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Abstract: The rough set model has two symmetry approximations called upper approximation and
lower approximation, which correspond to a concept’s intension and extension, respectively. Multi-
label learning enforces the rough set model, which wants to be applied considering the correlations
among labels, while the target concept should not be limited to only one. This paper proposes a
multi-target model considering label correlation (Neighborhood Multi-Target Rough Sets, NMTRS)
and proposes an attribute reduction approach based on NMTRS. First, some definitions of NMTRS
are introduced. Second, some properties of NMTRS are discussed. Third, some discussion about
the attribute significance measure is given. Fourth, the attribute reduction approaches based on
NMTRS are proposed. Finally, the efficiency and validity of the designed algorithms are verified
by experiments. The experiments show that our algorithm shows considerable performance when
compared to state-of-the-art approaches.

Keywords: multi-label learning; attribute reduction; multi-target rough set; label correlation

1. Introduction

Since rough set theory was proposed by Pawlak [1] in 1982, it quickly became a hot
topic in knowledge discovery and has been widely used in many applications such as
classification [2–6], clustering [7–11], and attribute reduction [12]. It has two approxima-
tions corresponding to a target concept’s intension and extension, which shows symmetry.
Various rough set models are based on different types of binary relations, such as multiple
equivalence relations [13], general binary relations [14], and so on. Within these models,
the neighborhood relation is outstanding for its ability to deal with both nominal and
numerical attributes at the same time.

There are lots of works applying the neighborhood rough set model in various fields.
Inbarani et al. [15] proposed a classification algorithm by using the neighborhood rough
set model. For dynamic data mining, Zhang et al. [16] proposed a neighborhood rough
set approach. Most relevant works applied the neighborhood rough set model to attribute
reduction tasks.

Attribute reduction, or feature selection, is a traditional but essential machine learning
task. Attribute reduction approaches try to select some features from the raw attribute set
without harming the data’s information presentation ability. These approaches have made
remarkable achievements in eliminating noise and promoting learning time efficiency. For
attribute reduction tasks, there are different types of work. The first type is single-label
attribute reduction. Hu et al. [17] proposed an approach for attribute reduction based
on neighborhood rough sets. A quick attribute reduction algorithm was proposed by
Yong et al. [18] based on the neighborhood rough set model. Additionally, there are parallel
attribute reduction approaches [19], online streaming attribute reduction [20], and so on.
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These attribute reduction approaches were proposed based on the classic or extended
neighborhood rough set model.

The second type of attribute reduction task is multi-label attribute reduction. These
methods use strategies to handle the multiple labels in a multi-label learning paradigm. For
example, Sun et al. [21] proposed a multi-label attribute reduction approach by transforming
the multi-label learning problem into a single label one by ignoring the correlations within
labels. Fisher R.A. et al. [22] regard the feature space and the label space as two different
viewpoints of the data to improve the original dimension reduction method. By using the
kernel matrix method, Wold H. et al. [23] proposed a similar method to [22]. By using the
mapping dimensionality reduction and sub-control dimensionality reduction approaches
at the same time, Zhang et al. [24] proposed a dimensionality reduction with a linear kernel
matrix or non-linear kernel matrix. Based on PCA and genetic algorithms, Zhang et al. [25]
proposed MLNB by using the Naive Bayes method to extract the features simultaneously.
Liu et al. [26] proposed an attribute reduction method based on a neighborhood rough
set model. Meanwhile, an online multi-label attribute reduction method was proposed
by Liu et al. [27] using the neighborhood rough set model. The f-neighborhood rough set
model was used to derive the feature selection method for multi-label learning [28].

The attribute reduction methods designed for single-label learning or multi-label
learning based on neighborhood rough sets all use the classic neighborhood rough set
model and its extended models. All of these neighborhood rough set models are designed
for a classic information system [29–35], which means that the system only has one decision
attribute. None of them are designed for a multi-decision information system that considers
label correlation among labels simultaneously.

In this paper, we propose a neighborhood multi-target rough set model and then
design an attribute reduction algorithm based on it. We design the model by defining a
global correlated target set to be the target group of the rough set model. The coefficient of
the global correlated target set controls the relevance of different target concepts. Then, we
use a conservative strategy to combine the correlated target to define the rough set model.
Using the rough set model which we proposed, the attribute significance measure can be
then given. Furthermore, we can derive the corresponding attribute reduction algorithm.

The contributions of this paper are as follows:

• A neighborhood rough set model considering the label correlation is proposed for
multi-label learning.

• The properties of the proposed models are investigated.
• An algorithm for calculating the approximations in the proposed rough set model

is designed.
• Attribute significance measure is given based on the rough set model we proposed.
• Experiments are conducted to validate the efficiency and effectiveness of the proposed

algorithms.

The rest of this paper is organized as follows. Some basic concepts of NMTRS are
introduced, and their properties are discussed in Section 2. In Section 3, the attribute
significance measure is given, along with some discussions about it, and the corresponding
attribute reduction algorithms are derived by the significance measure. All the algorithms
are evaluated in Section 4. Finally, we conclude the whole paper in Section 5.

2. Neighborhood Multi-Target Rough Sets

In this section, some concepts associated with our proposed model are introduced and
then the properties of the proposed model are discussed.

2.1. Definitions

In this subsection, the definitions of neighborhood multi-target rough sets are introduced.

Definition 1. [1] Suppose U is a finite universe and A = {a1, a2, · · · , am} is an attribute set,
then (U, A) is an information system.
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Definition 2. [35] (Set Correlation, SC) Suppose U is a finite universe and (U, A) is an information
system, X = {X1, X2, · · · , Xr} is a finite target set which satisfies for all Xi ∈ X, Xi ⊆ U. The set
correlation is defined by:

SR
(
Xi, xj

)
=
∣∣Xi ∩ Xj

∣∣/∣∣Xi
∣∣, i, j ≤ r (Relative Correlation) or

SR
(
Xi, xj

)
=
∣∣Xi ∩ Xj

∣∣/∣∣Xi ∪ Xj
∣∣, i, j ≤ r (Absolute Correlation).

Definition 3. (Global Correlated Target Set, GCTS) Suppose U is a finite universe and (U, A)
is an information system, X = {X1, X2, · · · , Xr} is a finite target set which satisfies for all
Xi ∈ X, Xi ⊆ U. Then, X is a global correlated target set if and only if for all Xi, Xj ∈ X,
SR
(
Xi, Xj

)
> α or SR

(
Xj, Xi

)
> α, α ∈ (0, 1] is the Correlation Control Parameter (CCP) among

targets; it controls the relevance degree among targets in the target group.

Based on the definition of GCTS and neighborhood rough sets, we can define neigh-
borhood multi-target rough sets accordingly.

Definition 4. [34] (Neighborhood Class) Suppose U is a finite universe and (U, A) is an infor-
mation system, where A = AC ∪ AN , AC is the symbol attribute set and AN is the numerical
attribute set. For all x ∈ U, δ ≥ 0, the neighborhood class of x can be defined as

(1) nAC (x) = {y ∈ U|∀a ∈ AC, ya = xa};
(2) nAN (x) =

{
y ∈ U

∣∣d(xAN , yAN

)
≤ δ

}
;

(3) nA(x) = nAC∪AN (x) =
{

y ∈ U
∣∣∀a ∈ AC, ya = xa ∧ d

(
xAN , yAN

)
≤ δ

}
.

where ya denotes the attribute value of instance y on attribute a and where yAN denotes the attribute
value of instance y on attribute set AN .

Definition 5. (Neighborhood Multi-Target Rough Sets, NMTRS) Suppose U is a finite universe
and (U, A) is an information system, X = {X1, X2, · · · , Xr} is a finite target set which satisfies
for all Xi ∈ X, Xi ⊆ U. X is a GCTS and the correlation coefficient is α.

Then, the lower approximation of NMTRS is defined as:

Rα
δ (X) = {x ∈ U|nA(x) ⊆ X1 ∧ nA(x) ⊆ X2 ∧ · · · ∧ nA(x) ⊆ Xr}.

The upper approximation of NMTRS is defined as:

Rα
δ (X) = {x ∈ U|nA(x) ∩ X1 6= φ ∨ nA(x) ∩ X2 6= φ ∨ · · · ∨ nA(x) ∩ Xr 6= φ}.

With the help of CCP, we can organize different targets together. The lower approx-
imation is a conservative approximation of the target group and needs all the targets to
meet the same condition. Relatively, the upper approximation obeys a liberal strategy and
only needs one target of the target group to meet the condition.

Example 1. A multi-label decision information system is as Table 1 below: it has two labels which
are assumed to be two different target concepts. We can easily obtain that when α = 0.4 the target
group is a GCTS. For clarifying the definition of NMTRS, we have an example for NMTRS. Since

X1 = {x2, x3, x5}, X2 = {x1, x2, x5}, α = 0.4, δ = 0.5, SR(X1, X2) = 2/3 > α = 0.4.

From Table 1 we have

nA(x1) = {x1}, nA(x2) = {x2, x5}, nA(x3) = {x3, x4}, nA(x4) = {x3, x4}, nA(x5) = {x2, x5}.
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From Definition 5,

nA(x1) = {x1} 6⊂ X1 ∧ nA(x1) ⊆ X2, nA(x2) ⊆ X1 ∧ nA(x2) ⊆ X2, nA(x3) 6⊂ X1 ∧ nA(x3) 6⊂ X2,
nA(x4) 6⊂ X1 ∧ nA(x4) 6⊂ X2, nA(x5) ⊆ X1 ∧ nA(x5) ⊆ X2,
∴ Rα

δ (X) = {x2, x5}.

nA(x1) ∩ X2 6= φ, nA(x2) ∩ X1 6= φ, nA(x3) ∩ X1 6= φ, nA(x4) ∩ X1 6= φ, nA(x5) ∩ X1 6= φ,
∴ Rα

δ (X) = U.

Table 1. An information system.

x n1 a1 a2 X1 X2

x1 1.5 M 1 0 1
x2 2 F 2 1 1
x3 2 M 2 1 0
x4 1.5 M 2 0 0
x5 2 F 2 1 1

2.2. Properties

The properties of NMTRS are discussed in this subsection.

Proposition 1. Suppose U is a finite universe and (U, A) is an information system,
X = {X1, X2, · · · , Xr} is a finite target set which satisfies for all Xi ∈ X, Xi ⊆ U. X is a
GCTS and the correlation coefficient is α. For the approximations of NMTRS:

(1) f or all Xi ∈ X, Xi = U i f and only i f Rα
δ (X) = U;

(2) exists Xi ∈ X, Xi = U i f and only i f Rα
δ (X) = U;

(3) exists Xi ∈ X, Xi = φ i f and only i f Rα
δ (X) = φ;

(4) f or all Xi ∈ X, Xi = φ i f and only i f Rα
δ (X) = φ;

(5) f or all Xi ∈ X, Rα
δ (X) ⊆ Xi;

(6) f or all Xi ∈ X, Xi ⊆ Rα
δ (X).

Proof.

(1) f or all Xi ∈ X, Xi = U implies f or all x ∈ U, f or all i ∈ {1, 2, · · · , r}, nA(x) ⊆ Xi
which implies nA(x) ⊆ X1 ∧ nA(x) ⊆ X2 ∧ · · · ∧ nA(x) ⊆ Xr so Rα

δ (X) = U;
(2) exists Xi ∈ X, Xi = U implies f or all x ∈ U, exists i ∈ {1, 2, · · · , r}, nA(x) ∩ Xi 6= φ
which implies nA(x) ∩ X1 6= φ ∨ nA(x) ∩ X2 6= φ ∨ · · · ∨ nA(x) ∩ Xr 6= φ

i f and only i f x ∈ Rα
δ (X), so Rα

δ (X) = U;
(3) exists Xi ∈ X, Xi = φ implies f or all x ∈ U, f or all i ∈ {1, 2, · · · , r}, nA(x) 6⊂ Xi
which implies x /∈ Rα

δ (X) so Rα
δ (X) = φ;

(4) f or all Xi ∈ X, Xi = φ implies f or all x ∈ U, f or all i ∈ {1, 2, · · · , r}, nA(x) ∩ Xi = φ

which implies x /∈ Rα
δ (X) so Rα

δ (X) = φ;
(5) f or all x ∈ Rα

δ (X) implies f or all i ∈ {1, 2, · · · , r}, nA(x) ⊆ Xi which implies
nA(x) ⊆ X1 ∧ nA(x) ⊆ X2 ∧ · · · ∧ nA(x) ⊆ Xr so Rα

δ (X) ⊆ Xi;
(6) f or all x ∈ Xi implies f or all i ∈ {1, 2, · · · , r}, nA(x) ∩ Xi 6= φ which implies
x ∈ Rα

δ (X) so Xi ⊆ Rα
δ (X). �

Proposition 2. Suppose U is a finite universe and (U, A) is an information system,
Z = {Z1, Z2, · · · , Zr} is a finite target set which satisfies for all Zi ∈ Z, Zi ⊆ U. Z is a
GCTS and the correlation coefficient is α.X, Y ⊆ Z. For the approximations of NMTRS:

(1) Rα
δ (X∩ Y) ⊇ Rα

δ (X) ∩ Rα
δ (Y);

(2) Rα
δ (X∩ Y) ⊆ Rα

δ (X) ∩ Rα
δ (Y);

(3) Rα
δ (X∪ Y) ⊆ Rα

δ (X) ∪ Rα
δ (Y);

(4) Rα
δ (X∪ Y) = Rα

δ (X) ∪ Rα
δ (Y).
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Proof.

(1) f or all x ∈ Rα
δ (X) ∩ Rα

δ (Y) implies f or all Xi ∈ X( i ≤|X|), nA(x) ⊆ Xi
and f or all Yj ∈ Y( j ≤|Y|), nA(x) ⊆ Yj which implies f or all Zk ∈ X∩ Y
(k ∈ {1, 2, · · · , r}), nA(x) ⊆ Zk i f and only i f x ∈ Rα

δ (X∩ Y)
∴ Rα

δ (X∩ Y) ⊇ Rα
δ (X) ∩ Rα

δ (Y);
(2) f or all x ∈ Rα

δ (X∩ Y), x ∈ Rα
δ (X∩ Y) i f and only i f exists Zk ∈ X∩ Y

(k ∈ {1, 2, · · · , r}), nA(x) ∩ Zk 6= φ, which implies exists Xi ∈ X( i ≤|X|), nA(x) ∩ Xi 6= φ

and exists Yj ∈ Y( j ≤|Y|), nA(x) ∩Yj 6= φ, which implies x ∈ Rα
δ (X) ∩ Rα

δ (Y)
∴ Rα

δ (X∩ Y) ⊆ Rα
δ (X) ∩ Rα

δ (Y);
(3) f or all x ∈ Rα

δ (X∪ Y), x ∈ Rα
δ (X∪ Y) i f and only i f exists Zk ∈ X∪ Y

(k ∈ {1, 2, · · · , r}), nA(x) ⊆ Zk, which implies f or all Xi ∈ X( i ≤|X|), nA(x) ⊆ Xi
or f or all Yj ∈ Y( j ≤|Y|), nA(x) ⊆ Yj which implies x ∈ Rα

δ (X) or x ∈ Rα
δ (Y)

which implies x ∈ Rα
δ (X) ∪ Rα

δ (Y) so Rα
δ (X∪ Y) ⊆ Rα

δ (X) ∪ Rα
δ (Y);

(4) f or all x ∈ Rα
δ (X∪ Y), x ∈ Rα

δ (X∪ Y) i f and only i f exists Zk ∈ X∪ Y
(k ∈ {1, 2, · · · , r}), nA(x) ∩ Zk 6= φ, which implies exists Xi ∈ X( i ≤|X|), nA(x) ∩ Xi 6= φ

or exists Yj ∈ Y( j ≤|Y|), nA(x) ∩Yj 6= φ, which implies x ∈ Rα
δ (X) ∪ Rα

δ (Y)
∴ Rα

δ (X∪ Y) = Rα
δ (X) ∪ Rα

δ (Y). �

Proposition 3. Suppose U is a finite universe and (U, A) is an information system,
Z = {Z1, Z2, · · · , Zr} is a finite target set which satisfies for all Zi ∈ Z, Zi ⊆ U. Z is a
GCTS and the correlation coefficient is α. X ⊆ Y ⊆ Z. For the approximations of NMTRS:

(1) Rα
δ (X) ⊇ Rα

δ (Y);
(2) Rα

δ (X) ⊆ Rα
δ (Y).

Proof.

(1) f or all x ∈ Rα
δ (Y) i f and only i f f or all Zk ∈ Y, k ∈ {1, 2, · · · , r}, nA(x) ⊆ Zk

f or all Zk ∈ X, k ∈ {1, 2, · · · , r}, nA(x) ⊆ Zk, implies x ∈ Rα
δ (X), so Rα

δ (X) ⊇ Rα
δ (Y);

(2) f or all x ∈ Rα
δ (X) i f and only i f f or all Zk ∈ X, k ∈ {1, 2, · · · , r}, nA(x) ∩ Zk 6= φ,

which implies exists Zk ∈ Y, k ∈ {1, 2, · · · , r}, nA(x) ∩ Zk 6= φ, which implies x ∈ Rα
δ (Y),

∴ Rα
δ (X) ⊆ Rα

δ (Y). �

2.3. Approximation Computation of NMTRS

In this section, we propose an approach for computing the approximations of NMTRS.
We induce some corresponding results for approximation computation, then design an
algorithm for calculating the approximations of NMTRS.

Definition 6. [36] Suppose U is a finite universe, P ⊆ U, the matrix representation of set P is
defined as:

→
P =

(
pj
)

n×1, j ∈ {1, 2, · · · , n}, n = |U|, where pj =

{
0 xj ∈ P
1 xj ∈ P

.

Example 2. Continues Example 1. By Definition 6 we have
−−−→
nA(x1) = (1, 0, 0, 0, 0)′,

−−−→
nA(x2) = (0, 1, 0, 0, 1)′,

−−−→
nA(x3) = (0, 0, 1, 1, 0)′,

−−−→
nA(x) = (0, 0, 1, 1, 0)′,

−−−→
nA(x5) = (0, 1, 0, 0, 1)′.

where
→
M
′

means the transpose of matrix
→
M.

Lemma 1. Suppose X, Y ⊆ U, we have
(1) X ∩Y 6= φ i f and only i f

→
X
′
·
→
Y > 0;

(2) X ⊆ Y i f and only i f
→
X
′
·
→
∼ Y= 0.



Symmetry 2022, 14, 1652 6 of 14

where ∼ Y is a complement of Y, where
→
X
′

means the transpose of a matrix
→
X, and ‘·’ is the matrix

quantity product.

There is a useful property gained by computing the approximations of NMTRS using
Lemma 1.

Theorem 1. Suppose U is a finite universe and (U, A) is an information system, X is a GCTS, and
we have

(1) x ∈ Rα
δ (X) i f and only i f f or all i ∈ {1, 2, · · · , r},

−−−→
nA(x)

′
·
−−−→
∼ Xi = 0;

(2) x ∈ Rα
δ (X) i f and only i f exists i ∈ {1, 2, · · · , r},

−−−→
nA(x)

′
·
→
Xi > 0.

Proof. From Lemma 1,

(1) f or all i ∈ {1, 2, · · · , r},
−−−→
nA(x)

′
·
−−−→
∼ Xi = 0 which implies f or all i ∈ {1, 2, · · · , r},

nA(x) ⊆ Xi, i f and only i f x ∈ Rα
δ (X);

(2) exists i ∈ {1, 2, · · · , r},
−−−→
nA(x)

′
·
→
Xi > 0, which implies exits i ∈ {1, 2, · · · , r},

nA(x) ∩ Xi 6= φ, i f and only i f x ∈ Rα
δ (X). �

The matrix representation of Theorem 1 is as the following definition.

Definition 7. Suppose U is a finite universe and (U, A) is an information system, X is a GCTS,
and the lower approximation matrix of NMTRS can be defined as:

H(X) =
(

hij

)
r×n

, where hij =

1
−−−→
nA
(
xj
)′
·
−−−→
∼ Xi = 0

0 otherwise
, i ∈ {1, 2, · · · , r}, j ∈ {1, 2, · · · , n} .

The upper approximation matrix of NMTRS can be defined as:

H(X) =
(

hij

)
r×n

, where hij =

1
−−−→
nA
(

xj
)′
·
→
Xi > 0

0 otherwise
, i ∈ {1, 2, · · · , r}, j ∈ {1, 2, · · · , n} .

Example 3. Continuation of Example 2. By Definition 6 we have

→
X1 = (0, 1, 1, 0, 1)′,

−−−→
∼ X1 = (1, 0, 0, 1, 0)′,

→
X2 = (1, 1, 0, 0, 1)′,

−−−→
∼ X2 = (0, 0, 1, 1, 0)′.

By Definition 7 we have

−−−→
nA(x1)

′
·
−−−→
∼ X1 = (1, 0, 0, 0, 0) · (1, 0, 0, 1, 0)′ 6= 0,

−−−→
nA(x1)

′
·
−−−→
∼ X2 = (1, 0, 0, 0, 0) · (0, 0, 1, 1, 0)′ = 0;

−−−→
nA(x2)

′
·
−−−→
∼ X1 = 0,

−−−→
nA(x2)

′
·
−−−→
∼ X2 = 0;

−−−→
nA(x3)

′
·
−−−→
∼ X1 6= 0,

−−−→
nA(x3)

′
·
−−−→
∼ X2 6= 0;

−−−→
nA(x4)

′
·
−−−→
∼ X1 6= 0,

−−−→
nA(x4)

′
·
−−−→
∼ X2 6= 0;

−−−→
nA(x5)

′
·
−−−→
∼ X1 = 0,

−−−→
nA(x5)

′
·
−−−→
∼ X2 = 0;

then H(X) =

(
0 1 0 0 1
1 1 0 0 1

)
.
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Example 4. Continuation of Example 3. By Definition 7 we have

−−−→
nA(x1)

′
·
→
X1 = (1, 0, 0, 0, 0) · (0, 1, 1, 0, 1)′ = 0,

−−−→
nA(x1)

′
·
→
X2 = (1, 0, 0, 0, 0) · (1, 1, 0, 0, 1)′ > 0;

−−−→
nA(x2)

′
·
→
X1 > 0,

−−−→
nA(x2)

′
·
→
X2 > 0;

−−−→
nA(x3)

′
·
→
X1 > 0,

−−−→
nA(x3)

′
·
→
X2 = 0;

−−−→
nA(x4)

′
·
→
X1 = 0,

−−−→
nA(x4)

′
·
→
X2 = 0;

−−−→
nA(x5)

′
·
→
X1 > 0,

−−−→
nA(x5)

′
·
→
X2 > 0;

then H(X) =

(
0 1 1 0 1
1 1 0 0 1

)
.

Then, we can easily obtain a theorem for computing approximations in NMTRS.

Theorem 2. Suppose U is a finite universe and (U, A) is an information system, X is a GCTS,
i ∈ {1, 2, · · · , r}, j ∈ {1, 2, · · · , n}, we have

(1) xj ∈ Rα
δ (X) i f and only i f ∧r

i=1 hij = 1;
(2) xj ∈ Rα

δ (X) i f and only i f ∨r
i=1 hij = 1.

Proof. From Lemma 1,

(1) xj ∈ Rα
δ (X) i f and only i f f or all i ∈ {1, 2, · · · , r},

−−−→
nA
(
xj
)′
·
−−−→
∼ Xi = 0,

i f and only i f f or all i ∈ {1, 2, · · · , r}, hij = 1, so ∧r
i=1 hij = 1;

(2) xj ∈ Rα
δ (X) i f and only i f exists i ∈ {1, 2, · · · , r},

−−−→
nA
(
xj
)′
·
→
Xi > 0,

i f and only i f exists i ∈ {1, 2, · · · , r}, hij = 1, so ∨r
i=1 hij = 1. �

Example 5. Continuation of Example 4. By Theorem 2 we have

−−−→
Rα

δ (X) = (0, 1, 0, 0, 1)′ ∧ (1, 1, 0, 0, 1)′ = (0, 1, 0, 0, 1)′,
−−−→
Rα

δ (X) = (0, 1, 1, 0, 1)′ ∨ (1, 1, 0, 0, 1)′ = (1, 1, 1, 0, 1)′,
∴ Rα

δ (X) = {x2, x5}, Rα
δ (X) = {x1, x2, x3, x5}.

3. Attribute Reduction Based on NMTRS

In this section, we propose an attribute reduction method based on NMTRS. We derive
the attribute significance measure, then design an algorithm for calculating the reduction.

3.1. Attribute Significance Measure Based on NMTRS

Suppose U = {x1, x2, · · · , xn} is the instance space and L = {l1, l2, · · · , lr} is the label
space. T = {(xi, yi)|i = 1, 2, · · · , n}means that label vector yi is associated with instance
xi. (U, A, L) is the tuple denoting the multi-label information system.
Definition 8. Suppose U is a finite universe and (U, A, L) is an information system,
X = {X1, X2, · · · , Xm} is a GCTS and the correlation coefficient is α. If we regard li
(i = 1, 2, · · · , r) as the matrix representation of a certain decision set, and φ(L) =

{
X1, X2, · · ·

}
is the GCTS group on L, for any B ⊆ A then the positive region of NMTRS is defined as:

PosB
(
φ
(

L)) =
{
∪RB

α

δ

(
X)
∣∣X ∈ φ(L)

}
,

then, the dependence of NMTRS on attribute set B can be defined as:

γB(φ(L)) =
|Pos(φ(L))|
|U| ,
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then, for all c ∈ A − B, the conditional attribute significance of c on attribute set B can be
calculated as:

sigγ(c, B, L) = γB∪{c}(φ(L))− γB(φ(L)).

It can be easily obtained that sigγ(c, B, L) ≥ 0, and if sigγ(c, B, L) = 0, we can say that
c is an unnecessary attribute.

Based on Theorem 2, we propose matrix-based Algorithm 1 for computing the approx-
imations of a particular target concept group. The total time complexity of Algorithm 1 is
Θ
(
rn2). Steps 2–15 are to calculate H and H with time complexity Θ

(
rn2).

Algorithm 1: Computing approximations of NMTRS

Input: (U, A), X = {X1, X2, · · · , Xr},
−−−−→
nA

(
xj

)
, f or all x ∈ U

Output: Rα
δ (X), Rα

δ (X)
1: n←|U|, r ←|X|
2: for i = 1→ r
3: for j = 1→ n

4: if
−−−−→
nA

(
xj

)′
·
−−−−→
∼ Xi = 0 then

5: hij = 1
6: else
7: hij = 0
8: end if

9: if
−−−−→
nA

(
xj

)′
·
→
Xi > 0 then

10: hij = 1
11: else
12: hij = 0
13: end if
14: end for
15: end for

16:
−−−−→
Rα

δ (X)

′

=
(
∧r

i=1hi∗
)′

=
(
∧r

i=1hi1,∧r
i=1hi2, · · · ,∧r

i=1hin
)′

17:
−−−−→
Rα

δ (X)

′
=
(
∨r

i=1hi∗
)′

=
(
∨r

i=1hi1,∨r
i=1hi2, · · · ,∨r

i=1hin

)′
18: Return Rα

δ (X), Rα
δ (X)

3.2. Multi-Granulation Discrimination Analysis Based on NMTRS

Based on the NMTRS model, some discussions about multi-granulation discrimination
are conducted in this section. Several propositions can be easily obtained.

Proposition 4. Suppose U is a finite universe and (U, A, L) is an information system,
X = {X1, X2, · · · , Xm} is a GCTS and the correlation coefficient is α. d is the Euclidean dis-
tance, B1 ⊆ B2 ⊆ A, and the following properties can be easily obtained:

(1) f or all x ∈ U, nB1(x) ⊆ nB2(x);
(2) f or all X ∈ φ(L), RB1

α

δ

(X) ⊆ RB2
α

δ

(X);

(3) PosB1(φ(L)) ⊆ PosB2(φ(L));
(4) γB1(φ(L)) ≤ γB2(φ(L)).

Proposition 5. Suppose U is a finite universe and (U, A, L) is an information system,
X = {X1, X2, · · · , Xm} is a GCTS and the correlation coefficient is α. d is the Euclidean dis-
tance, and for any B1 ⊆ B2 ⊆ A, if x ∈ PosB1(φ(L)), then x ∈ PosB2(φ(L)).
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Proposition 6. Suppose U is a finite universe and (U, A, L) is an information system,
X = {X1, X2, · · · , Xm} is a GCTS and the correlation coefficient is α. d is the Euclidean dis-
tance, and for any 0 ≤ δ2 ≤ δ1, B ⊆ A, the following properties can be easily obtained:

(1) f or all x ∈ U, nδ2
B (x) ⊆ nδ1

B (x);
(2) f or all X ∈ φ(L), RB

α

δ1

(X) ⊆ RB
α

δ2

(X) and RB
α
δ2
(X) ⊆ RB

α
δ1
(X);

(3) Posδ1(φ(L)) ⊆ Posδ2(φ(L));
(4) γδ1(φ(L)) ≤ γδ2(φ(L)).

Proposition 7. Suppose U is a finite universe and (U, A, L) is an information system, L′ ⊆ L. d
is the Euclidean distance, and for any 0 ≤ δ2 ≤ δ1, the following properties can be easily obtained:

(1) Posδ1(φ(L)) ⊆ Posδ2(φ(L′));
(2) γδ1(φ(L)) ≤ γδ2(φ(L′)).

3.3. Attribute Reduction Algorithm Based on NMTRS

Based on the NMTRS model and its attribute significance measure, we derive the
corresponding attribute reduction algorithm, which is named Algorithm 2.

Algorithm 2: Attribute reduction algorithm based on NMTRS

Input: (U, A, L), α, δ, φ(L)
Output: Reduction of the attribute set A
1: Reduction← ∅
2: while A− Reduction 6= ∅
3: for all b ∈ A− Reduction
4: Calculate sigγ(b, Reduction, L) with Algorithm 1
5: end for
6: if max

b∈A−Reduction

{
sigγ(b, Reduction, L)

}
≤ 0 then

7: break
8: end if
9: Reduction = Reduction ∪ argmax

b∈A−Reduction

{
sigγ(b, Reduction, L)

}
10: Return Reduction

The time complexity of Algorithm 2 is Θ
(
rn2). The time complexity of calculating the

neighborhood class of all instances is Θ(n× log n), and the time complexity of calculating
the attribute significance of attributes is Θ

(
rn2).

4. Experimental Evaluations

In this section, several experiments are conducted to evaluate the effectiveness and
the efficiency of the algorithms we proposed, namely Algorithm 2 (ours), Algorithm 3
(MLNB), Algorithm 4 (Laplacian Score) [37], Algorithm 5 (RelieF) [38], Algorithm 6 MDDM
proj) and Algorithm 7 (MDDMspc) [24]. Since we can only determine the attribute order
from MLNB and Laplacian Score, we make the number of the chosen attributes the same
as our algorithm. Six datasets were chosen from public repositories. The details of these
datasets are listed in Table 2. All the experiments were carried out on a personal computer
with 64-bit Windows 10, Inter(R) Core (TM) i7 1065G7 CPU@3.50GHz and 16GB memory,
developed by Wenbin Zheng, in Zhangzhou, China. The programming language was
MATLAB r2020a.
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Table 2. Details of datasets.

No. Datasets Samples Attributes Labels

1 Bird Song 4998 38 13
2 CAL-500 502 68 174
3 Emotions 593 72 6
4 Flags 194 14 12
5 FGNET 1002 262 78

6 Water Quality
Nom 1060 16 14

4.1. Comparison of Performance Measures Using ML-kNN

In this subsection, we use ML-kNN as the learning method and select features using the
four attribute reduction approaches, conducting ten-fold cross-validation on the temporary
dataset ten times with the selected feature set.

4.1.1. Experimental Settings

For comparing the performance of our approach with the comparison algorithms, we
apply all of the attribute reduction algorithms on the six datasets using their recommended
parameter configurations in [39]. For our method, we set α = 0.6 and δ = 0.5. The
experimental results are shown in Tables 3–8.

Table 3. Experimental results on Bird Song.

Algorithms Hamming
Loss (↓)

Ranking
Loss (↓) One-Error (↓) Coverage (↓) Average

Precision (↑)

Ours 1 − 0.60024 1.3229 0.61599
MLNB − − − − −

Laplacian
Score 1 − 0.60024 1.3229 0.61599

ReliefF 1 − 0.60024 1.3229 0.61599
MDDMproj 0.94641 − 0.22601 0.41394 0.86440
MDDMspc 0.94641 − 0.22601 0.41394 0.86440

Table 4. Experimental results on CAL-500.

Algorithms Hamming
Loss (↓)

Ranking
Loss (↓) One-Error (↓) Coverage (↓) Average

Precision (↑)
Ours 0.96755 0.18771 0.13001 132.03 0.48148

MLNB 0.96806 0.18763 0.12386 131.26 0.48137
Laplacian

Score 0.96880 0.18701 0.11717 131.22 0.48484

RelieF 0.96870 0.18593 0.1208 131 0.48684
MDDMproj 0.96755 0.18771 0.13001 132.03 0.48148
MDDMspc 0.96806 0.18763 0.12386 131.26 0.48137

Table 5. Experimental results on Emotions.

Algorithms Hamming
Loss (↓)

Ranking
Loss (↓) One-Error (↓) Coverage (↓) Average

Precision (↑)
Ours 0.95468 0.51255 2.7671 0.62310 0.95468

MLNB − − − − −
Laplacian

Score 0.95033 0.56044 2.9738 0.59137 0.95033

RelieF 0.89657 0.40958 2.4069 0.69350 0.89657
MDDMproj 0.89657 0.40958 2.4069 0.69350 0.89657
MDDMspc 0.88908 0.42924 2.3618 0.68983 0.88908
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Table 6. Experimental results on Flags.

Algorithms Hamming
Loss (↓)

Ranking
Loss (↓) One-Error (↓) Coverage (↓) Average

Precision (↑)
Ours 0.81977 0.24048 6.1901 0.75653 0.81977

MLNB − − − − −
Laplacian

Score 0.80916 0.23298 5.8892 0.76737 0.80916

RelieF 0.81433 0.23269 6.2364 0.75832 0.81433
MDDMproj 0.81416 0.21904 6.1963 0.76229 0.81416
MDDMspc 0.81416 0.21904 6.1963 0.76229 0.81416

Table 7. Experimental results on FGNET.

Algorithms Hamming
Loss (↓)

Ranking
Loss (↓) One-Error (↓) Coverage (↓) Average

Precision (↑)
Ours 1 − 0.93427 21.477 0.15097

MLNB − − − − −
Laplacian

Score 1 − 0.93427 21.477 0.15097

RelieF 1 − 0.93427 21.477 0.15097
MDDMproj 1 − 0.95291 21.475 0.13413
MDDMspc 1 − 0.95291 21.475 0.13413

Table 8. Experimental results on Water Quality Nom.

Algorithms Hamming
Loss (↓)

Ranking
Loss (↓) One-Error (↓) Coverage (↓) Average

Precision (↑)
Ours 0.88209 − 0.33826 9.3556 −

MLNB − − − − −
Laplacian

Score 0.8825 − 0.35662 9.2995 −

RelieF 0.85437 − 0.32326 9.2675 −
MDDMproj 0.85437 − 0.32326 9.2675 −
MDDMspc 0.88296 − 0.36373 9.5964 −

4.1.2. Discussions of the Experimental Results

From Tables 3–8, we can easily observe that our algorithm has considerable perfor-
mance on each dataset, while none of the algorithms have obvious superiority on all
datasets. Sometimes our algorithm can reach the best performance; it is in the middle
class generally. The experiments show that our algorithm is valid so it does provide a new
approach for multi-label feature selection.

For the dataset Bird Song, MDDM algorithms perform better than other algorithms;
the performance of our algorithm is equal to MLNB, RelieF, and Laplacian Score.

For the dataset CAL-500, our algorithm performs equally to MDDMproj, better than
all other algorithms with the performance measure Hamming loss.

For the dataset Emotions, our algorithm is the worst one with Hamming loss, ranking
loss, and Average Precision, but performs better than RelieF, MDDMproj, and MDDMspec
with the performance measure Coverage.

For the dataset FGNET, MDDM algorithms perform better, while our algorithm’s
performance is equal to other algorithms.

For the dataset Water Quality Nom, our algorithm performs better than Laplacian
Score and MDDMspc with the performance measure Hamming loss, performs better than
Laplacian Score and MDDMspc with One-Error, and performs better than MDDMspc
with Coverage.
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4.2. Effectiveness of Parameters α and δ

In this subsection, we conduct several experiments to analyze the effectiveness of α
and δ.

4.2.1. Experimental Settings

For analyzing the effectiveness of parameters, we conduct several experiments. We
gradually increase the value of parameter α from 0 to 1 with a step of 0.05 and δ from 0 to
1020 with a step of 101. The experimental result is shown in Figure 1.

Figure 1. Effectiveness of parameter α and δ on dataset Emotions.

4.2.2. Discussions of the Experimental Results

In Figure 1 we can easily observe that with the increase in α, the performance of our
proposed algorithm decreases when α is close to 1. Parameter δ does not have a significant
effect on performance. It provides the recommended parameter setting for our experiments.

4.3. Effectiveness of Noise

In this subsection, we conduct several experiments to analyze the effectiveness of noise.

4.3.1. Experimental Settings

To analyze the effectiveness of noise, we conduct several experiments. We gradually
increase the percentage of noise in the dataset Flags from 0 to 1 with a step of 0.05. The
experimental result is shown in Figure 2.

Figure 2. Robustness while adding noise into the dataset Flags.

4.3.2. Discussions of the Experimental Results

In Figure 1 we can easily observe that all the algorithms display similar performance
with the increasing noise percentage. Compared with another algorithm, our proposed
algorithm is not worse than them. In other words, for robustness, the performance of our
algorithm is equivalent to comparison algorithms.
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5. Conclusions

Attribute reduction in multi-label learning has been a hot topic in recent years. We
propose a novel rough set model for multi-label learning and investigate the properties
of the proposed model. With the proposed model, a novel feature selection method for
multi-label learning is proposed, a novel attribute reduction approach is provided, and its
validation is proved by experiments.

In the big data era, calculating the reduction of an attribute set presents great challenges
for its high time complexity and dynamic attribute reduction. Algorithms can solve the
problem by using previously calculated results. In future work, we will carry on promoting
the proposed approach into a dynamic multi-label attribute reduction approach.
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