω=0

Sω
m(x, λ)

tω

ω!
. (20)

2. λ-Array-Type Polynomials of Complex Variables
In this section, we consider the q-Cosine and q-Sine λ-array-type polynomials of complex

variables and deduce some identities of these polynomials. First, we present the following definition:

(λeq(t)− 1)m

m!
eq(xt)Eq(ity) =

∞

∑
n=0

Sm,q
(
n, (x + iy)q, λ

) tn

[n]q!
. (21)

On the other hand, we suppose that

eq(xt)Eq(ity) = eq(xt)(COSq(yt) + iSINq(yt)). (22)

Thus, by Equations (21) and (22), we have

∞

∑
n=0

Sm,q
(
n, (x + iy)q, λ

) tn

[n]q!
=

(λeq(t)− 1)m

m!
eq(xt)Eq(ity)

=
(λeq(t)− 1)m

m!
eq(xt)(COSq(yz) + iSINq(yz)), (23)
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and
∞

∑
n=0

Sm,q
(
n, (x− iy)q, λ

) tn

[n]q!
=

(λet − 1)m

m!
eq(xt)Eq(−ity)

=
(λet − 1)m

m!
eq(xt)(COSq(yt)− iSINq(yt)). (24)

From Equations (23) and (24), we find

(λeq(t)− 1)m

m!
eq(xt)COSq(yt) =

∞

∑
n=0

(
Sm,q

(
n, (x⊕ iy)q, λ

)
+ Sm,q

(
n, (x	 iy)q, λ

)
2

)
tn

[n]q!
, (25)

and

(λet − 1)m

m!
eq(xt)SINq(yt) =

∞

∑
n=0

(
Sm,q

(
n, (x⊕ iy)q, λ

)
− Sm,q

(
n, (x	 iy)q, λ

)
2

)
tn

[n]q!
. (26)

Definition 3. Let n ≥ 0. We define two parametric kinds of q-Cosine λ-array-type polynomials S(c)m,q(n, x, y, λ)

and q-Sine λ-array-type polynomials S(s)m,q(n, x, y, λ), which for a nonnegative integer n are defined, respec-
tively, by

(λeq(t)− 1)m

m!
eq(xt)COSq(yt) =

∞

∑
n=0

S(c)m,q(n, x, y, λ)
tn

[n]q!
, (27)

and
(λeq(t)− 1)m

m!
eq(xt)SINq(yt) =

∞

∑
n=0

S(s)m,q(n, x, y, λ)
tn

[n]q!
, (28)

Note that S(c)m,q(n, 0, 0, λ) = Sm,q(n, λ), S(s)m,q(n, 0, 0, λ) = 0 (n ≥ 0).

From Equations (25)–(28), we have

S(c)m,q(n, x, y, λ) =
Sm,q

(
n, (x⊕ iy)q, λ

)
+ Sm,q

(
n, (x	 iy)q, λ

)
2

, (29)

S(s)m,q(n, x, y, λ) =
Sm,q

(
n, (x⊕ iy)q, λ

)
− Sm,q

(
n, (x	 iy)q, λ

)
2i

. (30)

Remark 2. For x = 0 in Equations (27) and (28), we obtain a new type of q-Cosine λ-array-type polynomial
S(c)m,q(n, y, λ) and q-Sine λ-array-type polynomial S(s)m,q(n, y, λ), respectively, as

(λet − 1)m

m!
COSq(yt) =

∞

∑
j=0

S(c)m,q(n, y, λ)
tn

[n]q!
, (31)

and
(λeq(t)− 1)m

m!
SINq(yt) =

∞

∑
n=0

S(s)m,q(n, y, λ)
tn

[n]q!
, (32)

It is clear that
S(c)m,q(n, 0, λ) = Sm,q(n, λ), S(s)m,q(n, 0, λ) = 0, (n ≥ 0).

Remark 3. Letting q → 1 in Definition 3, we find two parametric types of λ-array-type polynomials as
follows (see [6]):

(λet − 1)m

m!
extCOS(yt) =

∞

∑
n=0

S(c)m (n, x, y, λ)
tn

n!
,

and
(λet − 1)m

m!
extSIN(yt) =

∞

∑
n=0

S(s)m (n, x, y, λ)
tn

n!

Now, we start with some basic properties of these polynomials.
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Theorem 1. If we let n ≥ 0, then

S(c)m,q(n, y; u; λ) =
[ n

2 ]

∑
v=0

(
n + v
2v

)
q
(−1)vq(2v−1)vy2vSm,q(n− 2v, λ), (33)

and

S(s)m,q(n, λ) =
[ n−1

2 ]

∑
v=0

(
n + v
2v + 1

)
q
(−1)vq(2v+1)vy2v+1Sm,q(n− 2v− 1, λ). (34)

Proof. By Equations (31) and (32), we can derive the following equations:

∞

∑
n=0

S(c)m,q(n, y, λ)
tn

[n]q!
=

(λeq(t)− 1)m

m!
COSq(yt)

=
∞

∑
n=0

Sm,q(n, λ)
tn

[n]q!

∞

∑
v=0

(−1)vq(2v−1)vη2v tv

[2v]q!
.

=
∞

∑
n=0

 [ n
2 ]

∑
v=0

(
n + v
2v

)
q
(−1)vq(2v−1)vη2vSm,q(n− 2v, λ)

 tn

[n]q!
, (35)

and
∞

∑
n=0

S(s)m,q(n, y, λ)
tn

[n]q!
=

(λet − 1)m

m!
SINq(yt)

=
∞

∑
n=0

[ n−1
2 ]

∑
v=0

(
n
2v + 1

)
q
(−1)vq(2v+1)vy2v+1Sm,q(j− 2v− 1, λ)

 tn

[n]q!
. (36)

Therefore, by Equations (35) and (36), we find Equations (33) and (34).

Theorem 2. If we let n ≥ 0, then

Sm,q
(
n, (x⊕ iy)q, λ

)
=

n

∑
k=0

(
n
k

)
q
(x⊕ iy)k

qSm,q(n− k, λ)

=
n

∑
k=0

(
n
k

)
q
(iy)kSm,q(n− k, x, λ), (37)

and

Sm,q
(
n, (x	 iy)q, λ

)
=

n

∑
k0

(
n
k

)
q
(x	 iy)k

qSm,q(n− k, λ)

=
n

∑
k=0

(
n
k

)
q
(−1)k(iy)kSm,q(n− k, x, λ). (38)

Proof. By using Equations (23) and (24), we obtained Equations (37) and (38), so we omitted the
proof.

Theorem 3. If we let n ≥ 0, then

S(c)m,q(n, x, y, λ) =
n

∑
k=0

(
n
k

)
q
Sm,q(k, λ)Cn−k,q(x, y), (39)

and

S(s)m,q(n, x, y, λ) =
n

∑
k=0

(
n
k

)
q
Sm,q(k, λ)Sn−k,q(x, y). (40)

Proof. Consider the following:(
∞

∑
n=0

an
tn

n!

)(
∞

∑
k=0

bk
tk

k!

)
=

∞

∑
n=0

(
j

∑
k=0

an−kbk

)
tn

n!
.
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Now, we have

∞

∑
n=0

S(c)m,q(n, x, y, λ)
tn

[n]q!
=

(λeq(t)− 1)m

m!
eq(xt)COSq(yt)

=

(
∞

∑
k=0

Sm,q(k, λ)
tk

[k]q!

)(
∞

∑
n=0

Cn,q(x, y)
tn

[n]q!

)

=
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
q
Hm,q(k, λ)Cn−k,q(x, y)

)
tn

[n]q!
,

which proves Equation (39). The proof of Equation (40) is similar.

Theorem 4. If we let n ≥ 0, then

S(c)m,q(n, x + s, y, λ) =
n

∑
k=0

(
n
k

)
q
S(c)m,q(k, x, y, λ)rn−k, (41)

and

S(s)m,q(n, x, y, λ) =
n

∑
k=0

(
n
k

)
q
S(s)m,q(k, x, y, λ)rn−k. (42)

Proof. By changing x with x + r in Equation (27), we have

∞

∑
n=0

S(c)m,q(n, x + s, y, λ)
tn

[n]q!
=

(λeq(t)− 1)m

m!
eq(xt)COSq(yt)

=

(
∞

∑
n=0

S(c)m,q(n, x, y, λ)
tn

[n]q!

)(
∞

∑
k=0

rk tk

[k]q!

)

=
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
q
S(c)m,q(k, x, y, λ)rn−k

)
tn

[n]q!
,

which completes the proof for Equation (41). The result for Equation (42) can be proven in a
similar manner.

Theorem 5. If we let n ≥ 1, then

∂

∂x
S(c)m,q(n, x, y, λ) = [n]qS(c)m,q(n− 1, x, y, λ), (43)

∂

∂y
S(c)m,q(n, x, y, λ) = −[n]qS(s)m,q(n− 1, x, qy, λ), (44)

and
∂

∂x
S(s)m,q(n, x, y, λ) = [n]qS(s)m,q(n− 1, x, y, λ), (45)

∂

∂y
S(s)m,q(n, x, y, λ) = [n]qS(c)m,q(n− 1, x, qy, λ). (46)

Proof. Equation (27) yields

∞

∑
n=1

∂

∂x
S(c)m,q(n, x, y, λ)

tn

[n]q!
=

(λeq(t)− 1)m

m!
∂

∂x
eq(xt)COSq(yt) =

∞

∑
n=0

S(c)m,q(n, x, y, λ)
tn+1

[n]q!

=
∞

∑
n=1

S(c)m,q(n− 1, x, y, λ)
tn

[(n− 1)]q!
=

∞

∑
n=1

[n]qS(c)m,q(n− 1, x, y, λ)
tn

[n]q!
,

which proves Equation (43). Equations (44)–(46) can be similarly derived.

Theorem 6. If we let N ∈ N∗, then the following formula holds true:

S(c)m,q(2x, y, λ) =
n

∑
k=0

(
n
k

)
q
S(c)m,q(n, x, y, λ)xn−k, (47)
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and

S(s)m,q(2x, y, λ) =
n

∑
k=0

(
n
k

)
q
S(s)m,q(n, x, y, λ)xn−k. (48)

Proof. By using Definition 3, we can easily prove Equations (47) and (48). Therefore, we omitted
the proof.

Theorem 7. The following relation holds true:

S(c)m,q(n, x + 1, y, λ) = (m + 1)S(c)m,q(n, x + 1, y, λ) + S(c)m,q(n, x, y, λ), (49)

and
S(s)m,q(n, x + 1, y, λ) = (m + 1)S(s)m,q(n, x + 1, y, λ) + S(s)m,q(n, x, y, λ). (50)

Proof. By using Definition 3, we can easily obtain

λ
∞

∑
n=0

S(c)m,q(n, x + 1, y, λ)
tn

[n]q!
= λ

(λeq(t)− 1)m

m!
eq((x + 1)t)COSq(yt)

=
(λeq(t)− 1)m

m!
eq(xt)COSq(yt)

[
λeq(t)− 1 + 1

]
= (m + 1)

(λeq(t)− 1)m+1

(m + 1)!
eq(xt)Cosq(yt) +

(λeq(t)− 1)m

m!
eq(xt)COSq(yt)

= (m + 1)
∞

∑
n=0

S(c)m,q(n, x + 1, y, λ)
tn

[n]q!
+

∞

∑
n=0

S(c)m,q(n, x, y, λ)
tn

[n]q!
.

Comparing the coefficients of tn

[n]q ! on both sides of the last equality leads to the desired
identity in Equation (49). The relation in Equation (50) follows easily in a similar way.

Theorem 8. The following summation formulas are true:

n

∑
m=0

(
n
m

)
q
Cn−m,q(x, y) =

n

∑
k=0

(
n
k

)
q
B(m)

n−k,q(λ)S
(c)
m,q(k, x, y, λ), (51)

and
n

∑
m=0

(
n
m

)
q
Sn−m,q(x, y) =

n

∑
k=0

(
n
k

)
q
B(m)

n−k,q(λ)S
(s)
m,q(k, x, y, λ). (52)

Proof. Consider the following equality:(
t

λeq(t)− 1

)m (λeq(t)− 1)m

m!
eq(xt)COSq(yt) =

tm

m!
eq(xt)COSq(yt).

By making use of Equation (7) for x = 0, through Equations (7) and (27), we find that

∞

∑
n=0

B(m)
n,q (λ)

tn

[n]q!

∞

∑
k=0

S(c)
m,q(k, x, y, λ)

tk

[k]q!
=

tm

m!

∞

∑
n=0

Cn,q(x, y)
tn

[n]q!

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
q
B(m)

n−k,q(λ)S
(c)
m,q(k, x, y, λ)

tn

[n]q!

=
∞

∑
n=0

n

∑
m=0

(
n
m

)
q
Cn−m,q(x, y)

tn

[n]q!
. (53)

Now, if we compare the coefficients of tn on both sides of Equation (53), we reach the formula
in Equation (51). The relation in Equation (52) can be derived in a similar manner.

Theorem 9. Let x, y, and r be any real numbers. Then, we have
(1)

S(c)m,q(n, (x⊕ r)q, y, λ) + S(s)m,q(n, (x	 r)q, y, λ)
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=
n

∑
k=0

(
n
l

)
q
q(

n−l
2 )rn−l

(
S(c)m,q(n, x, y, λ) + (−1)n−kS(s)m,q(n, x, y, λ)

)
, (54)

(2)
S(s)m,q(n, (x⊕ r)q, y, λ) + S(c)m,q(n, (x	 r)q, y, λ)

=
n

∑
k=0

(
n
l

)
q
q(

n−l
2 )rn−l

(
S(s)m,q(n, x, y, λ) + (−1)n−kS(c)m,q(n, x, y, λ)

)
. (55)

Proof. By substituting (ξ ⊕ r)q into ξ in the generating function of q-Cosine array-type polynomials,
we have

∞

∑
n=0

S(c)m,q(n, (x⊕ r)q, y, λ)
tn

[n]q!
=

(λeq(t)− 1)m

m!
eq(t(x⊕ r)q)COSq(yt)

=
(λeq(t)− 1)m

m!
eq(tx)COSq(yt)Eq(tr)

=
∞

∑
n=0

S(c)m,q(n, x, y, λ)
tn

[n]q!

∞

∑
l=0

q(
l
2)rl tl

[l]q!

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
q
S(c)m,q(n− l, x, y, λ)q(

l
2)rl

)
tn

[n]q!
. (56)

Through a similar method, we can find the following equation:

∞

∑
n=0

S(s)m,q(n, (x	 r)q, y, λ)
tn

[n]q!
=

(λeq(t)− 1)m

m!
eq(t(x	 r)q)SINq(yt)

(λeq(t)− 1)m

m!
eq(tx)SINq(yt)Eq(−tr)

=
∞

∑
n=0

S(s)m,q(n, x, y, λ)
tn

[n]q!

∞

∑
l=0

q(
l
2)(−1)lrl tl

[l]q!

=
∞

∑
n=0

(
n

∑
l=0

(
j
l

)
q
S(s)m,q(n− l, x, y, λ)q(

l
2)(−1)lrl

)
tn

[n]q!
. (57)

By adding Equations (56) with (57), we can derive result (1) of Theorem 9.
For results (2) in Theorem 9, we also can find the following equations:

∞

∑
n=0

S(s)m,q(n, (x⊕ r)q, y, λ)
tn

[n]q!
=

(λeq(t)− 1)m

m!
eq(t(x⊕ r)q)SINq(yt)

=
(λeq(t)− 1)m

m!
eq(tx)SINq(yt)Eq(tr), (58)

∞

∑
n=0

S(c)m,q(n, (x	 r)q, y, λ)
tn

[n]q!
=

(λeq(t)− 1)m

m!
eq(t(x	 r)q)COSq(yt)

(λeq(t)− 1)m

m!
eq(tx)COSq(yt)Eq(−tr). (59)

Using Equation (59) appropriately, we can find result (2) in Theorem 9.

Corollary 1. If we let n ≥ 0, then

S(c)m,q
(
n, (x⊕ r)q, y, λ

)
+ S(c)m,q

(
n, (x	 r)q, y, λ

)
=

n

∑
k=0

(
n
k

)
q
q(

k
2)rk
(
S(c)m,q(n− k, x, y, λ) + (−1)kS(c)m,q(n− k, x, y, λ)

)
, (60)

and
S(s)m,q

(
n, (x⊕ r)q, y, λ

)
+ S(s)m,q

(
n, (x	 r)q, y, λ

)
=

n

∑
k=0

(
n
k

)
q
q(

k
2)rk
(
S(s)m,q(n− k, x, y, λ) + (−1)kS(s)m,q(n− k, x, y, λ)

)
. (61)
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Corollary 2. For r = 1 in Corollary 1, we have

S(c)m,q
(
n, (x⊕ 1)q, y, λ

)
+ S(s)m,q

(
n, (x	 1)q, y, λ

)
=

n

∑
k=0

(
n
k

)
q
q(

k
2)rk
(
S(c)m,q(n− k, x, y, λ) + (−1)kS(s)m,q(n− k, x, y, λ)

)
, (62)

and
S(s)m,q

(
n, (x⊕ 1)q, y, λ

)
+ S(c)m,q

(
n, (x	 1)q, y, λ

)
=

n

∑
k=0

(
n
k

)
q
q(

n−k
2 )rn−k

(
S(s)m,q(k, x, y, λ) + (−1)n−kS(c)m,q(k, x, y, λ)

)
. (63)

3. Symmetric Structures of the Approximate Roots for q-Cosine λ-Array-Type
Polynomials and Their Application

In this section, certain zeros of the q-Cosine λ-array-type polynomials S(c)m,q(n, x, y, λ) and beau-
tiful graphical representations are shown. Let m = 5.

A few of examples of these include

S(c)5,q(0, x, y, λ) =
1

120
(−1 + λ)5,

S(c)5,q(1, x, y, λ) = − x
120

+
λ

24
+

xλ

24
− λ2

6
− xλ2

12
+

λ3

4
+

xλ3

12
− λ4

6
− xλ4

24
+

λ5

24
+

xλ5

120
,

S(c)5,q(2, x, y, λ) = − x2

120
+

qy2

120
+

λ

24
+

x2λ

24
− qy2λ

24
− λ2

6
− x2λ2

12
+

qy2λ2

12

+
λ3

4
+

x2λ3

12
− qy2λ3

12
− λ4

6
− x2λ4

24
+

qy2λ4

24
+

λ5

24
+

x2λ5

120
− qy2λ5

120

+
xλ[2]q!

24
−

λ2[2]q!
12

−
xλ2[2]q!

6
+

λ3[2]q!
4

+
xλ3[2]q!

4
−

λ4[2]q!
4

−
xλ4[2]q!

6
+

λ5[2]q!
12

+
xλ5[2]q!

24
,

S(c)5,q(3, x, y, λ) = − x3

120
+

λ

24
+

x3λ

24
− λ2

6
− x3λ2

12
+

λ3

4
+

x3λ3

12
− λ4

6
− x3λ4

24

+
λ5

24
+

x3λ5

120
−

xλ2[3]q!
12

+
λ3[3]q!

12
+

xλ3[3]q!
4

−
λ4[3]q!

6

−
xλ4[3]q!

4
+

λ5[3]q!
12

+
xλ5[3]q!

12
+

qxy2[3]q!
120[2]q!

+
xλ[3]q!
24[2]q!

+
x2λ[3]q!
24[2]q!

−
qy2λ[3]q!

24[2]q!

−
qxy2λ[3]q!

24[2]q!
−

λ2[3]q!
6[2]q!

−
xλ2[3]q!

6[2]q!
−

x2λ2[3]q!
6[2]q!

+
qy2λ2[3]q!

6[2]q!
+

qxy2λ2[3]q!
12[2]q!

+
λ3[3]q!
2[2]q!

+
xλ3[3]q!

4[2]q!
+

x2λ3[3]q!
4[2]q!

−
qy2λ3[3]q!

4[2]q!
−

qxy2λ3[3]q!
12[2]q!

−
λ4[3]q!
2[2]q!

−
xλ4[3]q!

6[2]q!
−

x2λ4[3]q!
6[2]q!

+
qy2λ4[3]q!

6[2]q!
+

qxy2λ4[3]q!
24[2]q!

+
λ5[3]q!
6[2]q!

+
xλ5[3]q!
24[2]q!

+
x2λ5[3]q!

24[2]q!
−

qy2λ5[3]q!
24[2]q!

−
qxy2λ5[3]q!

120[2]q!
.

We investigated the beautiful zeros of the q-Cosine λ-array-type polynomials S(c)m,q(n, x, y, λ) by

using a computer. We plotted the zeros of the q-Cosine λ-array-type polynomials S(c)m,q(n, x, y, λ) = 0
for n = 40 (Figure 1).
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Figure 1. Zeros of S(c)m,q(n, x, y, λ).

In Figure 1 (top left), we chose λ = 3, m = 5, y = 2, and q = 1
10 . In Figure 1 (top right), we chose

λ = 3, m = 5, y = 2, and q = 3
10 . In Figure 1 (bottom left), we chose λ = 3, m = 5, y = 2, and q = 7

10 .
In Figure 1 (bottom right), we chose λ = 3, m = 5, y = 2, and q = 9

10 .

The stacks of zeros of the q-Cosine λ-array-type polynomials S(c)m,q(n, x, y, λ) = 0 for 1 ≤ n ≤ 40,
forming a 3D structure, are presented in Figure 2.
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Figure 2. Zeros of S(c)m,q(n, x, y, λ).

In Figure 2 (top left), we plotted the stacks of zeros of the q-Cosine λ-array-type polynomials

S(c)m,q(n, x, y, λ) = 0 for 1 ≤ n ≤ 40, q = 9
10 , λ = 3, m = 5, and y = 2. In Figure 2 (top right), we drew

the x and y axes but no z axis of the three dimensions. In Figure 2 (bottom left), we drew the y and z
axes but no x axis of the three dimensions. In Figure 2 (bottom right), we drew the x and z axes but
no y axis of the three dimensions.

We plotted the real zeros of the q-Cosine λ-array-type polynomials S(c)m,q(n, x, y, λ) = 0 for 1 ≤
n ≤ 40 (Figure 3).
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Figure 3. Real zeros of S(c)m,q(n, x, y, λ).

In Figure 3 (top left), we chose λ = 3, m = 5, y = 2, and q = 1
10 . In Figure 3 (top right), we chose

λ = 3, m = 5, y = 2, and q = 3
10 . In Figure 3 (bottom left), we chose λ = 3, m = 5, y = 2, and q = 7

10 .
In Figure 3 (bottom right), we chose λ = 3, m = 5, y = 2, and q = 9

10 .
Next, we calculated an approximate solution satisfying the q-Cosine λ-array-type polynomials

S(c)m,q(n, x, y, λ) = 0 for q = 9
10 . The results are given in Table 1.
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Table 1. Approximate solutions of S(c)
5,q (n, x, 2, 3) = 0, x ∈ R.

Degree n x

1 −7.5000

2 −9.1537, −5.0963

3 −9.9132, −7.1792, −3.2326

4 −10.473, −7.7237, −5.9691, −1.6272

5 −10.887, −8.3057, −5.8697, −5.4538, −0.19684

6 −11.200, −8.7716, −6.5985 , 1.0889

7 −11.438, −9.1440, −7.0712, −5.2023 , 2.2467

8 −11.622, −9.4417, −7.4646, −5.6413, −4.2220, 3.2895

9 −11.766, −9.6751, −7.8177, −5.9369, −4.6328, −3.5384, 4.2287

10 −11.881, −9.8531, −8.1242, −6.3032, −2.8841, 5.0745

4. Symmetric Structures of the Approximate Roots for q-Sine λ-Array-Type
Polynomials and Their Application

In this section, certain zeros of q-Sine-λ-array-type polynomials S(s)m,q(n, x, y, λ) and beautiful
graphical representations are shown. Let m = 5.

A few of these include the following:

S(s)5,q(0, x, y, λ) = 0,

S(s)5,q(1, x, y, λ) = − y
120

+
yλ

24
− yλ2

12
+

yλ3

12
− yλ4

24
+

yλ5

120
,

S(s)5,q(2, x, y, λ) = −
xy[2]q!

120
+

yλ[2]q!
24

+
xyλ[2]q!

24
−

yλ2[2]q!
6

−
xyλ2[2]q!

12

+
yλ3[2]q!

4
+

xyλ3[2]q!
12

−
yλ4[2]q!

6
−

xyλ4[2]q!
24

+
yλ5[2]q!

24
+

xyλ5[2]q!
120

,

S(s)5,q(3, x, y, λ) =
q3y3

120
− q3y3λ

24
+

q3y3λ2

12
− q3y3λ3

12
+

q3y3λ4

24
− q3y3λ5

120

+
xyλ[3]q!

24
−

yλ2[3]q!
12

−
xyλ2[3]q!

6
+

yλ3[3]q!
4

+
xyλ3[3]q!

4
−

yλ4[3]q!
4

−
xyλ4[3]q!

6
+

yλ5[3]q!
12

+
xyλ5[3]q!

24
−

x2y[3]q!
120[2]q!

+
yλ[3]q!
24[2]q!

+
x2yλ[3]q!

24[2]q!

−
yλ2[3]q!

6[2]q!
−

x2yλ2[3]q!
12[2]q!

+
yλ3[3]q!

4[2]q!
+

x2yλ3[3]q!
12[2]q!

−
yλ4[3]q!

6[2]q!
−

x2yλ4[3]q!
24[2]q!

+
yλ5[3]q!
24[2]q!

+
x2yλ5[3]q!

120[2]q!
.

We investigated the beautiful zeros of the q-Sine λ-array-type polynomials S(s)m,q(n, x, y, λ) by

using a computer. We plotted the zeros of the q-Cosine λ-array-type polynomials S(s)m,q(n, x, y, λ) = 0
for n = 40 (Figure 4).
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Figure 4. Zeros of S(s)m,q(n, x, y, λ).

In Figure 4 (top left), we chose λ = 3, m = 5, y = 2, and q = 1
10 . In Figure 4 (top right), we chose

λ = 3, m = 5, y = 2, and q = 3
10 . In Figure 4 (bottom left), we chose λ = 3, m = 5, y = 2, and q = 7

10 .
In Figure 4 (bottom right), we chose λ = 3, m = 5, y = 2, and q = 9

10 .

The stacks of zeros of the q-Sine λ-array-type polynomials S(s)m,q(n, x, y, λ) = 0 for 1 ≤ n ≤ 40,
forming a 3D structure, are presented in Figure 5.
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Figure 5. Zeros of S(s)m,q(n, x, y, λ).

In Figure 5 (top left), we chose λ = 3, m = 5, y = 2, and q = 1
10 . In Figure 5 (top right), we chose

λ = 3, m = 5, y = 2, and q = 3
10 . In Figure 5 (bottom left), we chose λ = 3, m = 5, y = 2, and q = 7

10 .
In Figure 5 (bottom right), we chose λ = 3, m = 5, y = 2, and q = 9

10 .
Next, we calculated an approximate solution satisfying the q-Sine λ-array-type polynomials

S(s)m,q(n, x, y, λ) = 0 for q = 9
10 . The results are given in Table 2.
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Table 2. Approximate solutions of S(c)
5,q (n, x, 2, 3) = 0, x ∈ R.

Degree n x

2 −7.5000

3 −8.3866, −5.8634

4 −8.9328, −6.6699, −4.7223

5 −9.3479, −7.0555, −5.5906, −3.7985

6 −9.6424, −7.5919, −2.9357

7 −9.8507, −7.9870, −6.1091 , −2.1017

8 −9.9922, −8.3262, −6.4196, −5.1020, −1.3181

9 −10.081, −8.6115, −6.7843, −0.59552

10 −10.127, −8.8539, −7.0942, −5.4156 , 0.065459

11 −10.137, −9.0620, −7.3707, −5.6846, −4.4208, 0.66754

12 −10.115, −9.2441, −7.6166, −5.9572, 1.2145

5. Conclusions
In this paper, using the q-Cosine polynomials and q-Sine polynomials, we introduced novel

types of q-extensions of λ-array-type polynomials, and the features obtained multifarious homes
and identities by using some collection manipulation techniques. Furthermore, we computed the
q-quintessential representations and q-derivative operator policies for those polynomials. Moreover,
we determined the approximate root movements of the brand new mentioned polynomials in a
complicated plane, utilizing the Newton technique and illustrating them in figures. The shape of the
approximate roots will pop out in diverse ways, depending on the circumstances of the variables,
and there is a desire for new methods and theorems associated with this subject matter to be created
and proven. We would like to continue to observe this line of study in the future.
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