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Abstract: This paper mainly proposes a new disturbance observer (DO) for a secure communication
system (SCS) of the chaos-based system (CBS). First, the fractional-order (FO) Chen chaotic system is
remodeled by a Takagi–Sugeno (T–S) fuzzy system with the aim of softening in calculation. Second,
the robust fixed-time was designed to synchronize two nonidentical chaotic systems. Third, a new
disturbance observer was proposed to compensate for the disturbance and uncertainty of the secure
communication system. Fourth, the proof of the proposed method based on Lyapunov condition
together with simulation are given to illustrate the correctness and effectiveness of the proposed
theory. The tested disturbance on the public channel was mostly compensated by the appropriately
estimated disturbance value. The states of master and slave systems (MSSs) were closed to each
other in fixed-time. These factors are used to confirm that the symmetry of two chaotic systems were
obtained by the proposed control methods.

Keywords: disturbance observer; secure communication system; Takagi–Sugeno fuzzy; master and
slave system

1. Introduction

The disturbance of a control system is well known as the inversed signal from outside
of the system. Inside variations of the parameters of the controlled system are uncertain.
To handle these inversed signals, the disturbance rejection techniques need to be equipped
to the control system. The main problem of the disturbance observer (DO) is the boundary
first derivative of the DO. In [1], the nonlinear DO was proposed with the condition of the
first derivative disturbance is zero. The applications of the nonlinear DO can be found
in [2,3]. To delete the requirement of disturbance conjunction, the improvement of the
nonlinear DO can be found in [4–7]. The DO with the requirement of fixed format can be
found in [8]. The DO for secure communication system is a potential area, which can be
found in [4–6,9]. Other robust control methods for secure communication system (SCS) can
be found in [10,11].

In recent years, the secure communication of the chaos-based system (CBS) has been
rapidly developed. The request of the 4.0 industrial revolution for secure data has pushed
the rate of research regarding SCS growth up. The basic background of the field is the
synchronization of two nonidentical chaotic systems and the scheme of encryption and
decryption of the date. Therefore, the radar information encryption technique was in-
vestigated in [12]. A novel method for the synchronization two chaotic systems can be
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found in [13]. The finite time synchronization method can be found in [14]. The image
encryption technique can be found in [15–18]. The synchronization of network systems
can be found in [19–23]. The synchronization of the chaotic systems in electronic circuits
can be found in [24–28]. To simply design the controller and disturbance observer, this
paper used the previous model in [9] with the sector nonlinearity method in [29,30] to
change the format of a rescaled chaotic system into T–S fuzzy format. The Chen system was
proposed in [31], and the fractional-order (FO) Chen system in this paper is reused from
previous published paper [9]. To simulate the FO operation, the FOMCON toolbox is used.
FOMCON is a toolbox which allows for fractional-order calculus simulation. The guide to
using FOMCON can be found in [32]. To synchronize two nonidentical chaotic systems,
the fixed-time sliding mode control (SMC) is used to obtain the goal. The basic concept
of fixed-time stability (FTS) was proposed in [33]. Taking advantage of the double phase
fixed-time SMC in [34], this paper designed the double phases with the fixed-time stability
for the synchronization of two nonidentical chaotic systems with the aim of softening the
chattering problem. There are several methods to solve the chattering problem, such as
adaptive SMC [35,36]. Therefore, the main contributions of this work are as follows: first,
the details of the Chen chaotic system were rewritten in the T–S fuzzy format from [9]. The
detail of FO Chen chaotic system is represented in this paper. Second, the synchronization
of two nonidentical T–S fuzzy chaotic systems obtained a good result with the power of
fixed-time SMC. Here, the sliding phase is fixed-time stable is presented with the aim of
softening the chattering value. The tracking error will be converged into the zero coordinate
in fixed-time. The sliding phase is also in fixed-time. Third, to avoid the perturbations of
the SCS, a new DO was proposed. This is a main contribution of this paper. The tested
uncertainty in the master system and the disturbance and uncertainty in the slave system
are all presented in this paper. All of these values are mostly compensated by the proposed
DO. Fourth, to define the power and originality of the proposed theory, the MATLAB
simulation was used to verify the provided theories.

The layout of the paper is as follows: first, the introduction is given to illustrate the gap
in the research. Next, the preliminary mathematics are presented. In the second section, the
analysis of the idea of the proposed DO is illustrated. Third, the proposed control methods
are analyzed for the SCS. Fourth, an illustrative example is given to show the effectiveness
of the mentioned theories. Finally, the conclusion is given to state that the proposed control
method is suitable for the synchronization of two nonidentical chaotic systems.

2. Mathematical Modeling and Preliminary Mathematics
2.1. Mathematical Modeling of MSSs

In this paper, FO T–S fuzzy Chen system in [9] is reused with the mathematical model
as below. 

dα

dtα x1(t) = −(a + ∆a)x1(t) + (a + ∆a)x2(t) + d1(t)
dα

dtα x2(t) = −(τ + ∆τ)x1(t) + (c + ∆c)x2(t)− x1x3 + d2(t)
dα

dtα x3(t) = x1(t)x2(t)− (b + ∆b)x3(t) + d3(t)
(1)

where x1(t), x2(t), and x3(t) are states. ∆a, ∆b, ∆τ, and ∆c are uncertainty parameters of the
system. d1(t), d2(t), and d3(t) are the disturbance from outside of the system. According to
a previous paper [31], the parameters of the system were selected as follows: a = 35, b = 3,
c = 28, and τ = a− c.

Assumption 1. All uncertainties and disturbances must be bounded as follows: |∆ax1(t)| ≤
a11, |∆ax2(t)| ≤ a12, |∆τx1(t)| ≤ τ11, |∆cx2(t)| ≤ τ11, |∆bx3(t)| ≤ b11, |d1(t)| ≤ d1, |d2(t)| ≤
d2, and |d3(t)| ≤ d3.These upper bound values need to be positively defined. In [31], the mathemat-
ical formula after rescaling is shown as follows:
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 dα

dtα x(t)
dα

dtα y(t)
dα

dtα z(t)

 =

−a a 0
−τ c −20x(t)
0 5x(t) −b

x(t)
y(t)
z(t)

+

1 0 0
0 1 0
0 0 1

lx(t)
ly(t)
lz(t)

 (2)

where x1(t)→ 10x(t), x2(t)→ 10y(t), and x3(t)→ 20z(t), and lx(t) = −∆ax(t) + ∆ay(t)
+ d1(t), lx(t) = −∆τx(t) + ∆cy(t) + d2(t), and lx(t) = −∆bz(t) + d3(t). These uncertainty
values need to be bounded as per Assumption 2 below.

Assumption 2. All uncertainties must be bounded as follows: |lx(t)| ≤ L1, |ly(t)| ≤ L2, and
|lz(t)| ≤ L3, where L1, L2, L3 are positively defined.

This paper used the sector nonlinearity method in [29] to remodel the system (2) into the T–S
fuzzy system, then system (2) can be represented as follows:

Dα

dt
X(t) =

2

∑
i=1

ω(Xi(t))AiX(t) + Biu(t) + Cil(t) (3)

where l(t) =
[
lx(t) ly(t) lz(t)

]T . Detail of T-S fuzzy modeling can be found in Appendix A.

Remark 1. Ci and Bi should be identity matrices for easy in calculation.
The parameters of (3) are as follows:

Bi = Ei = I3×3, A2 =

−35 35 0
−7 28 100
0 −25 −3

, and A1 =

−35 35 0
−7 28 −100
0 25 −3

. The states and

trajectories of the rescaled system are shown in Figure 1 below.
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The phase portraits are shown in Figure 2 below.
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To secure the date, the MSS of a SCS, respectively, should selected as follows: the
master is

Dα

dt
Xm(t) =

2

∑
i=1

ω(Xim(t))AiXm(t) + Cilm(t) (4)

where lm(t) is perturbation of master system. The slave system is

Dα

dtα−1 Xs(t) =
2

∑
i=1

ω(Xis(t))AiXs(t) + Bius(t) + Cils(t) (5)

where ls(t) is perturbation of slave system. System (5) can work if the assumption below
is fulfilled.

Remark 2. The uncertainties of MSSs must be bounded.
Errors of the MSSs are

e(t) = Xm(t)− Xs(t) (6)

By taking derivative for Equation (6) corresponding to the degree of α leads to

Dα

dtα−1 e(t) =
2

∑
i=1

ω(Xim(t))AiXm(t)−
2

∑
i=1

ω(Xis(t))AiXs(t)− Bius(t) + Cil(t) (7)

where Cil(t) = Ci[lm(t)− ls(t)]is used to represent the total disturbance and uncertainty on the
public channel.

Remark 3. In this paper,ym(t) and ys(t) were used for encryption and decryption of the data, the
structure of secure communication is as follows:

M̂(t) = ym(t) + M(t)− ys(t) (8)

where M̂(t) and M(t)are the received and sent data.

2.2. Preliminary Mathematics

This section is used to show some preliminary mathematics. First, the fractional-order
calculation is rewritten from a previous paper [37]. Second, the fixed-time SMC concept is
rewritten from the published paper [37]. Finally, the concept of the proposed DO is presented.

2.2.1. Fractional Calculus

The preliminary mathematics of the fractional-order calculus are as below.

Definition 1. [37]: The Euler’s Gamma function.

Γ(ρ) =

∞∫
0

tρ−1e−tdt (9)

where ρ and t are order and time of the operation.

Definition 2. [37]: Derivation and integration of the fractional calculus.

Dn
t =


dn

dtn , n > 0
1, n = 0

t∫
a
(dτ)−n, n < 0

(10)

where n is the order of the operation.



Symmetry 2022, 14, 1668 6 of 17

Definition 3. [37]: The Caputo fractional derivative.

Dn
t h(t) =

1
Γ(l− n)

t∫
a

f n(τ)

(t− τ)n−l+1 dτ (11)

with l − 1 < n < l.

Definition 4. [37]: Stability of the FO system.
Considering FO system as below.

Dn
t ξ = h(ξ) (12)

where ξ = [ξ1, . . . ξl ]
T is state vector. Where 0 < n < 1 is the order of FO calculus. System (12) is

stable when the eigenvalues of Jacobian J = ∂h(ξ)/∂ξ are all located in area of

|arg(eig(J))| > n
π

2
(13)

Some properties of FO operation are listed as follows:

Property 1. If n = 0,
D0

t h(X) = h(X) (14)

Property 2. Caputo operation.

Dγ
t (g(X) + h(X)) = Dγ

t g(X) + Dγ
t h(X) (15)

Property 3. The product of fractional derivative.

Dm+n
t h(X) = Dm

t Dn
t h(X) (16)

2.2.2. Fixed-Time Sliding Mode Control

Herein, the FTS concept in [33,34] are used to design the SMC for the synchronization
of two nonidentical chaotic systems. The basic concepts of fixed-time stability are below.
The settling-time of the reaching law is as below.

.
s = −[Ks1|s|

a11
b11 sign(s) + Ks2|s|

a12
b12 sign(s)] (17)

is calculated as follows:

Tmax =
b11

Ks1(a11− b11)
+

b12
Ks2(b12− a12)

(18)

where a11 > b11, a12 < b12, a11, a12, b11, b12, Ks1 > 0, and Ks2 > 0. This paper proposed
a new structure of DO. Therefore, this section is used to illustrate the idea of the novel DO
for such a kind of SCS.

2.2.3. Proposed DO

Based on the mathematical model in Equations (4) and (5), the real disturbance can be
approximated by
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2

∑
i=1

ω(Xis(t))AiXs(t) + Bius(t)−
2

∑
i=1

ω(Xim(t))AiXm(t) =
Dα

dtα−1 Xs(t)− Cils(t)− (
Dα

dt
Xm(t)− Cilm(t)) (19)

or

Cil(t) =
2

∑
i=1

ω(Xis(t))AiXs(t) + Bius(t)−
2

∑
i=1

ω(Xim(t))AiXm(t) (20)

if Dα

dtα Xs(t)→ Dα

dtα Xm(t) or Xs(t)→ Xm(t). The proposed DO in this paper is as follows:

l̂(t) = l(t) +
∫

Kl1

∣∣∣l̃(t)∣∣∣ a1
b1 sign(l̃(t)) + Kl2

∣∣∣l̃(t)∣∣∣ a2
b2 sign(l̃(t)) (21)

or
.

l̃(t) = −[Kl1

∣∣∣l̃(t)∣∣∣ a1
b1 sign(l̃(t)) + Kl2

∣∣∣l̃(t)∣∣∣ a2
b2 sign(l̃(t))] (22)

The stability of the proposed DO is fixed-time, with the format of disturbance error
similar to the fixed-time SMC in [33].

3. Proposed Approach

Herein, the proposed method for the SCS is presented. The contents of this section are
listed as follows: first, the sliding mode control for SCS is analyzed. Second, the DO for
estimating perturbations of SCS is illustrated. The calculation is corresponding to the time,
therefore writing time (t) is ignored.

3.1. Fixed-Time SMC for SCS

Taking advantage of the double-phase fixed-time SMC [34], the FO fixed-time SMC
is designed for the secure communication system with the surface of SMC for each axis
designed as below.

sj =
Dα−1

dtα−1 ej +
Dα−2

dtα−2 [ke1j

∣∣ej
∣∣ a1ej

b1ej sign(ej) + ke2j

∣∣ej
∣∣ c1ej

d1ej sign(ej)] (23)

For j goes from 1 to 3. Taking derivative for Equation (23) yields

.
sj =

Dα

dtα
ej +

Dα−1

dtα−1 [ke1j

∣∣ej
∣∣ a1ej

b1ej sign(ej) + ke2j

∣∣ej
∣∣ c1ej

d1ej sign(ej)] (24)

The equivalent control value of SMC can be calculated by ignoring the disturbance
effect. Solving Equation (24) by

0 =
Dα

dtα
ej +

Dα−1

dtα−1 [ke1j

∣∣ej
∣∣ a1ej

b1ej sign(ej) + ke2j

∣∣ej
∣∣ c1ej

d1ej sign(ej)] (25)

or
2
∑

i=1
ω(Xim(t))AiXm(t)−

2
∑

i=1
ω(Xis(t))AiXs(t)− Bius(t)+

Dα−1

dtα−1 [ke1j

∣∣ej
∣∣ a1ej

b1ej sign(ej) + ke2j

∣∣ej
∣∣ c1ej

d1ej sign(ej)] = 0

(26)

The equivalent control is then calculated

Bjueqsj =
2
∑

i=1
ω(Ωijm)AijXmj −

2
∑

i=1
ω(Ωijs)AijXsj+

Dα−1

dtα−1 [ke1j
∣∣ej
∣∣ a1ej

b1ej sign(ej) + ke2j|e|
c1ej
d1ej sign(ej)]

(27)
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In steady-state, the state of the slave system is converged to the state of the master in
the fixed-time as below.

Temax =
b1ej

Ke1j(a1ej− b1ej)
+

d1ej
Ke2j(d1ej− c1ej)

(28)

The reaching law is designed as follows:

Bjuswsj(t) = ks1j

∣∣sj
∣∣ a1sj

b1sj sign(sj) + ks2j

∣∣sj
∣∣ c1sj

d1sj sign(sj) (29)

The settling-time of the reaching law is

Tsmax =
b1sj

Ks1j(a1sj− b1sj)
+

d1sj
Ks2j(d1sj− c1sj)

(30)

To soften the effects of the perturbations, a new DO is proposed in the next section.

3.2. Proposed DO for SCS

With the aim of obtaining the reaching law of the DO as Equation (22), the DO is
proposed as

l̂j =
2
∑

i=1
ω(Xijs)AijXsj + Bijusj −

2
∑

i=1
ω(Xijm)AijXmj+

∫
kl1j

∣∣∣∣ 2
∑

i=1
ω(Xijs)AijXsj + Bijusj −

2
∑

i=1
ω(Xijm)AijXmj

∣∣∣∣
a1lj
b1lj

sign(
2
∑

i=1
ω(Xijs)AijXsj + Bijusj −

2
∑

i=1
ω(Xijm)AijXmj)+

∫
kl2j

∣∣∣∣ 2
∑

i=1
ω(Xijs)AijXsj + Bijusj −

2
∑

i=1
ω(Xijm)AijXmj

∣∣∣∣
c1lj
d1lj

sign(
2
∑

i=1
ω(Xijs)AijXsj + Bijusj −

2
∑

i=1
ω(Xijm)AijXmj)

(31)

or

l̂j = lj +
∫

kl1j

∣∣∣̃lj

∣∣∣ a1lj
b1lj sign(̃lj) +

∫
kl2j

∣∣∣̃lj

∣∣∣ c1lj
d1lj sign(̃lj) (32)

Taking derivative for both sides of Equation (32) we have

.
l̂j =

.
lj + kl1j

∣∣∣̃lj

∣∣∣ a1lj
b1lj sign(̃lj) + kl2j

∣∣∣̃lj

∣∣∣ c1lj
d1lj sign(̃lj) (33)

or
.

l̃j = −kl1j

∣∣∣̃lj

∣∣∣ a1lj
b1lj sign(̃lj)− kl2j

∣∣∣̃lj

∣∣∣ c1lj
d1lj sign(̃lj) (34)

This completes the proof of stability of the proposed DO.

3.3. Stability Analysis

The Lyapunov condition is selected as follows:

V(t) =
1
2

sTs +
1
2

l̃T l̃ (35)

Taking the derivative for Equation (33) leads to

.
V(t) = sT .

s + l̃T
.

l̃ (36)
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Equation (34) can be generally rewritten for each element as follows:

.
V j = sj

.
sj − l̃j

.

l̃j

= − sj[ks1j

∣∣sj
∣∣ a1sj

b1sj sign(sj) + ks2j

∣∣sj
∣∣ c1sj

d1sj sign(sj)]−

l̃j(kl1j

∣∣∣̃lj

∣∣∣ a1lj
b1lj sign(̃lj) + kl2j

∣∣∣̃lj

∣∣∣ c1lj
d1lj sign(̃lj))

= − [ks1j

∣∣sj
∣∣ a1sj

b1sj
+1

+ ks2j

∣∣sj
∣∣ c1sj

d1sj
+1

]− l̃j(kl1j

∣∣∣̃lj

∣∣∣ a1lj
b1lj

+1
+ kl2j

∣∣∣̃lj

∣∣∣ c1lj
d1lj

+1
)

≤ 0

(37)

This completes the proof.

4. An Illustrative Example
4.1. Scheme of SCS of the CBS and Parameters of Proposed Method

In this section, the performances of the proposed methods are given. First, the tracking
of states of MSSs are shown. Second, the phases of MSSs are shown together in one figure
for each axis. Third, the tracking errors are shown together with the analysis data. Fourth,
the disturbance observer effectiveness is shown. Fifth, the secure data and encrypted date
are shown. The secure communication scheme is shown in Figure 3.
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The secure date from the master area need to be mixed with the state of the master
system and the mixed signal is provided onto the public channel, the received signal can be
obtained with the decryption technique, which used the state of the slave system to archive
the goal. As shown in Figure 3 above, to obtain the goal of transmission, the synchronization
control and disturbance rejection are required. The control gains are as follows: first, the
sliding phase gains of Equation (23) are a1e1/b1e1 = 1.75, a2e1/b2e1 = 0.85, Ke11 = 2,
Ke21 = 2, a1e2/b1e2 = 1.75, a2e2/b2e2 = 0.85, Ke12 = 2, Ke22 = 2, a1e3/b1e3 = 1.75,
a2e3/b2e3 = 0.85, Ke13 = 2, Ke23 = 2. Second, the reaching phase gains of Equation
(29) are a1s1/b1s1 = 1.25, a2s1/b2s1 = 0.75, Ks11 = 50, Ks21 = 50, a1s2/b1s2 = 1.25,
a2s2/b2s2 = 0.75, Ks12 = 50, Ks22 = 50, a1s3/b1s3 = 1.25, a2s3/b2s3 = 0.75, Ks13 = 50,
Ks23 = 50. The gains of the DO in Equation (31) are a1l1/b1l1 = 1.25, a2l1/b2l1 = 0.95,
Kl11 = 100, Kl21 = 100, a1l2/b1l2 = 1.25, a2l2/b2l2 = 0.95, Kl12 = 100, Kl22 = 100,
a1l3/b1l3 = 1.25, a2l3/b2l3 = 0.95, Kl13 = 100, and Kl23 = 100. The fractional order in
Equation (1) is 0.99.

4.2. Results of the Proposed Method

The sine and cosine, and complicated disturbance and uncertainty were tested on the
SCS of chaos-based system. However, the hash condition is mainly analyzed in this paper.
Otherwise, the simple disturbance conditions were just used to analyze the effectiveness of
the proposed DO.
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Case 1. Perturbations are periodic signals.

The uncertainties of master system are lxm(t) = −∆axm(t) + ∆aym(t) = 0.25cos(2πt)
xm(t), lym(t) = −∆τxm(t) + ∆cym(t) = 0.25cos(2πt)ym(t), and lzm(t) = −∆bzm(t) =
0.25cos(2πt)zm(t) on xm-, ym-, and zm-axes, respectively. The uncertainties of slave system
are lxs(t) = −∆axs(t) + ∆ays(t) = 0.15sin(2πt)xs(t), lym(t) = −∆τxs(t) + ∆cys(t) =
0.15sin(2πt)ys(t), and lzm(t) = −∆bzs(t) = 0.25cos(2πt)zs(t) on xs-, ys-, and zs-axes,
respectively. The performance of the proposed DO is shown as in Figure 4 below.
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The tested uncertainties on three channels of MSSs were compensated by the estimated
disturbance values. To show the effectiveness of the proposed control method with both
disturbance and uncertainty rejection ability, the disturbance and uncertainty were tested
in case 2 as below.
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Case 2. Perturbations are periodic signals together with square disturbances.

The uncertainties of the master system are lxm(t) = −∆axm(t) + ∆aym(t) = 0.25cos
(2πt)xm(t), lym(t) = −∆τxm(t)+∆cym(t) = 0.25cos(2πt)ym(t), and lzm(t) = −∆bzm(t) =
0.25cos(2πt)zm(t) on xm-, ym-, and zm-axes, respectively. The uncertainties of the slave sys-
tem are lxs(t) = −∆axs(t) + ∆ays(t) = 0.15sin(2πt)xs(t), lym(t) = −∆τxs(t) + ∆cys(t) =
0.15sin(2πt)ys(t), and lzm(t) = −∆bzs(t) = 0.25cos(2πt)zs(t) on xs-, ys-, and zs-axes, re-
spectively. The tested disturbance are as follows: d1(t) with 2.5 amplitude, 0.75 period, 70%
pulse width, and delay time is 1 s, d2(t) with 1.5 amplitude, 0.75 period, 60% pulse width,
and delay time is 1.25 s, and d3(t) with 1 amplitude, 0.2 period, 50% pulse width, and delay
time is 0.25 s for x-, y-, and z-axes, respectively. The performance of the proposed DO is
shown as in Figure 5 below.
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Figure 5. States of MSSs, (a) xm and xs, (b) ym and ys, and (c) zm and zs.

The states of MSSs are mostly identical with very fast convergent speeds. The red
color state is used for the master and blue color state for the slave systems. The states
of the MSSs are unpredicted signals, which correspond with the original state of chaotic
system. To show the effectiveness of proposed method for synchronizing two different
chaotic systems, the phase trajectories of MSSs are displayed in Figure 6 below.
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phase portrait.

In Figure 6, the phase of the states of both the master and slave systems are mostly
converged to each other. These phases are the most similar to the original phases. The
phase portraits of the MSSs were mostly identical and correspond to the original one. The
simulations performed demonstrated that the synchronization control method is satisfied
for the secure communication of chaos-based system. To show the effectiveness of the
proposed method, the synchronization errors are shown in Figure 7 below.
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Figure 7. Tracking errors on three axes.

The tracking errors of these axes are converged to zero in the settling-times
Te1 < 0.07 (s), Te1 < 0.07 (s), and Te1 < 0.07. The maximum errors are Maxe1 < 0.022,
Maxe2 < 0.095, and Maxe3 < 0.116. In steady-states, the errors are located in the areas of
e1 ∈ (−7.3; 7.3)× 10−3, e2 ∈ (−4.5; 4.5)× 10−3, and e1 ∈ (−2.65; 2.65)× 10−3. The effec-
tiveness of the proposed DO for estimating both disturbance and uncertainty are shown in
Figure 8 below.
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As shown in Figure 8 above, the tested disturbances with system parameter variations
were all tested on the SCS. The expectation of disturbance rejection is met. The tested
disturbance and uncertainty in both master and slave systems were mostly rejected by the
proposed DO. There are simple and complicated disturbances which were mostly rejected
by the proposed DO. In Figure 8, the disturbances and uncertainties were nonidentical, the
disturbances were square waves and uncertainties were periodic signals. These signals
were mixed together and challenged the performances of the proposed DO. Therefore,
Figure 8 was used to validate the correctness and effectiveness of the proposed DO. The
sent and received data are shown in Figure 9 below.
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In this work, the square wave signal was used to test the performance of the SCS.
The received and sent date are mostly identical. From this, we can state that the proposed
control method is good for the synchronization and robustness with regards to disturbance
and uncertainty. If a hacker wanted to extract the data on the public channel, they would
have been able to see the signal such as that in Figure 10 below.
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The signal as in Figure 10 has no meaning. This is the expectation of the work in secure
communication. The obtained results are good enough for such complicated disturbance
values. To show the effectiveness of the proposed method, the comparison of this paper
and a previous paper is shown in Table 1 below.

Table 1. Comparison of this paper and a previous paper [11].

Paper Maximum Settling-Time Maximum Error Disturbance Rejection

This paper 0.07 s Maxe3 < 0.116. Yes

Previous paper [11] >1 s >5 Was not mentioned
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Therefore, the proposed method in this paper is good for synchronizing two non-
identical chaotic systems and rejecting the perturbations from inside and outside of
the SCS.

5. Conclusions

A new DO for SCS of the CBS was successfully proposed. The conditions of boundary
disturbance value and the frequency of disturbance were deleted. A new DO only needs
the states of MSSs to be closed to each other. The estimated and tested disturbances are
closed to each other in a predefined time. This is also a new concept of the DO for SCS
of CBS. In this paper, the chattering of conventional SMC was deleted by the fixed-time
SMC with double reaching and sliding phases. The correction of the proposed methods
was proved by using Lyapunov condition. The effectiveness of the proposed methods was
verified by MATLAB simulation. The achievement of disturbance rejection was used to
show the novelty and originality of proposed DO. This has huge implications for our next
research in SCS of CBS. In our next study, the proposed concept of the DO will be improved
and verified by experiments for the secure communication of the chaos-based system.
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Appendix A

The basic concept of the T–S fuzzy modeling Lendek et al. [29] is given here. Firstly,
consider the system { .

χ = Gm(χ, u)χ + Hm(χ, u)u
y = Km(χ, u)χ

(A1)

where χ is the state vector. Gm, Hm, and Km are the smooth functions. y is the output vector.
The scheduling χj ∈ [χmin, χmax], where j = 1, . . . , p. The weighting functions are{

η
j
0(.) =

χmax−χj(.)
χmax−χmin

η
j
1(.) = 1− nj

0(.)
(A2)

The fuzzy membership is

ϑi(χ) =
p
Π
j=1

ϑij(χi) (A3)

where ϑij(χi) is either η
j
0(.) or η

j
1(.) Using these concepts, system (7) becomes

.
χ =

m
∑

i=1
ϑi(χj)(Aiχ + Biu)

y =
m
∑

i=1
ϑi(χj)Ciχ

(A4)

All these concepts are used in this paper for the control design and system mathemati-
cal modeling.
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