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Abstract: The purpose of this paper is to develop coupled fixed point theorems by C-class functions
with mixed monotonicity, discuss the existence of the coupled fixed point of two mappings and obtain
a coupled coincidence point theorem via inverse Ck-class functions in partially ordered H-metric
spaces. This improves the existing results. In addition, some instances and an application are given
to illustrate the usability and validity of the results.
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1. Introduction

Since the Banach Contraction Principle, many scholars have developed it by chang-
ing the contraction environment and changing the metric type, e.g., [1–11]. For instance, in
2004, Ran and Reurings [1] introduced partial order in metric spaces and proposed some
fixed point results in such spaces. In 2006, Bhaskar and Lakshmikantham [2] presented
some coupled fixed point theorems for linear contractions in partially ordered metric
spaces. In 2009, Lakshmikantham and Ćirić [3] introduced some coupled fixed point results
for nonlinear contraction in partially ordered metric spaces. There are a large number
of researchers who have considered coupled fixed points well in a variety of contractive
conditions [12–16]. In 2006, Mustafa and Sims [17] introduced a class of new metric spaces
called G-metric spaces which is equivalent to H-metric spaces in this paper, some fixed
point results in such spaces can be found in [18–27]. In 2010, Harjani et al. [28] utilized
rational type contractive mapping proposed by Jaggi [29] in partially ordered metric spaces.
Shortly after, Chakrabarti [30] generalized these contractive conditions in [28] and extended
the results of [28] to partially ordered G-metric spaces.

On the other hand, in 2014, Ansari [31] presented C-class functions and proved some
relevant fixed points of complete metric spaces. In 2018, Saleem et al. [32] presented a new
notion of inverse C-class functions where the first inequality is opposite to that of C-class
functions.

As far as we know, there are also some contractions that have not been studied in
partially ordered complete H-metric space. Thus, inspired by [30] and C-class functions, in
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Section 3 we intend to study the coupled fixed point theorems and coupled coincidence
point theorem in partially ordered H-metric space, which develops some results of [30]. In
Section 4, motivated by inverse C-class functions [32], a class of development functions
of inverse C-class functions called inverse Ck-class functions is introduced. Furthermore,
the existence theorem of a coupled coincidence point by using inverse Ck-class functions
is raised.

2. Preliminaries

Denote a partial order relation by� on Z. For arbitrary a, b ∈ Z endowed with the
partial order�, a � b and b � a are the same. Moreover, a < b means that a � b and
a 6= b.

We first introduce the fundamental definitions and notions which will be used in the
following section.

Definition 1 ([17]). Suppose that Z 6= ∅ and H : Z× Z× Z → R+ has the following property:
(H1) H(a, b, c) = 0 if a = b = c.
(H2) 0 < H(a, a, b), for all a, b ∈ Z with a 6= b.
(H3) H(a, a, b) ≤ H(a, b, c), for all a, b, c ∈ Z with c 6= b.
(H4) H(a, b, c) = H(p{a, b, c}), where p is any permutation of a, b, c (a, b, c are symmetri-

cal).
(H5) H(a, b, c) ≤ H(a, s, s) + H(s, b, c), for all a, b, c, s ∈ Z.

Then, H is a generalized metric, or in more detail, an H-metric on Z and (Z, H) is an
H-metric space.

Proposition 1 ([17]). Suppose that (Z, H) is an H-metric space; then for any a, b, c, s ∈ Z, the
following is obviously appropriate:
1. Supposing that H(a, b, c) = 0, we have a = b = c.
2. H(a, b, c) ≤ H(a, a, b) + H(a, a, c).
3. H(a, b, b) ≤ 2H(b, a, a).
4. H(a, b, c) ≤ H(a, s, c) + H(s, b, c).

Definition 2 ([17]). Assume that (Z, H) is an H-metric space. The sequence {am} ⊆ Z is H-
convergent to a if for any arbitrary ε > 0, there exists a positive integer M such that H(a, am, am) <
ε for m ≥ M, i.e., lim

m→+∞
H(a, am, am) = 0.

Proposition 2 ([17]). Suppose that (Z, H) is an H-metric space, it follows that for a sequence
{am} ⊆ Z and a point a ∈ Z, the terms in the following are equivalent:
1. {am} is H-convergent to a.
2. H(am, am, a)→ 0 when m→ +∞.
3. H(am, a, a)→ 0 when m→ +∞.
4. H(am, al , a)→ 0 when m, l → +∞.

Proposition 3 ([17]). Assume that (Z, H) is an H-metric space. It follows that the function
H(a, b, c) is jointly continuous with respect to three variables.

Remark 1. It is noted that if {as}, {bt}, {cw} are sequences in Z such that lim
s→+∞

as = a,

lim
t→+∞

bt = b, lim
w→+∞

cw = c, then H(as, bt, cw)→ H(a, b, c) when s, t, w→ +∞.

Definition 3 ([17]). Suppose that (Z, H) is an H-metric space. We said that the sequence {as} ⊆
X is H-Cauchy if for an arbitrary ε > 0, there is a positive integer S such that H(as, at, aw) < ε for
all s, t, w ≥ S.
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Proposition 4 ([17]). Assume that (Z, H) is an H-metric space; the terms as follows are the same:
1. The sequence {as} is H-Cauchy.
2. For arbitrary ε > 0, there is a positive integer S satisfying that H(as, at, aw) < ε for all
s, t, w > S.

Lemma 1. Let (Z, H) be an H-metric space. Suppose that {as} is a sequence in Z satisfying
that G(as, as+1, as+1)→ 0 when s→ +∞. Suppose that {as} is not H-Cauchy, then there exist
ε > 0 and sequences of the positive integers s(w) and t(w) with s(w) > t(w) > w satisfying that
H(at(w), as(w), as(w)) ≥ ε, H(at(w), as(w)−1, as(w)−1) < ε, and

lim
w→+∞

H(at(w), as(w), as(w)) = ε,

lim
w→∞

H(as(w)+1, at(w)+1, at(w)+1) = ε,

lim
w→∞

H(at(w)+1, as(w)+1, as(w)+2) = ε.

Proof. Because H(as, as+1, as+1)→ 0 when s→ +∞, i.e.,

lim
s→∞

H(as, as+1, as+1) = 0. (1)

From the inequality (3) in Proposition 1, it follows that

lim
s→∞

H(as+1, as, as) = 0. (2)

If {as} is not H-Cauchy, there are ε > 0 subsequences {as(w)} and {at(w)} of {as} with
s(w) > t(w) > w satisfying that

H(at(w), as(w), as(w)) ≥ ε, (3)

for arbitrary w ∈ N. Meanwhile, for t(w), we can take s(w) which is the smallest integer
by virtue of s(w) > t(w) and (3). Therefore, it follows that

H(at(w), as(w)−1, as(w)−1) < ε, (4)

for all w ∈ N. With (H5) in Definition 1, it occurs that

ε ≤ H(at(w), as(w), as(w))

≤ H(at(w), as(w)−1, as(w)−1) + H(as(w)−1, as(w), as(w))

≤ ε + H(as(w)−1, as(w), as(w)). (5)

Taking w→ ∞ in (5) and noting that H(as, as+1, as+1)→ 0, it is naturally obtained that

lim
s→∞

H(at(w), as(w), as(w)) = ε. (6)

We can obtain

H(at(w)+1, as(w)+1, as(w)+1) ≤H(at(w)+1, at(w), at(w))

+ H(at(w), as(w), as(w)) + H(as(w), as(w)+1, as(w)+1). (7)

and

H(at(w), as(w), as(w)) ≤H(at(w), at(w)+1, at(w)+1)

+ H(at(w)+1, as(w)+1, as(w)+1) + H(as(w)+1, as(w), as(w)) (8)
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Letting w→ +∞ in expressions (7) and (8) and regrading (1), (2) and (6), we derive

lim
w→∞

H(at(w)+1, as(w)+1, as(w)+1) = ε. (9)

Similarly, it follows that

H(at(w)+1, as(w)+1, as(w)+1) ≤ H(at(w)+1, as(w)+2, as(w)+1)

≤ H(at(w)+1, as(w)+1, as(w)+1) + H(as(w)+1, as(w)+2, as(w)+1) (10)

from (H3) and (H5). Taking w → +∞ in expressions (10) and using (1), (2) and (9), we
conclude that

lim
w→∞

H(at(w)+1, as(w)+1, as(w)+2) = ε. (11)

In 2014, in a partially ordered H-metric space, Chakrabarti [30] proposed coupled fixed
point theorems for a mapping satisfying mixed monotone property and a nonlinear, rational
type contractive condition and presented results for the existence of coupled coincidence
points of two mappings via the notion of mixed f -monotonicity [3].

Definition 4 ([3]). Suppose that (Z,�) is a set endowed with partial order, S : Z× Z 7→ Z and
f : Z 7→ Z. S is said to be mixed f -monotone if S is monotone f -non-decreasing with respect to
the first variable and is monotone f -non-increasing with respect to the second variable, i.e., for
all s, t ∈ Z, s1, s2 ∈ Z, f s1 � f s2 
 S(s1, t) � S(s2, t), and t1, t2 ∈ Z, f t1 � f t2 

S(s, t1)� S(s, t2).

Theorem 1 ([30]). Suppose that Z is a set endowed with a partial order� and G is a generalized
metric on H satisfying that (Z, H) is completed with respect to the H-metric. Assume that
S : Z× Z → Z is continuous on Z and mixed monotone. Meanwhile, for all (s, t), (a, b), (c, d) ∈
Z× Z with (s, t)� (a, b)� (c, d),

H(S(s, t), S(a, b), S(c, d))

≤ [α
H(s, S(s, t), S(s, t))H(a, S(a, b), S(a, b))H(c, S(c, d), S(c, d))

1 + [H(s, a, c)]2
+ βH(s, a, c)], (12)

where 8α + β < 1. In case there exists s0, t0 ∈ Z satisfying s0 � S(s0, t0) and t0 � S(t0, s0), it
can be deduced that (s∗, t∗) ∈ Z×Z is a coupled fixed point of S, i.e., (s∗, t∗) fulfills s∗ = S(s∗, t∗),
t∗ = S(t∗, s∗).

Theorem 2 ([30]). Assume that the conditions are the same as in Theorem 1, except for the
following: if for each (s, t), (a, b) ∈ Z× Z, there exists a (c, d) ∈ Z× Z that can be comparable to
(s, t) and (a, b), there exists uniqueness of coupled fixed points of S.

Theorem 3 ([30]). Suppose that Z is a set with a partial order and H is a metric on Z satisfying
that (Z, H) is completed with respect to the H-metric. Assume that S : Z× Z → Z and f : Z → Z
is continuous on Z with the fact that S is mixed f−monotone. Let S(Z× Z) ⊆ f (Z); f commutes
with S and for each (s, t), (a, b), (c, d) ∈ Z× Z with (s, t)� (a, b)� (c, d) and f s� f a� f c,
f t� f b� f d,

H(S(s, t), S(a, b), S(c, d))

≤ α[
H( f s, S(s, t), S(a, b))H( f a, S(a, b), S(a, b))H( f c, S(c, d), S(c, d))

1 + [H( f s, f a, f c)]2
+ βH( f s, f a, f c)], (13)
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where 8α + β < 1. If there is s0, t0 ∈ Z such that f s0 � S(s0, t0) and f t0 � S(t0, s0),
so (s∗, t∗) ∈ Z × Z is a coupled coincidence point of S and f , i.e., (s∗, t∗) is the solution of
f s∗ = S(s∗, t∗), f t∗ = S(t∗, s∗).

In addition, C-class functions were proposed by Ansari [31]. Improved by this kind of
function, a lot of fixed point theorems can be generalized in the existing results.

Definition 5 ([31]). We call a mapping G : [0,+∞)2 7→ R a C-class function if it has continuity
properties and meets the terms as follows:

(1) G(x, y) ≤ x.
(2) G(x, y) = x can deduce that one of the two terms holds: (a) x = 0; (b) y = 0, for all

x, y ∈ [0,+∞).

We utilize C to represent the set of all the C-class functions.

Example 1 ([31]). Every G : [0,+∞)2 7→ R in the following belongs to C for all x, y ∈ [0,+∞):
(1) G(x, y) = x− y, G(x, y) = x leads to y = 0.
(2) G(x, y) = nx, n > 1, G(x, y) = x leads to x = 0.
(3) G(x, y) = x

(1+y)s ; s ∈ (0,+∞), G(x, y) = x leads to x = 0 or y = 0.
(4) G(x, y) = log(y + ax)/(1 + y), a > 1, G(x, y) = x leads to x = 0 or y = 0.
(5) G(x, y) = ln(1 + ax)/2, a > e, G(x, 1) = x leads to x = 0.
(6) G(x, y) = (x + l)(1/(1+y)s) − l, l > 1, s ∈ (0,+∞), G(x, y) = x leads to y = 0.
(7) G(x, y) = x logy+a a, a > 1, G(x, y) = x leads to x = 0 or y = 0.
(8) G(x, y) = x− ( 1+x

2+x )(
y

1+y ), G(x, y) = x leads to y = 0.
(9) G(x, y) = xβ(x), β : [0,+∞) 7→ [0, 1), and is continuous, G(x, y) = x leads to x = 0.
(10) G(x, y) = x− y

t+y , G(x, y) = x leads to y = 0.
(11) G(x, y) = x − φ(x), G(x, y) = x leads to x = 0 where φ : [0,+∞) 7→ [0,+∞) is

continuous satisfying that φ(y) = 0 
 y = 0.
(12) G(x, y) = xk(x, y), G(x, y) = x leads to x = 0 where k : [0,+∞) × [0,+∞) 7→

[0,+∞) is continuous satisfying that k(y, x) < 1 for all x, y > 0.
(13) G(x, y) = x− ( 2+y

1+y )y, G(x, y) = x leads to y = 0.

(14) G(x, y) = n
√

ln(1 + xn), G(x, y) = x leads to x = 0.
(15) G(x, y) = ψ(x), G(x, y) = x leads to x = 0 where ψ : [0,+∞) 7→ [0,+∞) is upper

semi-continuous satisfying that ψ(0) = 0, and ψ(y) < y for y > 0.
(16) G(x, y) = x

(1+x)s ; s ∈ (0,+∞), G(x, y) = x leads to x = 0.
(17) G(x, y) = θ(s); θ : R+ ×R+ 7→ R is a generalized Mizoguchi–Takahashi-type function;

G(x, y) = x leads to x = 0.
(18) G(x, y) = x

β(1/2)

∫ +∞
0

e−s
√

s+y ds, where β is the Euler Gamma function.

Furthermore, Saleem et al. [32] presented a new notion of inverse C-class functions in
the following.

Definition 6. A mapping G : [0,+∞)2 7→ R is said to be an inverse C-class function in cases
where it is continuous and the terms as follows hold:

(i) G(x, y) ≥ x for all x, y ∈ [0,+∞).
(ii) G(x, y) = x yields that one of the two terms holds: (a) x = 0; (b) y = 0.

Cinv denotes the set of all the inverse C-class functions. Some examples are given
in [32].

Example 2. All the mappings G : [0,+∞)2 7→ R belong to Cinv, for all x, y ∈ [0,+∞):

1. G(x, y) = x + y, G(x, y) = x leads to y = 0.
2. G(x, y) = tx, for some t ∈ (1,+∞), G(x, y) = x leads to x = 0.
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3. G(x, y) = x(1 + y)s, for some s ∈ (0,+∞), G(x, y) = x leads to s = 0 or y = 0.
4. G(x, y) = loga[(y + ax)(1 + y)], for some a > 1, G(x, y) = x leads to y = 0.
5. G(x, y) = ϕ(x), G(x, y) = x leads to x = 0, where ϕ : [0,+∞) 7→ [0,+∞) is an upper

semi-continuous function satisfying that ϕ(0) = 0 and ϕ(x) > x, for any x > 0.

As far as we know, there are also some contractions that have not been studied in
partially ordered complete H-metric space. Thus, inspired by [30] and C-class functions, in
Section 3, we intend to study the coupled fixed point theorems and coupled coincidence
point theorem in partially ordered H-metric space, which develops some results of [30]. In
Section 4, the existence theorem of a coupled coincidence point by use of inverse Ck-class
functions arises. In Section 5, an application is given to justify the main results.

3. Main Results

In the section, assume a set Z endowed with a partial order�. The partial order
on Z× Z is induced by demanding that for any (a, b), (s, t) ∈ Z× Z, (a, b)� (s, t) 
 a�
s, b� t.

Before starting the main results, let us introduce an auxiliary function used in the main
result. Ψs denotes the set of all functions ψ : [0,+∞) 7→ [0,+∞) which meets terms in the
following [31]:

(1) ψ is continuous on [0,+∞).
(2) ψ(0) ≥ 0.
(3) ψ(x) > 0 for all x > 0.
Now, list the main results. Firstly, a rational type contractive condition is presented in

a partially ordered complete H-metric space and a coupled fixed point theorem is obtained.

Theorem 4. Assume that Z is a set endowed with a partial order � and we define H as a
generalized metric on it. Moreover, (Z, H) is completed with regard to H-metric. Suppose S : Z×
Z 7→ Z is continuous on Z with the mixed monotone property. For all (s, t), (a, b), (c, d) ∈ Z× Z
with (s, t)� (a, b)� (c, d),

H(S(s, t), S(a, b), S(c, d)) (14)

≤ G(
1

8α + β
[α

H(s, S(s, t), S(s, t))H(a, S(a, b), S(a, b))H(c, S(c, d), S(c, d))
1 + [H(s, a, c)]2

+ βH(s, a, c)],

ψ(
1

8α + β
[α

H(s, S(s, t), S(s, t))H(a, S(a, b), S(a, b))H(c, S(c, d), S(c, d))
1 + [H(s, a, c)]2

+ βH(s, a, c)])),

where G ∈ C, ψ ∈ Ψs and 8α + β > 0, α, β ≥ 0. If there exists s0, t0 ∈ Z satisfying that
s0 � S(s0, t0) and t0 � S(t0, s0), then S has a coupled fixed point (s∗, t∗) ∈ Z× Z., i.e., (s∗, t∗)
is the solution of s∗ = S(s∗, t∗), t∗ = S(t∗, s∗).

Proof. Assume that there exist s0, t0 ∈ Z such that s0 � S(s0, t0) and t0 � S(t0, s0).
Define sw+1 = S(sw, tw), tw+1 = S(tw, sw), w ∈ N ∪ {0}. Because G is mixed monotone,
and meanwhile is from the mathematical induction, it yields that

s0 � s1 � s2 � · · · � sw � sw+1 � · · · .

and
t0 � t1 � t2 � · · · � tw � tw+1 � · · · .

Taking s = sw, a = b = sw−1, t = tw, c = d = tw−1 in inequality (14), we have,
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H(sw+1, sw, sw) = H(S(sw, tw), S(sw−1, tw−1), S(sw−1, tw−1))

≤ G(
1

8α + β
[α

H(sw, sw+1, sw+1)H(sw−1, sw, sw)H(sw−1, sw, sw)

1 + [H(sw, sw−1, sw−1)]2
+ βH(sw, sw−1, sw−1)],

ψ(
1

8α + β
[α

H(sw, sw+1, sw+1)H(sw−1, sw, sw)H(sw−1, sw, sw)

1 + [H(sw, sw−1, sw−1)]2
+ βH(sw, sw−1, sw−1)])) (15)

≤ 1
8α + β

[α
H(sw, sw+1, sw+1)H(sw−1, sw, sw)H(sw−1, sw, sw)

1 + [H(sw, sw−1, sw−1)]2
+ βH(sw, sw−1, sw−1)].

Now, by inequality (3) in Proposition 1, it follows that

H(sw+1, sw, sw) (16)

≤ 1
8α + β

[α
H(sw, sw+1, sw+1)H(sw, sw−1, sw−1)H(sw, sw−1, sw−1)

1 + [H(sw, sw−1, sw−1)]2

+ βH(sw, sw−1, sw−1)]

≤ 1
8α + β

[4αH(sw, sw+1, sw+1) + βH(sw, sw−1, sw−1)]

≤ 1
8α + β

[8αH(sw+1, sw, sw) + βH(sw, sw−1, sw−1)].

and

H(sw+1, sw, sw) (17)

≤ 1
8α + β

[4αH(sw+1, sw, sw) + βH(sw, sw−1, sw−1)].

Reconsidering and rewriting inequality (16), it follows that

H(sw+1, sw, sw) ≤ H(sw, sw−1, sw−1) ≤ · · · ≤ H(s1, s0, s0). (18)

In the same manner, we can see that

H(tw+1, tw, tw) ≤ H(tw, tw−1, tw−1) ≤ · · · ≤ H(t1, t0, t0). (19)

Hence, the sequence {H(sw+1, sw, sw)} is positive decreasing and bounded below. Thus,
the sequence {H(sw+1, sw, sw)} converges to r ≥ 0. We shall prove that r = 0.
Letting w→ +∞ in (17), we have

r ≤ 1
8α + β

(4αr + βr) < r.

Thus r = 0; that is,
lim

w→+∞
H(sw+1, sw, sw) = 0. (20)

Moreover, by Proposition 1, we derive that

lim
w→+∞

H(sw, sw+1, sw+1) = 0. (21)

From inequality (21) and (H3), there exists W ∈ N satisfying that for all w > W,
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H(sw+2, sw+1, sw) (22)

= H(S(sw+1, tw+1), S(sw, tw), S(sw−1, tw−1))

≤ G(
1

8α + β
[α

H(sw+1, sw+2, sw+2)H(sw, sw+1, sw+1)H(sw−1, sw, sw)

1 + [H(sw+1, sw, sw−1)]2
+ βH(sw+1, sw, sw−1)],

ψ(
1

8α + β
[α

H(sw+1, sw+2, sw+2)H(sw, sw+1, sw+1)H(sw−1, swn, sw)

1 + [H(sw+1, sw, sw−1)]2
] + βH(sw+1, sw, sw−1)]))

≤ 1
8α + β

[α
H(sw+1, sw+2, sw+2)H(sw, sw+1, sw+1)H(sw−1, sw, sw)

1 + [H(sw+1, sw, sw−1)]2
+ βH(sw+1, sw, sw−1)]

≤ 1
8α + β

[4αH((sw+2, sw+1, sw) + βH(sw+1, sw, sw−1)]

≤ 1
8α + β

[8αH(sw+2, sw+1, sw) + βH(sw+1, sw, sw−1)].

i.e., for w > W,

H(sw+2, sw+1, sw) ≤ H(sw+1, sw, sw−1).

Hence, the sequence {H(sw+2, sw+1, sw)} is positive decreasing and bounded below. Thus,
the sequence {H(sw+2, sw+1, sw)} converges to p ≥ 0. We shall prove that p = 0.
Letting w→ +∞ in (22), together with (21) and continuity of ψ, we have

p ≤ G(
βp

8α + β
, ψ(

βp
8α + β

)) ≤ βp
8α + β

.

Hence, p = 0, which gives us that

lim
w→+∞

H(sw, sw+1, sw+2) = 0. (23)

Next, we shall show that {sw} is an H-Cauchy sequence.
From Lemma 1, (20) and (21), we derive that

lim
v→+∞

H(su(v), sw(v), sw(v)) = ε, (24)

lim
v→∞

H(su(v)+1, sw(v)+1, sw(v)+2) = ε. (25)

Again, from (H3) and (H5), it follows that

H(su(v), sw(v), sw(v)+1) ≤ H(su(v), sw(v), sw(v)) + H(sw(v), sw(v), sw(v)+1) (26)

≤ H(su(v), sw(v), sw(v)) + H(sw(v), sw(v)+1, sw(v)+2).

Hence, taking v→ +∞ and in virtue of the Sandwich Theorem and (23), (24), we have

lim
v→+∞

H(su(v), sw(v), sw(v)+1) = ε. (27)

Since su(v) � sw(v) � sw(v)+1, putting s = su(v), t = tu(v), a = sw(v), b = tw(v) and
c = sw(v)+1, d = tw(v)+1 in (14), for all v ≥ 0, it follows that
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H(su(v)+1, sw(v)+1, sw(v)+2) (28)

= H(S(su(v), tu(v)), S(sw(v), tw(v)), S(sw(v)+1, tw(v)+1)

≤ G(
1

8α + β
[α

H(su(v), su(v)+1, su(v)+1)H(sw(v), sw(v)+1, sw(v)+1)H(sw(v)+1, sw(v)+2, sw(v)+2)

1 + [H(su(v), sw(v), sw(v)+1)]
2 ]

+ βH(su(v), sw(v), sw(v)+1),

ψ(
1

8α + β
[α

H(su(v), su(v)+1, su(v)+1)H(sw(v), sw(v)+1, sw(v)+1)H(sw(v)+1, sw(v)+2, sw(v)+2)

1 + [H(su(v), sw(v), sw(v)+1)]
2 ]

+ βH(su(v), sw(v), sw(v)+1)]).

Letting u(v)→ +∞, w(v)→ +∞ in (28), from (25) and (27), we have

ε ≤ G(
βε

8α + β
, ψ(

βε

8α + β
)) ≤ βε

8α + β
.

Thus, ε = 0, this contracts with the assumption ε > 0. So {sw} is an H-Cauchy sequence
in Z.

Sequentially, the same reasoning applies to the sequence {tw}; we can also prove that
{tw} is an H-Cauchy sequence in Z. Since (Z, H) is completed with regard to H-metric, it
leads to that there exist points s∗, t∗ ∈ Z satisfying that sw → s∗ and tw → t∗ as w→ +∞.

In the following, it suffices to show that (s∗, t∗) is a coupled fixed point of S. Since S is
continuous on Z and H as a metric is continuous in each variable, it follows that

H(S(s∗, t∗), s∗, s∗) = H( lim
w→+∞

S(sw, tw), s∗, s∗)

= H( lim
w→+∞

sw+1, s∗, s∗)

= lim
w→+∞

H(sw+1, s∗, s∗)

= 0, (29)

which infers that S(s∗, t∗) = s∗. Similar to the above proof, note that H(S(t∗, s∗), t∗, t∗) and
repeating the arguments used to derive (29), we can show S(t∗, s∗) = t∗. This shows us
that S has a coupled fixed point (s∗, t∗).

Remark 2. Taking G(s, t) = (8α + β)s with 0 < 8α + β < 1 in Theorem 4, it easily leads to
Theorem 1. In addition, if we take the special function in Example 1 and its other functions about
the function G, we can also obtain many results.

Example 3. Suppose that Z = [0, +∞) and define H : Z× Z× Z → R+

H(s, t, r) =

{
0, if s = t = r,
max{s, t, r}, otherwise.

We can derive that (Z, H) is completed with regard to H-metric. At the same time, a partial order
� is defined on Z by the following: for any s, t ∈ Z, s � t if s ≥ t. Simultaneously, define
S : Z× Z → Z

S(s, t) =

{
1, if s� t,
0, otherwise.

If s, t, a, b, c, d ∈ Z such that d� b� t� s� a� c with s 6= 0, a 6= 0, c 6= 0; then it follows
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that c ≤ a ≤ s ≤ t ≤ b ≤ d. The left side of (12) turns out to be H(0, 0, 0) = 0. The right side of
(12) becomes

α
H(s, 0, 0)H(a, 0, 0)H(c, 0, 0)

1 + [H(s, a, c)]2
+ βH(s, a, c)

= α
sac

1 + s2 + βs

> 0 with α =
1

16
, β =

1
3

. (30)

If s0 = 0 and t0 = 1, then s0 � G(s0, t0) and t0 � G(t0, s0). So all of Theorem 4’s conditions are
met. It is obvious that S has a coupled fixed point (0, 1). In the meantime, S has another coupled
fixed point (1, 0).

Next, we give the proof of the uniqueness of the coupled fixed point of S in Theorem 4.

Theorem 5. Assume that the conditions are the same as in Theorem 4, except that, if for each
(s, t), (a, b) ∈ Z× Z, there exists a (c, d) ∈ Z× Z that can be comparable to (s, t) and (a, b), there
exists uniqueness of coupled fixed points of S.

Proof. Assume that (s∗, t∗), (s′, t′) ∈ Z× Z are coupled fixed points.
Case I. Suppose that (s∗, t∗) and (s′, t′) are comparable,

H(s∗, s′, s′) = H(S(s∗, t∗), S(s′, t′), S(s′, t′))

≤ G(
1

8α + β
[α

H(s∗, S(s∗, t∗), S(s∗, t∗))[H(s′, S(s′, t′), S(s′, t′))]2

1 + [H(s∗, s′, s′)]2
+ βH(s∗, s′, s′)],

ψ(
1

8α + β
[α

H(s∗, S(s∗, t∗), S(s∗, t∗))[H(s′, S(s′, t′), S(s′, t′))]2

1 + [H(s∗, s′, s′)]2
+ βH(s∗, s′, s′)))

= G(
1

8α + β
[α

H(s∗, s∗, s∗)[H(s′, s′, s′)]2

1 + [H(s∗, s′, s′)]2
+ βH(s∗, s′, s′)],

ψ(
1

8α + β
[α

H(s∗, s∗, s∗)[H(s′, s′, s′)]2

1 + [H(s∗, s′, s′)]2
+ βH(s∗, s′, s′)]))

= G(
β

8α + β
H(s∗, s′, s′), ψ(

β

8α + β
H(s∗, s′, s′)))

≤ β

8α + β
H(s∗, s′, s′) ≤ H(s∗, s′, s′);

therefore one of the following two terms holds: (a) β
8α+β H(s∗, s′, s′) = 0; (b) ψ( β

8α+β H(s∗, s′, s′))
= 0. Then H(s∗, s′, s′) = 0. So we must have s∗ = s′. Similar to the above proof, take
H(S(t∗, s∗), S(t′, s′), S(t′, s′)) into account; it follows that t∗ = t′. This shows (s∗, t∗) =
(s′, t′); then the uniqueness of the coupled fixed points is verified.

Case II. Suppose that (s∗, t∗) cannot be comparable to (s′, t′); according to the factors
of this theorem, there exists (a, b) ∈ Z× Z comparable to (s∗, t∗) and (s′, t′). In cases where
there exists a positive integer u0 satisfying Su0(a, b) = (s∗, t∗), then

Su0(a, b) = (s∗, t∗),

Su0+1(a, b) = S(s∗, t∗) = s∗,

Su0+2(a, b) = S2(s∗, t∗) = S(S(s∗, t∗), S(t∗, s∗)) = S(s∗, t∗) = s∗.

Continuing this process as above, then Su(a, b) = s∗ foru ≥ u0 + 1; therefore Su(a, b) →
s∗ when u→ +∞.

On the other hand, if there does not exist u0, then for each u ≥ 1,
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H(Su(a, b), s∗, s∗) = H(Su(a, b), Su(s∗, t∗), Su(s∗, t∗))

≤ G(
1

8α + β
[α

H(Su−1(a, b), Su(a, b), Su(a, b))[H(Su−1(s∗, t∗), Su(s∗, t∗), Su(s∗, t∗))]2

1 + [H(Su−1(a, b), Su−1(s∗, t∗), Su−1(s∗, t∗))]2

+ βH(Su−1(a, b), Su−1(s∗, t∗), Su−1(s∗, t∗))],

ψ(
1

8α + β
[α

H(Su−1(a, b), Su(a, b), Su(a, b))[H(Su−1(s∗, t∗), Su(s∗, t∗), Su(s∗, t∗))]2

1 + [H(Su−1(a, b), Su−1(s∗, t∗), Su−1(s∗, t∗))]2

+ βH(Su−1(a, b), Su−1(s∗, t∗), Su−1(s∗, t∗))])), (31)

regarding the fact that Su(s, t)) = S(Su−1(s, t), Su−1(t, s)) for each (s, t) ∈ Z× Z. Because
S has a coupled fixed point (s∗, t∗), it follows that Su(s∗, t∗) = s∗ for any u ≥ 1 and by
virtue of (31), it can be inferred that

H(Su(a, b), s∗, s∗) = H(Su(a, b), Su(s∗, t∗), Su(s∗, t∗))

≤ G(
1

8α + β
[α

H(Su−1(a, b), Su(a, b), Su(a, b))[H(s∗, s∗, s∗)]2

1 + [H(Su−1(a, b), s∗, s∗)]2
+ βH(Su−1(a, b), s∗, s∗)],

ψ(
1

8α + β
[α

H(Su−1(a, b), Su(a, b), Su(a, b))[H(s∗, s∗, s∗)]2

1 + [H(Su−1(a, b), s∗, s∗)]2
+ βH(Su−1(a, b), s∗, s∗)]))

= G(
β

8α + β
H(Su−1(a, b), s∗, s∗), ψ(

β

8α + β
H(Su−1(a, b), s∗, s∗)))

≤ β

8α + β
H(Su−1(a, b), s∗, s∗). (32)

Reconsidering and rewriting the above expression, it can be concluded that

H(Su(a, b), s∗, s∗) ≤ H(Su−1(a, b), s∗, s∗). (33)

Take ru = H(Su(a, b), s∗, s∗), which is positive decreasing and bounded below. Hence,
ru = H(Su(a, b), s∗, s∗) → r ≥ 0 when u → +∞. Taking u → +∞ in the equality (32), we
have that

r ≤ G(
β

8α + β
r, ψ(

β

8α + β
r)) ≤ β

8α + β
r < r. (34)

So β
8α+β r = 0 or ψ( β

8α+β r) = 0. Thus r = 0. This proves Su(a, b) → s∗ when u → +∞.
Analogous to the above, it is easy to show that Su(b, a) → t∗ when u → +∞. Replacing
s∗ by s′ and t∗ by t′ and rewriting the above description, it follows that Su(a, b)→ s′ and
Su(b, a) → t′ when u → +∞. Therefore, s∗ = s′ and t∗ = t′. So the (s∗, t∗) = (s′, t′) and
the uniqueness of the coupled fixed point is verified.

Remark 3. Taking G(s, t) = (8α + β)s with 0 < 8α + β < 1 in Theorem 5 easily leads to
Theorem 2.

Taking special functions in Theorem 5 easily leads to the following corollaries.

Corollary 1. Assume that Z is a set endowed with a partial order � and we define H as a
generalized metric on it. Moreover, (Z, H) is completed with regard to H-metric. Suppose S : Z×
Z 7→ Z is continuous on Z with the mixed monotone property. For all (s, t), (a, b), (c, d) ∈ Z× Z
with (s, t)� (a, b)� (c, d),
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H(S(s, t), S(a, b), S(c, d))

≤ 1
8α + β

[α
H(s, S(s, t), S(s, t))H(a, S(a, b), S(a, b))H(c, S(c, d), S(c, d))

1 + [H(s, a, c)]2
+ βH(s, a, c)]−

ψ(
1

8α + β
[α

H(s, S(s, t), S(s, t))H(a, S(a, b), S(a, b))H(c, S(c, d), S(c, d))
1 + [H(s, a, c)]2

+ βH(s, a, c)]),

where ψ ∈ Ψs and 8α + β > 0, α, β ≥ 0. If there exists s0, t0 ∈ Z satisfying that s0 � S(s0, t0)
and t0 � S(t0, s0), then S has a coupled fixed point (s∗, t∗) ∈ Z× Z., i.e., (s∗, t∗) is the solution
of s∗ = S(s∗, t∗), t∗ = S(t∗, s∗). Furthermore, if for each (s, t), (a, b) ∈ Z × Z, there exists a
(c, d) ∈ Z× Z that can be comparable to (s, t) and (a, b), there exists uniqueness of coupled fixed
points of S.

Proof. Take G(s, t) = s− t in Theorem 5; this result obviously holds.

Corollary 2. Assume that Z is a set endowed with a partial order � and we define H as a
generalized metric on it. Moreover, (Z, H) is completed with regard to H-metric. Suppose S : Z×
Z 7→ Z is continuous on Z with the mixed monotone property. For all (s, t), (a, b), (c, d) ∈ Z× Z
with (s, t)� (a, b)� (c, d),

H(S(s, t), S(a, b), S(c, d))

≤ α

8α + β

H(s, S(s, t), S(s, t))H(a, S(a, b), S(a, b))H(c, S(c, d), S(c, d))
1 + [H(s, a, c)]2

+
β

8α + β
H(s, a, c),

where 8α + β > 0, α, β ≥ 0. If there exists s0, t0 ∈ Z satisfying that s0 � S(s0, t0) and
t0 � S(t0, s0), then S has a coupled fixed point (s∗, t∗) ∈ Z × Z., i.e., (s∗, t∗) is the solution
of s∗ = S(s∗, t∗), t∗ = S(t∗, s∗). Furthermore, if for each (s, t), (a, b) ∈ Z × Z, there exists a
(c, d) ∈ Z× Z that can be comparable to (s, t) and (a, b), there exists uniqueness of coupled fixed
points of S.

Proof. Take G(s, t) = s in Theorem 5; this result obviously holds.

Corollary 3. Assume that Z is a set endowed with a partial order � and we define H as a
generalized metric on it. Moreover, (Z, H) is completed with regard to H-metric. Suppose S : Z×
Z 7→ Z is continuous on Z with the mixed monotone property. For all (s, t), (a, b), (c, d) ∈ Z× Z
with (s, t)� (a, b)� (c, d),

H(S(s, t), S(a, b), S(c, d))

≤ [
α

8α + β

H(s, S(s, t), S(s, t))H(a, S(a, b), S(a, b))H(c, S(c, d), S(c, d))
1 + [H(s, a, c)]2

+
β

8α + β
H(s, a, c)]

µ(
α

8α + β

H(s, S(s, t), S(s, t))H(a, S(a, b), S(a, b))H(c, S(c, d), S(c, d))
1 + [H(s, a, c)]2

+
β

8α + β
H(s, a, c)),

where µ : [0,+∞) 7→ [0, 1), and is continuous and 8α + β > 0, α, β ≥ 0. If there exists
s0, t0 ∈ Z satisfying that s0 � S(s0, t0) and t0 � S(t0, s0), then S has a coupled fixed point
(s∗, t∗) ∈ Z× Z., i.e., (s∗, t∗) is the solution of s∗ = S(s∗, t∗), t∗ = S(t∗, s∗). Furthermore, if for
each (s, t), (a, b) ∈ Z× Z, there exists a (c, d) ∈ Z× Z that can be comparable to (s, t) and (a, b),
there exists uniqueness of coupled fixed points of S.

Proof. Take G(s, t) = sµ(s) in Theorem 5; this result obviously holds.

In the following, we offer the proof of the existence of a coupled coincidence point for
two maps S : Z× Z 7→ Z and f : Z 7→ Z.
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Theorem 6. Suppose that Z is a set endowed with a partial order, H is a metric on Z such that
(Z, H) is completed with respect to H-metric. Assume that S : Z × Z 7→ Z and f : Z 7→ Z
are continuous on Z satisfying that S is mixed f -monotone. If S(Z× Z) ⊆ f (Z), f commutes
with S, also for (s, t), (a, b), (c, d) ∈ Z × Z with (s, t) � (a, b) � (c, d) and f s � f a � f c,
f t� f b� f d,

H(S(s, t), S(a, b), S(c, d))

≤ G(
1

8α + β
[α

H( f s, S(s, t), S(s, t))H( f a, S(a, b), S(a, b))H( f c, S(c, d), S(c, d))
1 + [H( f s, f a, f c)]2

+ βH( f s, f a, f c)],

ψ(
1

8α + β
[α

H( f s, S(s, t), S(s, t))H( f a, S(a, b), S(a, b))H( f c, S(c, d), S(c, d))
1 + [H( f s, f a, f c)]2

+ βH( f s, f a, f c)])) (35)

where G ∈ C, ψ ∈ Ψu and 8α + β > 0, α, β ≥ 0. Supposing that there is s0, t0 ∈ Z satisfying that
f s0 � S(s0, t0) and f t0 � S(t0, s0), so (s∗, t∗) ∈ Z× Z is a coupled coincidence point of S and
f , i.e., (s∗, t∗) is the solution of f s∗ = S(s∗, t∗), f t∗ = S(t∗, s∗).

Proof. In virtue of S(Z× Z) ⊆ f (Z), taking s1, t1 ∈ Z satisfying that f s1 = S(s0, t0), f t1 =
S(t0, s0). Going on with this, s2, t2 ∈ Z can be found with f s2 = S(s1, t1), f t2 = S(t1, s1).
Since S is mixed g−monotone, it follows that f s0 � f s1 � f s2 and f t2 � f t1 � f t0. In
general, it can be shown that for u ≥ 0,

f su = S(su−1, tu−1)� f su+1 = S(su, tu),

f tu+1 = S(tu, su)� f tu = S(tu−1, su−1).

Setting s = su, a = c = su−1, t = tu, b = d = tu−1 in inequality (35), an analysis analogous
to that in Theorem 4 shows

H( f su+1, f su, f su)

≤ G(
1

8α + β
[4α

H( f su, f su+1, f su+1)[H( f su−1, f su, f su)]2

1 + [H( f su−1, f su, f su)]2
+ βH( f su, f su−1, f su−1)],

ψ(
1

8α + β
[4α

H( f su, f su+1, f su+1)[H( f su−1, f su, f su)]2

1 + [H( f su−1, f su, f su)]2
+ βH( f su, f su−1, f su−1)]))

1
8α + β

[4αH( f su+1, f su, f su) + βH( f su, f su−1, f su−1)]

≤ 1
8α + β

[8α H( f su+1, f su, f su) + βH( f su, f su−1, f su−1)]. (36)

and

H( f su+1, f su, f su)

≤ 1
8α + β

[4αH( f su+1, f su, f su) + βH( f su, f su−1, f su−1)]. (37)

Reconsidering and rewriting (36), it follows that

H( f su+1, f su, f su) ≤ H( f su, f su−1, f su−1) ≤ · · · ≤ H( f s1, f s0, f s0). (38)

In the same manner, we also obtain

H( f tu+1, f tu, f tu) ≤ H( f tu, f tu−1, f tu−1) ≤ · · · ≤ H( f t1, f t0, f t0). (39)
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Hence, the sequence {H( f su+1, f su, f su)} is positive decreasing and bounded below. Thus,
the sequence {H( f su+1, f sn, f sn)} converges to r ≥ 0. We shall prove that r = 0.
Taking n→ +∞ in (37), we have

r ≤ 1
8α + β

(4αr + βr) < r.

So r = 0, i.e.,
lim

u→+∞
H( f su+1, f su, f su) = 0. (40)

Further, making use of Proposition 1, we derive that

lim
u→+∞

H( f su, f su+1, f su+1) = 0. (41)

An analysis analogous to that in Theorem 4 infers that { f su} is Cauchy with regard to
H-metric in (Z, H).
Since (Z, H) is completed with regard to H-metric, it leads to a point s∗ ∈ Z satisfying
f su → s∗ when u→ +∞.
Keeping on as before, we can also show further that { f tu} is Cauchy with regard to H-
metric in (Z, H) and (Z, H) is completed with regard to H-metric; there exists a point
t∗ ∈ Z such that f tu → t∗ when u→ +∞.
At last, it suffices to show that S has a coupled coincident point (s∗, t∗). Because S and f
commute, it follows that

f ( f su+1) = f (S(su, tu)) = S( f su, f tu). (42)

f ( f tu+1) = f (S(tu, su)) = S( f tu, f su). (43)

Setting limits when u → +∞ in (42), (43) and S and f are, respectively, continuous on
Z× Z and Z, we obtain

f s∗ = lim
u→+∞

f ( f su+1) = lim
u→+∞

f (S(su, tu)) = lim
u→+∞

S( f su, f tu). (44)

f t∗ = lim
u→+∞

f ( f tu+1) = lim
u→+∞

f (S(tu, su)) = lim
u→+∞

S( f tu, f su). (45)

Because H is continuous with respect to its variables, it follows that

H(S(s∗, t∗), f s∗, f s∗) = H( lim
u→+∞

S( f su, f tu), f s∗, f s∗)

= H( f s∗, f s∗, f s∗)

= 0. (46)

Therefore f s∗ = S(s∗, t∗). Moreover, it leads to f t∗ = S(t∗, s∗). It shows that S and f have
coupled coincidence point (s∗, t∗).

Remark 4. Take G(s, t) = (8α + β)s with 0 < 8α + β < 1 in Theorem 6; it is easy to obtain
Theorem 3. In addition, with the same idea as the above corollaries, by taking special functions G
and ψ in Theorem 6, we can also obtain some coupled coincidence point results of the two mappings.

Example 4. Let Z = [0, 1] endowed with the natural ordering of real numbers and H(s, t, r) =
max{s, t, r}; obviously, (Z, H) is completed with respect to H-metric. Definite functions S and g
are by

S(s, t) =

{
s

12 + t
2 , if s ≥ t,

0, otherwise.
, f (s) =

2s
3

.

Obviously, there exist s0 = t0 = 0 such that f s0 ≤ S(s0, t0) and f t0 ≥ S(t0, s0); furthermore, S
and f are continuous functions, S(Z, Z) ⊆ g(Z), S is mixed f -monotone and f commutes with
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S. Take G(s, t) = 1
8α+β s, where α ≥ 0 and β = 7

8 . Now, we show S and f satisfy condition (35).
Indeed, we take s, t, a, b, c, d with s ≤ a ≤ c and t ≥ b ≥ d.

Case I: If s ≥ t, a ≥ b and c ≥ d, we have

H(S(s, t), S(a, b), S(c, d))

= H(
s

12
+

t
2

,
a

12
+

b
2

,
c

12
+

d
2
)

= max{ s
12

+
6t
12

,
a

12
+

6b
12

,
c

12
+

6d
12
}

≤ 7c
12

≤ 7
8

max{2s
3

,
2a
3

,
2c
3
}

=
7
8

H( f s, f a, f c)

≤ α
H( f s, S(s, t), S(s, t))H( f a, S(a, b), S(a, b))H( f c, S(c, d), S(c, d))

1 + [H( f s, f a, f c)]2
+

7
8

H( f s, f a, f c).

Case II: If s ≥ t, a ≥ b and c < d, we obtain

H(S(s, t), S(a, b), S(c, d))

= H(
s

12
+

t
2

,
a

12
+

b
2

, 0)

= max{ s
12

+
6t
12

,
a

12
+

6b
12

, 0}

≤ 7c
12

≤ 7
8

max{2s
3

,
2a
3

,
2c
3
}

=
7
8

H( f s, f a, f c)

≤ α
H( f s, S(s, t), S(s, t))H( f a, S(a, b), S(a, b))H( f c, S(c, d), S(c, d))

1 + [H( f s, f a, f c)]2
+

7
8

H( f s, f a, f c).

Case III: If s ≥ t, a < b and c < d, we obtain

H(S(s, t), S(a, b), S(c, d))

= H(
s

12
+

t
2

, 0, 0)

= max{ s
12

+
6t
12

, 0, 0}

≤ 7c
12

≤ 7
8

max{2s
3

,
2a
3

,
2c
3
}

=
7
8

H( f s, f a, f c)

≤ α
H( f s, S(s, t), S(s, t))H( f a, S(a, b), S(a, b))H( f c, S(c, d), S(c, d))

1 + [H( f s, f a, f c)]2
+

7
8

H( f s, f a, f c).
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Case IV: If s < t, a < b and c < d, we obtain

H(S(s, t), S(a, b), S(c, d))

= H(0, 0, 0)

= max{0, 0, 0}

≤ 7
8

H( f s, f a, f c)

≤ α
H( f s, S(s, t), S(s, t))H( f a, S(a, b), S(a, b))H( f c, S(c, d), S(c, d))

1 + [H( f s, f a, f c)]2
+

7
8

H( f s, f a, f c).

Similarly, the other cases follow immediately. Therefore, all the conditions of Theorem 6 are satisfied,
so S and f have a coupled coincidence point.

4. Coupled Coincidence Point Theorem via Inverse Ck-Class Functions

In the section, if we carry out some changes in the first inequality of Definition 8, we
obtain another kind of inverse C-class function, which can be regarded as the generalization
of the inverse C-class functions.

Definition 7. A mapping G : [0,+∞)2 7→ R is said to be an inverse Ck-class function in cases
where it is continuous and the terms as follows hold:

(i) G(x, y) ≥ lx for all x, y ∈ [0,+∞) and some l ≥ 1.
(ii) G(x, y) = lx yields that one of the two terms holds: (a) x = 0; (b) y = 0.

Cinv denotes the set of all the inverse Ck-class functions. Every inverse C-class function
is equivalent to an inverse Ck-class function when k = 1, but the scope of an inverse Ck-class
function must be larger than that of an inverse C-class function.

Example 5. A mapping G : [0,+∞)2 7→ R is a function satisfying that G(x, y) = lx loga(
1
2 la +

y) for all x, y ∈ [0,+∞), l ≥ 1 and a > 1. Then, obviously, G is an inverse Ck-class function
when l ≥ 1, because G(x, y) ≥ lx when l ≥ 2, a > 1 and y ≥ 0 and G(x, y) = lx ⇒ y = 0 when
l = 2. Yet it is not an inverse C-class function, because G(x, y) ≥ x does not hold if l = 1, y 6= 0
and G(x, y) = x does not imply y = 0 since we can set l = 1, y = 1

2 a > 2.

Example 6. We define a mapping G : [0,+∞) 7→ R by G(x, y) = 2x + y for all x, y ∈ [0,+∞).
So, it is obvious that G is an inverse Ck-class function for k = 2, but it is not an inverse C-class
function.

Example 7. All the mappings G : [0,+∞)2 7→ R belong to Cinv-k, for all x, y ∈ [0,+∞):

1. G(x, y) = kx + ly, G(x, y) = kx leads to y = 0 for some k ≥ 1 and l > 0.
2. G(x, y) = knx, G(x, y) = kx leads to x = 0 for n ∈ (1,+∞) and some k ≥ 1.
3. G(x, y) = kx(1 + ky)r, G(x, y) = kx leads to x = 0 or y = 0 for r ∈ (0,+∞) and some

k ≥ 1.
4. G(x, y) = loga[(ky + akx)(1 + ky)], G(x, y) = ks leads to y = 0 for some a > 1 and some

k ≥ 1.
5. G(x, y) = kϕ(s), G(x, y) = kx leads to x = 0, where ϕ : [0,+∞) 7→ [0,+∞) is an upper

semi-continuous function satisfying that ϕ(0) = 0 and ϕ(x) > x, for x > 0 and some k ≥ 1.

The purpose of this section is to give the existence theorem of a coupled coincidence
point by use of inverse Ck-class functions.

Singh et al. [33], also introduce new notions which are called g-compatible of type (E)
and f -compatible of type (E). We all know that f and g are self-mappings on Z. Inspired
by Singh’s work, we define f -compatible of type (E) and S-compatible of type (E) where
f : Z 7→ Z and S : Z× Z 7→ Z.
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Definition 8. Two maps f : Z 7→ Z and S : Z × Z 7→ Z in a metric space (Z, d) are
called f -compatible of type (E) if lim

u→+∞
f f su = lim

u→+∞
f S(su, su) = S(y, y), whenever {su}

is a sequence in Z with the fact that lim
u→+∞

f su = lim
u→+∞

S(su, su) = y for some y ∈ Z. Sim-

ilarly, two self-mappings f and S of a metric space (Z, d) are called S-compatible of type (E)
if lim

u→+∞
S(S(su, su), S(su, su)) = lim

u→+∞
S( f su, f su) = f y, whenever {su} is a sequence in Z

satisfying that lim
u→+∞

f su = lim
u→+∞

S(su, su) = y for some y ∈ Z.

Theorem 7. Suppose that Z is a set endowed with a partial order; H is a metric on Z satisfying that
(Z, H) is completed with respect to H-metric. Assume that S : Z× Z 7→ Z and f : Z 7→ Z are,
respectively, continuous on Z× Z and Z satisfying that ( f , S) is S-compatible of type (E) and S is
mixed f -monotone. Let S(Z× Z) ⊆ f (Z); f commutes with S and for (s, t), (a, b), (c, d) ∈ Z× Z
with (s, t)� (a, b)� (c, d) and f s� f a� f c, f t� f b� f d,

kH( f s, f a, f c)

≥ G(
1

2α + β
[4α

H( f s, S(s, t), S(s, t))(1 + H( f a, S(a, b), S(a, b)))(1 + H( f c, S(c, d), S(c, d)))
[1 + H( f s, f a, f c)]2

+ βH( f s, f a, f c)],

ψ(
1

2α + β
[4α

H( f s, S(s, t), S(s, t))(1 + H( f a, S(a, b), S(a, b)))(1 + H( f c, S(c, d), S(c, d)))
[1 + H( f s, f a, f c)]2

+ βH( f s, f a, f c)])) (47)

where G ∈ Cinv-k, ψ ∈ Ψu and 2α + β > 0, α, β ≥ 0. If there exists s0, t0 ∈ Z satisfying that
f s0 � S(s0, t0) and f t0 � S(t0, s0), then (x∗, y∗) ∈ X× X is a a coupled coincidence point of S
and f , i.e., (s∗, t∗) is the solution of f s∗ = S(s∗, t∗), f t∗ = S(t∗, s∗).

Proof. Because S(Z × Z) ⊆ f (Z), take s1, t1 ∈ Z satisfying that f s1 = S(s0, t0), f t1 =
S(t0, s0). Continuing this way, s2, t2 ∈ Z can be found satisfying that f s2 = S(s1, t1), f t2 =
S(t1, s1). Since S is mixed g−monotone, it can be inferred that f s0 � f s1 � f s2, f t2 �
f t1 � f t0. Inductively, it can be shown that for u ≥ 0,

f su = S(su−1, tu−1)� f su+1 = S(su, tu),

f tu+1 = S(tu, su � f tu = S(tu−1, su−1).

Taking s = su, a = c = su−1, t = tu, b = d = tu−1 in inequality (47), we have,

kH( f su, f su−1, f su−1)

≥ G(
1

2α + β
[4α

H( f su, f su+1, f su+1)[1 + H( f su−1, f su, f su)]2

[1 + H( f su, f su−1, f su−1)]2
+ βH( f su, f su−1, f su−1)],

ψ(
1

2α + β
[4α

H( f su, f su+1, f su+1)[1 + H( f su−1, f su, f su)]2

[1 + H( f su, f su−1, f su−1)]2
+ βH( f su, f su−1, f su−1)]))

≥ k
1

2α + β
[4α H( f su+1, f su, f su) + βH( f su, f su−1, f su−1)],

≥ k
1

2α + β
[2α H( f su+1, f su, f su) + βH( f su, f su−1, f su−1)]. (48)

and
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kH( f su, f su−1, f su−1)

≥ G(
1

2α + β
[4α

H( f su, f su+1, f su+1)[1 + H( f su−1, f su, f su)]2

[1 + H( f su, f su−1, f su−1)]2
+ βH( f su, f su−1, f su−1)],

ψ(
1

2α + β
[4α

H( f su, f su+1, f su+1)[1 + H( f su−1, f su, f su)]2

[1 + H( f su, f su−1, f su−1)]2
+ βH( f su, f su−1, f su−1)]))

≥ k
1

2α + β
[4α H( f su+1, f su, f su) + βH( f su, f su−1, f su−1)]. (49)

Reconsidering and rewriting (48), it follows that

H( f su+1, f su, f su) ≤ H( f su, f su−1, f su−1) ≤ · · · ≤ H( f s1, f s0, f s0). (50)

In the same manner, we can see that

H( f tu+1, f tu, f tu) ≤ H( f tu, f tu−1, f tu−1) ≤ · · · ≤ H( f t1, f t0, f t0). (51)

Hence, the sequence {H( f su+1, f su, f su)} is positive decreasing and bounded below. Thus,
the sequence {H( f su+1, f su, f su)} converges to r ≥ 0. It suffices to prove that r = 0.
Taking u→ +∞ in (49), it follows that

kr ≥ k
2α + β

(4αr + βr) > kr.

Therefore, r = 0,i.e.,
lim

u→+∞
H( f su+1, f su, f su) = 0. (52)

Furthermore, making use of Proposition 1, we deduce that

lim
u→+∞

H( f su, f su+1, f su+1) = 0. (53)

An analysis analogous to that in Theorem 4 yields that { f su} is Cauchy with respect to
H−metric in (Z, H).
Because (Z, H) is completed with respect to H-metric, it is obvious that there is a point
s∗ ∈ X satisfying that f su → s∗ when u→ +∞.
Going on as before, we can also show further that { f tu} is Cauchy with respect to H-metric
in (Z, H). Since (Z, H) is completed with respect to H-metric, there exists a point t∗ ∈ Z
satisfying that f tu → t∗ when u→ +∞.
At last, it suffices to prove that f and S have a coupled coincident point (s∗, t∗).
Because S and f commute, it follows that

f ( f su+1) = f (S(su, tu)) = S( f su, f tu), (54)

f ( f tu+1) = f (S(tu, su)) = S( f tu, f su). (55)

Setting limits when u → +∞ in (54), (55), since S and f are, respectively, continuous on
Z× Z and Z, we obtain

f x∗ = lim
u→+∞

f ( f su+1) = lim
u→+∞

f (S(su, tu)) = lim
u→+∞

S( f su, f tu) (56)

f t∗ = lim
u→+∞

f ( f tu+1) = lim
u→+∞

f (S(tu, su)) = lim
u→+∞

S( f tu, f su) (57)
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Sequentially, since H is continuous with respect to all its variables, it follows that

H(S(s∗, t∗), f s∗, f s∗)

= H( lim
u→+∞

S( f su, f tu), f s∗, f s∗)

= H( f s∗, f s∗, f s∗)

= 0. (58)

Therefore, f s∗ = S(s∗, t∗). Analogously, f t∗ = S(t∗, s∗). This shows that (s∗, t∗) is a
coupled coincidence point.

Remark 5. (i) The contractive condition (47) is different from (35) in Theorem 6. At first, the
direction of inequality changes from ≤ to ≥. In fact, that is the key difference between G ∈ C
and G ∈ Cinv−k. Secondly, the left-hand side of the inequality becomes kH( f s, f a, f c) which is
different from H(S(s, t), S(a, b), S(c, d) in Theorem 6. This difference makes the proof of the Cauchy
sequence f su easier.

(ii) There is an open question. Why not use the S-compatibility of type (E) of the pair
( f , S). There is also the question whether we can replace the mixed f -monotonicity of ( f , S) with
S-compatibility of type (E) of ( f , S). In other words, it seems that the proof of Theorem 7 could
pass without the S-compatibility of type (E) of ( f , S).

5. Application

In this section, Theorem 5 is used to guarantee the existence and uniqueness of
solutions to the following integral equations:

x(t) =
∫ b

a
(K1(t, s) + K2(t, s))( f1(s, x(s)) + f2(s, x(s)))ds + h(t), (59)

where fi : [a, b] × R → R, K1 : [a, b] × [a, b] → [0,+∞), K2 : [a, b] × [a, b] → (−∞, 0]
and h(t) : [a, b] → R are continuous for all i = 1, 2. Let H : C([a, b], R)× C([a, b], R)×
C([a, b], R)→ R be a function defined by

H(x, y, z) = max{( sup
t∈[a,b]

|x(t)− y(t)|, sup
t∈[a,b]

|x(t)− z(t)|, sup
t∈[a,b]

|y(t)− z(t)|)} (60)

where C([a, b], R) by the set of all continuous real-value functions defined on [a, b]. It is
easy to see that (C([a, b], R), H) is completed with regard to H-metric. Let S : C([a, b], R)×
C([a, b], R)→ C([a, b], R) be a mapping defined by

S(x(t), y(t)) =
∫ b

a
(K1(t, s) + K2(t, s))( f1(s, x(s)) + f2(s, y(s)))ds + h(t), for all t ∈ [a, b]. (61)

Suppose that the following conditions hold:

(i) There exist two numbers λ > 0 and α, β ≥ 0 with 8α + β > 0 such that

0 ≤ f2(t, u(t))− f2(t, v(t)) ≤ f1(t, x(t))− f1(t, y(t)) ≤ λβ

8α + β
(x− y),

for all x ≥ y, u ≥ v, x, y, u, v ∈ R;
(ii) sup

t∈[a,b]
|
∫ b

a K1(t, s) + K2(t, s)ds| ≤ k
λ where k ∈ 0, 1;

(iii) fi and g are increasing functions for all i = 1, 2;
(iv) There exists a couple lower-upper solution (x0, y0) of Equation (59); that is,

x0(t) ≤
∫ b

a
(K1(t, s) + K2(t, s))( f1(s, x0(s)) + f2(s, y0(s)))ds + h(t)
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and

y0(t) ≥
∫ b

a
(K1(t, s) + K2(t, s))( f1(s, y0(s)) + f2(s, x0(s)))ds + h(t).

Now we prove the existence of a solution of the mentioned integral equations (59).

Theorem 8. Under conditions (i)–(iv), (59) has a solution in C([a, b], R).

Proof. Consider a partial order on C([a, b], R); that is, x � y if and only if x ≤ y. Assume
that x, y, u, v, w, z ∈ C([a, b], R) such that x(t) ≤ u(t) ≤ w(t) and y(t) ≥ v(t) ≥ z(t), for all
t ∈ [a, b]. By (i) and (ii); we obtain

|S(x, y)− S(u, v)| = |
∫ b

a
(K1(t, s) + K2(t, s))( f1(s, x(s)) + f2(s, y(s)))ds + h(t)−∫ b

a
(K1(t, s) + K2(t, s))( f1(s, u(s)) + f2(s, v(s)))ds + h(t)|

= |
∫ b

a
(K1(t, s) + K2(t, s)( f1(s, x(s))− f1(s, u(s)))ds

+
∫ b

a
(K1(t, s) + K2(t, s)(( f2(s, y(s))− f2(s, v(s)))ds|

= |
∫ b

a
(K1(t, s) + K2(t, s)( f1(s, u(s))− f1(s, x(s)))ds

−
∫ b

a
(K1(t, s) + K2(t, s)(( f2(s, y(s))− f2(s, v(s)))ds|

≤ |
∫ b

a
(K1(t, s) + K2(t, s))( f1(s, u(s))− f1(s, x(s)))ds|

≤ sup
t∈[a,b]

|
∫ b

a
K1(t, s) + K2(t, s)ds| sup

t∈[a,b]
(

λβ

8α + β
[u(t)− x(t)])

≤ kβ

8α + β
sup

t∈[a,b]
[u(t)− x(t)].

Analogously, we can obtain

|S(u, v)− S(w, z)| ≤ kβ

8α + β
sup

t∈[a,b]
[w(t)− u(t)]

and
|S(x, y)− S(w, z)| ≤ kβ

8α + β
sup

t∈[a,b]
[w(t)− x(t)].

Since
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H(S(x, y), S(u, v), S(w, z))

= max{( sup
t∈[a,b]

|S(x, y)− S(u, v)|, sup
t∈[a,b]

|S(x, y)− S(w, z)|, sup
t∈[a,b]

|S(u, v)− S(w, z)|)}

≤ max{ kβ

8α + β
sup

t∈[a,b]
[u(t)− x(t)],

kβ

8α + β
sup

t∈[a,b]
[w(t)− x(t)],

kβ

8α + β
sup

t∈[a,b]
[w(t)− u(t)]}

=
kβ

8α + β
max{ sup

t∈[a,b]
[u(t)− x(t)], sup

t∈[a,b]
[w(t)− x(t)], sup

t∈[a,b]
[w(t)− u(t)]}

=
kβ

8α + β
H(x, u, w)

≤ 1
8α + β

[α
H(x, S(x, y), S(x, y))H(u, S(u, v), S(u, v))H(w, S(w, z), S(w, z))

1 + [H(x, u, w)]2
+ βH(x, u, w)]

− 1− k
8α + β

[α
H(x, S(x, y), S(x, y))H(u, S(u, v), S(u, v))H(w, S(w, z), S(w, z))

1 + [H(x, u, w)]2
+ βH(x, u, w)]

Let ψ(x) = (1− k)x and G(x, y) = x− y; we can obtain

H(S(x, y), S(u, v), S(w, z))

≤ G(
1

8α + β
[α

H(x, S(x, y), S(x, y))H(u, S(u, v), S(u, v))H(w, S(w, z), S(w, z))
1 + [H(x, u, w)]2

+ βH(x, u, w)],

ψ(
1

8α + β
[α

H(x, S(x, y), S(x, y))H(u, S(u, v), S(u, v))H(w, S(w, z), S(w, z))
1 + [H(x, u, w)]2

+ βH(x, u, w)])),

Thus, S satisfies condition (14). It is obvious that S is continuous with the mixed mono-
tone property and there exist x0(t), y0(t) such that x0(t) � S(x0(t), y0(t)) and y0(t) �
S(y0(t), x0(t)) by (iii) and (iv). S satisfies all the conditions of Theorem 5; then, S has a
unique couple fixed point. Assume that (x, y) is the couple fixed point of S; we can deduce
that (y, x) is also a couple fixed point of S. x = y due to the uniqueness of the couple fixed
point of S. That is (59) has a unique solution for C([a, b], R).

6. Conclusions

In conclusion, a rational type contractive condition is proposed in an H-metric space
and some coupled fixed point theorems for mappings which are mixed monotone are
given. The uniqueness of the coupled fixed point is offered. The existence of coupled
coincidence points of two mappings are also obtained. In addition, the coupled coincidence
point theorems by virtue of inverse Ck-class functions are proved in the context of mixed
f -monotonicity of ( f , S). Furthermore, Some examples and an application are given to
justify the main results. It is well known that the fixed point theorem plays an important
role in ensuring the existence and uniqueness of solutions concerning some equations; we
consider possible future research directions.

There are some works in the future:
(i) Discuss the possibility of applying coupled fixed point results to the problems of

differential equations, for example, fuzzy and set differential equations and discontinuous
differential equations;

(ii) Discuss the properties of the C-class functions for coupled fixed point problems
which include data dependence, well-posedness, Ulam–Hyers stability, limit shadowing
property.
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27. Ćirić, L.; Alsulami, S.M.; Parvaneh, V.; Roshan, J.R. Some fixed point results in ordered Gp-metric spaces. Fixed Point Theory A 2013,
2013, 317. [CrossRef]

28. Harjani, J.; López, B.; Sadarangani, K. A fixed point theorem for mappings satisfying a contractive condition of rational type on a
partially ordered metric space. Abstr. Appl. Anal. 2010, 2010. [CrossRef]

29. Jaggi, D.S. Some unique fixed point theorems. Indian J. Pure. Ap. Mat. 1977, 8, 223–230.
30. Chakrabarti, K. Coupled fixed point theorems with rational type contractive condition in a partially ordered G-metric space. J.

Math. 2014, 2014, 785357. [CrossRef]
31. Ansari, A.H. Note on “ϕ-ψ-contractive type mappings and related fixed point”. In Proceedings of the the 2nd Regional Conference

on Mathematics and Applications, Payame Noor University, Tehran, Iran, September 2014; pp. 377–380.
32. Saleem, N.; Ansari, A.H.; Jain, M.K. Some fixed point theorems of inverse C-class funtion under weak semi compatibility. J. Fixed

Point Theory 2018, 2018, 23.
33. Singh, M.R.; Singh, Y.M. On various types of compatible maps and common fixed point theorems for non-continuous maps.

Hacettepe J. Math. Stat. 2011, 40, 503–513.

http://dx.doi.org/10.1186/1687-1812-2013-326
http://dx.doi.org/10.1155/2014/585964
http://www.ncbi.nlm.nih.gov/pubmed/24895655
http://dx.doi.org/10.1186/1687-1812-2013-317
http://dx.doi.org/10.1155/2010/190701
http://dx.doi.org/10.1155/2014/785357

	 Introduction 
	Preliminaries
	 Main Results
	Coupled Coincidence Point Theorem via Inverse Ck-Class Functions
	Application
	Conclusions
	References

