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Abstract: Due to the rapid development of theoretical and computational techniques in the recent
years, the role of nonlinearity in dynamical systems has attracted increasing interest and has been
intensely investigated. A study of nonlinear waves in shallow water is presented in this paper. The
classic form of the Korteweg–de Vries (KdV) equation is based on oceanography theory, shallow
water waves in the sea, and internal ion-acoustic waves in plasma. A shallow fluid assumption is
shown in the framework by a sequence of nonlinear fractional partial differential equations. Indeed,
the primary purpose of this study is to use a semi-analytical technique based on Fractional Taylor
Series to achieve numerical results for nonlinear fifth-order KdV models of non-integer order. Caputo
is the operator used for dealing with fractional derivatives. The generated solutions of nonlinear
fifth-order KdV models of non-integer order for modeling turbulence processes in the field of ocean
engineering are compared analytically and numerically, to demonstrate the behaviors of several
parameters of the current model. We verified the method’s convergence analysis and provided an
error estimate by showing 2D and 3D graphs to further confirm its efficacy.

Keywords: nonlinear waves; symmetry; dynamic analysis; fractional partial differential equations;
Korteweg–de Vries; fractional derivatives

1. Introduction

Fractional differential equations (FDEs) are becoming increasingly popular in a variety
of research and engineering applications. FDEs have piqued the interest of many scholars
in the recent years due to their wide range of applications in the applied sciences. FDEs are
ideal for representing a wide range of phenomena in electromagnetics, fluid mechanics,
viscoelasticity, solid mechanics, biological population models, electrochemistry, and signal
processing (see, for example, [1,2]).

In most circumstances, accurate solutions for FDEs are not accessible, hence, the use of
various numerical approaches to suggest effective numerical solutions to tackle the various
FDEs becomes important. Some FDEs are treated using wavelet approaches, as shown
in [3,4]. A variety of studies, including [5–7], make use of operational matrix approaches.
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For some more numerical approaches that may be used to address various FDEs, see, for
example [8–10].

The propagation of long waves, which is nonlinear in nature, in the environment
is a physical phenomenon that has been summarized in a number of reviews, including
those on the seas [11], stratified laboratory studies [12], and the earth’s atmosphere [13].
To explain the dispersion of these nonlinear long waves in a purely physical sense, many
mathematical models have been developed. The majority of these models are derived from
the well-known KdV equation, which is a generic model for studying weakly nonlinear
long waves.

Studies showed that it originated by applying a multi-scale asymptotic procedure
to the main Euler equations for incompressible and inviscid fluids, and it chiefly defined
surface waves with small amplitudes and long wavelengths in shallow water [14] and
internal waves in a shallow density-stratified fluid [15]. The KdV equation is derived by
taking dispersion and nonlinearity of first-order only of a first-order perturbation expan-
sion. However, in many circumstances, finer clarity is required when explaining physical
processes. The effect of nonlinear and dispersive terms of higher order in physical systems,
on the other hand, cannot be overlooked. In this situation, applying the perturbation
procedure to the leading Euler equations while leaving second-order components out of
the perturbation expansions result in the KdV-like equation of fifth-order. Marchant and
Smyth [16,17] introduced the KdV-like equation of fifth-order in the background of propa-
gating surface water waves to simulate more precisely the resonant flow of a fluid across
the terrain. In [18], an equation of this sort was also created to investigate higher-order
solitary-wave interactions.

The identical equation was obtained by the author in [19] to describe surface waves
in shallow water exposed to a linear shear flow. The fifth-order KdV-like equation was
developed for propagating internal waves in stratified media first by Koop and Butler [20]
for a two-layer system, and later, by Lamb and Yan [21] for a continuous density strati-
fication with no free surface and no fundamental shear flow. Pelinovsky et al. [22] then
modified the same equation to incorporate a basic shear flow, but with no free surface.
Furthermore, the fifth-order KdV-type equation was utilized to explain internal waves of
modest amplitude in density-stratified fluids [23].

Many applications use Korteweg–de Vries (KdV)-type equations and their modifi-
cations. There are several forms of KdV equations. The third-order KdV equations are
equations that represent the behavior of one-dimensional shallow water waves of modest
but finite amplitude, for example, [24,25]. A modified third-order KdV problem was han-
dled in [26] using the Petrov–Galerkin finite element technique. Some papers looked at
fifth-order KdV equations. For example, the authors of [27] suggested a numerical method
for dealing with fifth-order KdV equations. In [28], another strategy based on the decompo-
sition method was used to handle the fifth-order KdV problem. In terms of seventh-order
KdV equations, several explicit solutions of KdV–Burgers’ and Lax’s seventh-order KdV
equations were published in [29].

Some writers looked at different sorts of fractional KdV equations.
A form of fractional KdV equation, for example, was handled using the fractional

natural decomposition approach in [30]. The author of [31] used a Green’s function to
solve the fractional KdV equation. For the time fractional KdV equation with a weak
singularity solution, [32] employed the Galerkin technique. Many writers presented numer-
ical solutions to time FPDEs with a second-order partial derivative, for example, [33–35];
however, numerical studies of time FPDEs with a third-order partial derivative remain
insufficient. This piques our curiosity in researching such issues. The authors suggested
a Petrov–Galerkin spectral approach for dealing with the linearized time fractional KdV
problem in [36]. There are several ways for dealing with some fractional KdV equations,
such as [37,38].

We will concentrate on getting a semi-analytic solution to the aforementioned problem
in this paper. We will use a novel analytical approach for this aim. The authors of [39]
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pioneered this technique. Many scholars are interested in the Novel Analytical approach,
which is a novel efficient method for solving partial differential equations. Some of these
may be found in [40–55].

The remainder of the article is arranged as follows. Some important definitions of
fractional calculus theory are given in Section 2. Section 3 is limited to suggesting a
numerical technique for numerically treating the fractional fifth-order KdV problem using
the Fractional Novel Analytical Method (FNAM). Section 4 discusses the investigation of
the numerical problems by the above-mentioned method with the help of error graphs.
Graphs for different values of alpha are also presented in this section. In addition, some
estimates for truncation and global errors are included in this section. Finally, in Section 5,
some findings are offered.

2. Preliminaries of Fractional Calculus

We introduce the basic definitions and properties of fractional calculus [39–42] in
this section.

Definition 1. A real function G(ρ), ρ > 0 is said to be in space Cυ, υ ∈ R if ∃ a real number
p > υ such that G(ρ) = ρpG1(ρ) where G1(ρ) ∈ C(0,+∞) and it is said to be in the space Cℵυ if
Gℵ ∈ Cυ, ℵ ∈ N.

Definition 2. The Riemann–Liouville (RL) Fractional Integral (FI) operator of order α, of a function
G ∈ Cυ, υ > −1, is defined as:

JαG(ρ) =
1

Γ[α]

∫ ρ

0
(ρ− ς)α−1G(ς)dς, α > 0

J0G(ρ) = G(ρ)

Many authors have studied recently different inequalities of RL-FI’s, for further details,
see [39–42]. We need here some properties of the operator Jα, which are as follows: for G ∈ Cυ,
υ ≥ −1, α, β ≥ 0

Jα JβG(ρ) = Jα+βG(ρ)

Jαρn =
Γ[n + 1]

Γ[n + α + 1]
ρα+n

Definition 3. The Fractional Derivative (FD) of G(ρ) in the Caputo sense [42] is defined as:

DαG(ρ) = Jm−αDmG(ρ)

for m − 1 < α ≤ m, m ∈ N, ρ > 0 & G ∈ Cm
−1. In Caputo FD, an ordinary derivative

is estimated followed by an FI to attain the desired order of FD. The RL-FI operator is a linear
operation, defined as:

Jα

(
h

∑
`=1

C`G`(ρ)

)
=

h

∑
`=1

C` JαG`(ρ)

where {C`}h
` are constants. In this study, FD’s are considered in the Caputo sense.

3. Fractional Novel Analytical Method for Fifth-Order Fractional Korteweg–De
Vries Equations

We will discuss the elementary concepts of constructing an FNAM for the fifth-order
Fractional Korteweg–de Vries Equation (FKDVE) in this section. Consider the following
general Fractional Order FKdvE:

D2δ
η φ(ρ, η) = H

(
Dδ

ηφ, φ, Dδ
ρφ, D2δ

ρ φ, D3δ
ρ φ, D4δ

ρ φ, D5δ
ρ φ, . . .

)
(1)
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with initial condition,
φ(ρ, 0) = χ0(ρ), Dδ

ηφ(ρ, 0) = χ1(ρ). (2)

Taking the Fractional Integral (FI) on both sides of Equation (1) from 0 to η, we get

Dδ
ηφ(ρ, η) = χ1(ρ) + Iδ

ηH[φ] (3)

where H[φ] = H
(

Dδ
ηφ, φ, Dδ

ρφ, D2δ
ρ φ, D3δ

ρ φ, D4δ
ρ φ, D5δ

ρ φ, . . .
)

. Then, again taking the FI
from 0 to η, on both sides of Equation (3), we obtain

φ(ρ, η) = χ0(ρ) + χ1(ρ)
ηδ

Γ(δ + 1)
+ I2δ

η H[ϕ]. (4)

ForH[φ], the Fractional Taylor Series (FTS) is extended about η = 0.

H[φ] =
+∞

∑
j=0

Djδ
η H[φ0]

Γ[jδ + 1]
η jδ, δ > 0,

H[φ] = H[φ0] +
Dδ

ηH[φ0]

Γ[δ + 1]
ηδ +

D2δ
η H[φ0]

Γ[2δ + 1]
η2δ +

D3δ
η H[φ0]

Γ[3δ + 1]
η3δ + · · ·+

Djδ
η H[φ0]

Γ[jδ + 1]
η jδ + · · · . (5)

Substituting Equation (5) by Equation (4), we obtain

φ(ρ, η) = χ0(ρ) + χ1(ρ)
ηδ

Γ(δ + 1)
+ I2δ

η

[
H[φ0] +

Dδ
ηH[φ0]

Γ[δ + 1]
ηδ +

D2δ
η H[φ0]

Γ[2δ + 1]
η2δ + · · ·+

Djδ
η H[φ0]

Γ[jδ + 1]
η jδ + · · ·

]

φ(ρ, η) = χ0(ρ) + χ1(ρ)
ηδ

Γ(δ + 1)
+
H[φ0]

Γ(2δ + 1)
η2δ +

Dδ
ηH[φ0]

Γ(3δ + 1)
η3δ +

D2δ
η H[φ0]

Γ(4δ + 1)
η4δ + · · ·+

Djδ
η H[φ0]

Γ((j + 2)δ + 1)
η(j+2)δ + · · ·

φ(ρ, η) = a0 + a1
ηδ

Γ(δ + 1)
+ a2

η2δ

Γ(2δ + 1)
+ a3

η3δ

Γ(3δ + 1)
+ a4

η4δ

Γ(4δ + 1)
+ · · ·+ aj

η jδ

Γ(jδ + 1)
+ · · · , (6)

where

a0 = χ0(ρ),

a1 = χ1(ρ),

a2 = H[φ0],

a3 = Dδ
ηH[φ0],

a4 = D2δ
η H[φ0],

...

aj = D(j−2)δ
η H[φ0],

such that the highest derivative of φ is j. The endorsement of Equation (6) is to extend FTS
for φ about η = 0. It means that
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a0 = φ(ρ, 0),

a1 = Dδ
ηφ(ρ, 0),

a2 = D2δ
η φ(ρ, 0),

a3 = D3δ
η φ(ρ, 0),

a4 = D4δ
η φ(ρ, 0),

...

aj = Djδ
η φ(ρ, 0).

So, we can obtain our desired numerical solution easily. Convergence of this method
is discussed in [39–41].

4. Numerical Application

In this section, four problems based on fifth-order Fractional Korteweg–de Vries
Equations are solved by using the proposed Fractional Novel Analytical Method.

Problem 1. Consider the Nonlinear fifth-order Fractional Korteweg–de Vries Equation [43],

Dδ
ηφ(ρ, η) = −∂φ(ρ, η)

∂ρ
− φ2(ρ, η)

∂2φ(ρ, η)

∂ρ2 − ∂φ(ρ, η)

∂ρ

∂2φ(ρ, η)

∂ρ2 + 20φ2(ρ, η)
∂3φ(ρ, η)

∂ρ3 − ∂5φ(ρ, η)

∂ρ5 , 0 < δ ≤ 1

φ(ρ, 0) =
1
ρ

.

By following the steps elaborated in the FNAM, we acquire the following series of solutions,

φ(ρ, η) =
+∞

∑
j=0

j!η jδ

ρj+1Γ(jδ + 1)
.

The Exact Solution of this problem at δ = 1 is φ(ρ, η) =
1

(ρ− η)
. In Figure 1, the comparison

between exact and obtained solutions at η = 0.05 are shown. 3-dimensional graphs of the obtained
results at different values of δ are shown in Figure 2. The Absolute Error (AE) of the obtained
solution is plotted in 3D in Figure 3 and a numerical comparison is given in Table 1.

Figure 1. 2D comparison graph of exact solution and obtained solution by using FNAM at η = 0.05
for Problem 1.
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(a) δ = 1.0 (b) δ = 0.1

(c) δ = 0.5 (d) δ = 0.8

Figure 2. 3D graphs of the obtained solutions at (a) δ = 1.0, (b) δ = 0.1, (c) δ = 0.5, and (d) δ = 0.8
for Problem 1.

Figure 3. 3D graph of Absolute Error (AE) of the obtained solution by using FNAM for Problem 1.
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Table 1. Error comparison of φ(ρ, η) obtained by FNAM with solution obtained by Laplace Decom-
position Method (LDM) from Ref. [43] at α = 1 for Problem 1.

ρ 0.5 1.0 1.5 2.0 2.5

η FNAM LDM FNAM LDM FNAM LDM FNAM LDM FNAM LDM

0.01 0.00 6.53× 10−09 0.00 2.13× 10−07 1.11× 10−16 1.65× 10−06 0.00 7.12× 10−06 5.55× 10−17 2.22× 10−05

0.02 8.88× 10−16 1.01× 10−10 0.00 3.26× 10−09 0.00 2.50× 10−08 0.00 1.06× 10−07 0.00 3.28× 10−07

0.03 7.72× 10−14 8.83× 10−12 2.22× 10−16 2.84× 10−10 0.00 2.17× 10−09 0.00 9.23× 10−09 5.55× 10−17 2.83× 10−08

0.04 1.86× 10−12 1.57× 10−12 4.44× 10−16 5.05× 10−11 0.00 13.85× 10−10 0.00 1.63× 10−09 5.55× 10−17 5.00× 10−09

0.05 2.22× 10−11 4.11× 10−13 5.10× 10−15 1.32× 10−11 1.11× 10−16 1.00× 10−10 1.11× 10−16 4.26× 10−10 5.55× 10−17 1.30× 10−09

Problem 2. Consider the nonlinear fifth-order Fractional Korteweg–de Vries Equation [43],

Dδ
ηφ(ρ, η) = −φ(ρ, η)

∂φ(ρ, η)

∂ρ
+ φ(ρ, η)

∂3φ(ρ, η)

∂ρ3 − ∂5φ(ρ, η)

∂ρ5 , 0 < δ ≤ 1,

φ(ρ, 0) = eρ.

By following the steps elaborated in the FNAM, we acquire the following series of solutions,

φ(ρ, η) =
+∞

∑
j=0

(−1)jeρη jδ

Γ(jδ + 1)
.

The exact solution of this problem at δ = 1 is φ(ρ, η) = e(ρ−η). A comparison between exact
and obtained solutions at η = 0.01 is shown in Figure 4. The obtained solutions are plotted in 3D
in Figure 5 at different values of δ. The 3D Absolute Error graph of the obtained result is shown in
Figure 6 and a numerical comparison is given in Table 2. The 2D plots of the obtained solutions at
different values of δ are presented in Figure 7 at different δ values for η = 0.03 and η = 0.05.

Figure 4. 2D comparison graph of exact solution and obtained solution by using FNAM at η = 0.01
for Problem 2.
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(a) δ = 1.0 (b) δ = 0.1

(c) δ = 0.5 (d) δ = 0.8

Figure 5. 3D graphs of obtained solutions at (a) δ = 1.0, (b) δ = 0.1, (c) δ = 0.5, and (d) δ = 0.8 for
Problem 2.

Figure 6. 3D graph of Absolute Error (AE) of the obtained solution by using FNAM for Problem 2.
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(a) η = 0.03

(b) η = 0.05
Figure 7. 2D plots of the obtained solutions at different δ values by using FNAM for (a) η = 0.03 and
(b) η = 0.05 for Problem 2.

Table 2. Error comparison of φ(ρ, η) obtained by FNAM with solution obtained by Laplace Decom-
position Method (LDM) from Ref. [43] at α = 1 for Problem 2.

ρ 0.5 1.0 1.5 2.0 2.5

η FNAM LDM FNAM LDM FNAM LDM FNAM LDM FNAM LDM

0.01 2.22× 10−16 1.37× 10−11 0.00 4.38× 10−11 0.00 3.32× 10−10 0.00 1.39× 10−09 3.55× 10−15 4.25× 10−09

0.02 0.00 2.26× 10−12 0.00 7.22× 10−11 8.88× 10−16 5.47× 10−10 0.00 2.30× 10−09 0.00 7.02× 10−09

0.03 0.00 3.72× 10−12 0.00 1.19× 10−10 8.88× 10−16 9.03× 10−10 0.00 3.79× 10−09 3.55× 10−15 1.15× 10−08

0.04 0.00 6.14× 10−12 4.44× 10−16 1.96× 10−10 8.88× 10−16 1.48× 10−09 0 6.26× 10−09 0.00 1.90× 10−08

0.05 0.00 1.01× 10−11 0.00 3.23× 10−10 0.00 2.45× 10−09 8.88× 10−16 1.03× 10−08 3.55× 10−15 3.14× 10−08

Problem 3. Consider the nonlinear fractional Kawahara Equation [43],

Dδ
ηφ(ρ, η) = −φ(ρ, η)

∂φ(ρ, η)

∂ρ
− φ(ρ, η)

∂3φ(ρ, η)

∂ρ3 +
∂5φ(ρ, η)

∂ρ5 , 0 < δ ≤ 1,

φ(ρ, 0) =
105
169

sech4
(

1
2
√

13
(ρ− ρ0)

)
.

By following the steps elaborated in the FNAM, we acquire the following series of solutions,

φ(ρ, η) =
105
169

sech4
(

1
2
√

13
(ρ− ρ0)

)
+

ηδ

Γ(δ + 1)

−735sech6
(

1
2
√

13
(ρ− ρ0)

)
tanh

(
1

2
√

13
(ρ− ρ0)

)
2196
√

13
− . . .

+ · · · .
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The exact solution of this problem at δ = 1 is φ(ρ, η) =
105
169

sech4
(

1
2
√

13
(ρ− 36

169
η − ρ0)

)
.

A comparison between exact and obtained solutions at η = 0.05 and ρ0 = 2.0 is plotted in Figure 8.
3D and 2D graphs of the obtained solutions at different values of δ are shown in Figures 9, 10
and 11, respectively. The 3D Absolute Error graph of the obtained result is shown in Figure 10 and
a numerical comparison is given in Table 3.

Figure 8. 2D comparison graph of exact solution and obtained solution by using FNAM at η = 0.05
and ρ0 = 2.0 for Problem 3.

Problem 4. Consider the nonlinear nonhomogeneous fifth-order Fractional Korteweg–de Vries
Equation [43],

Dδ
ηφ(ρ, η)− φ(ρ, η)

∂φ(ρ, η)

∂ρ
+

∂5φ(ρ, η)

∂ρ5 = cos(ρ) + 2η sin(ρ) +
ρ2

2
sin(2ρ), 0 < δ ≤ 1,

φ(ρ, 0) = 0.

By following the steps elaborated in the FNAM, we acquire the following series of solutions,

φ(ρ, η) =
ηδ cos(ρ)
Γ(δ + 1)

.

We canceled out the noise terms in the series solution of this equation. The exact solution of
this problem at δ = 1 is φ(ρ, η) = η cos(ρ). A comparison between exact and obtained solutions is
shown in Figure 12 at η = 0.01. 3D and 2D graphs of the obtained solutions at different values of δ
are plotted in Figures 13 and 14, respectively.

Table 3. Error comparison of φ(ρ, η) obtained by FNAM with solution obtained by Laplace Decom-
position Method (LDM) from Ref. [43] at α = 1 for Problem 3.

ρ 0.5 1.0 1.5 2.0 2.5

η FNAM LDM FNAM LDM FNAM LDM FNAM LDM FNAM LDM

0.01 1.11× 10−16 1.11× 10−16 3.33× 10−16 0.00 2.22× 10−16 8.88× 10−16 0.00 2.66× 10−15 1.11× 10−16 8.44× 10−15

0.02 0.00 3.33× 10−16 0.00 0.00 0.00 7.77× 10−16 1.11× 10−16 2.55× 10−15 5.55× 10−16 6.66× 10−15

0.03 0.00 2.22× 10−16 3.33× 10−16 0.00 1.11× 10−16 2.22× 10−16 1.11× 10−16 7.77× 10−16 2.22× 10−16 3.89× 10−15

0.04 0.00 0.00 3.33× 10−16 1.11× 10−16 4.44× 10−16 1.11× 10−16 3.33× 10−16 2.22× 10−16 2.22× 10−16 2.22× 10−16

0.05 0.00 0.00 1.11× 10−16 5.55× 10−16 1.11× 10−16 4.44× 10−16 2.22× 10−16 1.44× 10−15 1.11× 10−16 3.77× 10−15
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(a) δ = 1.0 (b) δ = 0.1

(c) δ = 0.5

Figure 9. 3D graphs of the obtained solutions at (a) δ = 1.0, (b) δ = 0.1, and (c) δ = 0.5 for Problem 3.

Figure 10. 3D graph of Absolute Error (AE) of the obtained solution by using FNAM for Problem 3.
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(a) η = 0.03

(b) η = 0.05
Figure 11. 2D plots of obtained solutions at different δ values by using FNAM at (a) η = 0.03 and
(b) η = 0.05 for Problem 3.

Figure 12. 2D comparison graph of exact solution and obtained solution by using FNAM at η = 0.01
for Problem 4.
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(a) δ = 1.0 (b) δ = 0.1

(c) δ = 0.1 (d) δ = 0.8

Figure 13. 3D graphs of the obtained solutions at (a) δ = 1.0, (b) δ = 0.1, (c) δ = 0.5, and (d) δ = 0.8
for Problem 4.

Figure 14. 2D plots of the obtained solutions at different δ values by using FNAM at η = 0.02 for
Problem 4.

5. Conclusions

The Fractional Novel Analytical Method (FNAM) is used to examine the numerical
solutions of the fractional fifth-order KdV-like problem that naturally occur in maritime
engineering. Caputo is the operator used for dealing with fractional derivatives. It is shown
that the proposed method gives excellent results when applied to different nonlinear fifth-
order KdV of non-integer order equations. The results obtained from the proposed method
are more accurate and better than the results obtained from other methods, as shown in
Tables 1–3. The solution of the nonlinear fractional fifth-order KdV differential equation
converges to the solution of integer KdV differential equation, as shown in the figures.
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According to the convergence analysis, the error of the proposed method is reduced while
increasing the number of iterations. We offer a specific numerical representation of the
various solitary waves that may be formed from the resulting solution by altering the
values of two model parameters. A broader examination of the provided solution can be
gained by varying a greater number of parameters. The derived traveling wave solution
and numerical drawings may be used to evaluate tsunami forecasts, atmospheric flows,
storm surges, and flows around buildings.
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