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Abstract: In order to describe human uncertainty more precisely, Baoding Liu established uncertainty
theory. Thus far, uncertainty theory has been successfully applied to uncertain finance, uncertain
programming, uncertain control, etc. It is well known that the limit theorems represented by law
of large numbers (LLN), central limit theorem (CLT), and law of the iterated logarithm (LIL) play
a critical role in probability theory. For uncertain variables, basic and important research is also to
obtain the relevant limit theorems. However, up to now, there has been no research on these limit
theorems for uncertain variables. The main results to emerge from this paper are a strong law of large
numbers (SLLN), a weak law of large numbers (WLLN), a CLT, and an LIL for Bernoulli uncertain
sequence. For studying these theorems, we first propose an assumption, which can be regarded as a
generalization of the duality axiom for uncertain measure in the case that the uncertainty space can be
finitely partitioned. Additionally, several new notions such as weakly dependent, Bernoulli uncertain
sequence, and continuity from below or continuity from above of uncertain measure are introduced.
As far as we know, this is the first study of the LLN, the CLT, and the LIL for uncertain variables.
All the theorems proved in this paper can be applied to uncertain variables with symmetric or
asymmetric distributions. In particular, the limit of uncertain variables is symmetric in (c) of the third
theorem, and the asymptotic distribution of uncertain variables in the fifth theorem is symmetrical.

Keywords: uncertain measure; Bernoulli uncertain sequence; weakly dependent; law of large
numbers; central limit theorem; law of the iterated logarithm

1. Introduction

As the fundamental limit theorems in the theory of probability and statistics, the law
of large numbers (LLN), central limit theorem (CLT), and law of the iterated logarithm (LIL)
have made significant contributions to the development and application of probability
and other theories. The first study of the LLN was reported by Cardano in the sixteenth
century, and the LLN for a binary random variable was proved by Bernoulli [1] in 1713.
With the further study and development of the LLN, two prominent forms of the LLN were
discovered. In 1930, Kolmogorov [2] proposed the strong law of large numbers (SLLN)
for independent and identically distributed Lebesgue integrable random variables. In
the same period, Khinchin [3] established the weak law of large numbers (WLLN) for
independent and identically distributed random variables with a finite expected value.
The earliest version of the CLT was proposed by De Moivre [4] in 1738, and Lindeberg [5]
gave the modern general form of the CLT in 1920. The original version of LIL for Bernoulli
random variables was established by Khinchin [6] in 1924. Kolmogorov [7] generalized the
applicable object of LIL from Bernoulli random variables to independent random variables
in 1929. After the LLN, CLT, and LIL were established, many mathematicians contributed
to the refinement of the limit theorems, including Poisson, Chebyshev, Markov, Lyapunov,
Winter, Strassen, etc.

As a commonly used tool to handle the fuzzy phenomena, fuzzy theory was estab-
lished by Zadeh [8] in 1965. In [8], a concept of fuzzy set was presented which can be
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characterized by a type of membership function that satisfies normality, nonnegativity, and
maximality axioms. After that, Zadeh [9] further established a possibility theory. The Fuzzy
measures, the Choquet integral, and the Sugeno integral were studied in [10–13]. Research
on the theorems such as the LLN for fuzzy variables has also been ongoing. The LLN for
fuzzy sets was first presented by Fullér [14] in 1992. Afterwards, Triesch [15] proposed the
LLN for mutually T-related fuzzy numbers. As an extension of the early results of [14,15],
Hong and Kim [16] discussed the LLN for fuzzy numbers in a Banach space. For more
details, see [17–19].

In order to study human uncertainty, Baoding Liu [20] pioneered the uncertainty
theory in 2007, and he further refined it [21] in 2009 based on normality, duality, subad-
ditivity, and product axioms. Same as in probability theory, an uncertain variable was
employed to model the uncertain quantity, an uncertain measure was used to denote the
belief degree that an uncertain event may happen, and a concept of uncertainty distribution
was adopted to describe uncertain variables. After that, many researchers have contributed
a lot in this area. Since sequence convergence plays a very important role in probability
theory, it has also been studied a lot in the field of uncertain measure. Baoding Liu [20] first
introduced several convergence concepts such as convergence in measure, convergence
in mean, convergence almost surely, and convergence in distribution. You [22] gave the
concept of convergence uniformly almost surely. Guo and Xu [23] proposed the concept of
convergence in mean square for uncertain sequence. Inspired by these, Chen, Ning, and
Wang [24] first studied the convergence of complex uncertain sequences in 2016. Further
studies on complex uncertain sequences have been done by many other researchers. For
more details, we can refer to [25–29]. Up to now, uncertainty theory has been widely used
in uncertain finance (see, e.g., Peng and Yao [30], Yu [31]), uncertain programming (see,
e.g., Liu [32], Liu and Chen [33]), uncertain statistics (see, e.g., Tripathy and Nath [34]),
uncertain differential equation (see, e.g., Liu [35], Chen and Liu [36]), and so on. However,
the limit theorems for uncertain variables such as LLN, CLT, and LIL have not been studied.

Over the past decades, the LLN in uncertainty theory has only been discussed for
uncertain random variables under chance space. For dealing with the complex phenomenon
where uncertainty and randomness coexist, Yuhan Liu [37] established the chance theory on
the basis of probability theory and uncertainty theory in 2013. In [37], several fundamental
concepts were introduced. As an integration of probability measure and uncertain measure,
a chance measure was employed to represent the possibility that an uncertain random event
occurs. A concept of chance space was defined as the product space of probability space
and uncertainty space, and the concept of uncertain random variable, chance distribution,
etc., were further presented. The literature devoted to LLN in chance theory is very rich. For
more details, we can refer to [38–43]. Yao and Gao [38] first proposed the LLN for uncertain
random variables being functions of independent, identically distributed random variables
and independent, identically distributed regular uncertain variables. As a generalization
of [38], Gao and Sheng [39] weakened the conditions of the LLN in which random variables
are independent, identically distributed and uncertain variables are independent but not
identically distributed. Recently, Nowak and Hryniewicz [43] proved three types of laws
of large numbers for uncertain random variables. First of all, the LLN proved in [38] was
further extended to cases where random variables are pairwise independent, identically
distributed and uncertain variables are regular, independent, and identically distributed.
Then, the Marcinkiewicz–Zygmund-type LLN and the Chow-type LLN for sequences of
uncertain random variables were also presented.

In this paper, our aim is to obtain an LLN, a CLT, and aLIL for Bernoulli uncertain
sequence. To achieve our goal, we first propose several new notions such as weakly depen-
dent, Bernoulli uncertain sequence and continuity from below or continuity from above
of uncertain measure. Secondly, in order to illustrate the point of this paper, we propose
Assumption 1. It is shown that, when the uncertainty space can be finitely partitioned,
the duality of the uncertain measure defined on the uncertainty space can be generalized.
After that, Theorems 1 and 2 are established to study the relationship between probability
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measure and uncertain measure on σ-algebra generated by Bernoulli uncertain sequence.
Lastly, by applying Theorems 1 and 2, we successively obtain an SLLN, a WLLN, a CLT,
and an LIL for Bernoulli uncertain sequence.

This paper is organized as follows. In Section 2, we give a brief exposition of notions,
assumption, and lemma which will be used in this paper. Section 3 is dedicated to the main
theorems of this paper. Theorems 1 and 2 are established as the fundamental theorems for
deriving the main results of this paper. Then, LLN, CLT, and LIL for Bernoulli uncertain
sequence are proved. A brief conclusion is presented in Section 4. Finally, the theorems
mentioned in this paper are presented in Appendix A.

2. Preliminaries

In this section, several fundamental concepts concerning uncertainty theory will be
reviewed first. Then, we will give other notions used in the article. Finally, we will make
an assumption, which is the premise to illustrate the viewpoint of this paper.

Definition 1 (see [20]). Let L be a σ-algebra on a non-empty set Γ. A set functionM is called an
uncertain measure if it satisfies the following axioms:
Axioms 1 (Normality Axiom):M{Γ} = 1 for the universal set Γ;
Axioms 2 (Duality Axiom):M{Λ}+M{Λc} = 1 for any Λ ∈ L;
Axioms 3 (Subadditivity Axiom): For every countable sequence of

{
Λj
}
⊂ L, we have

M

 ∞⋃
j=1

Λj

 ≤ ∞

∑
j=1
M
{

Λj
}

.

The triplet (Γ,L,M) is called an uncertainty space, and each element Λ in L is called an
event. In order to obtain an uncertain measure of compound event, a product uncertain measure is
defined by Liu [21] as follows:
Axioms 4 (Product Axiom): Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, · · · . The product
uncertain measureM is an uncertain measure satisfying

M
{

∞

∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk},

where Λk are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.

Definition 2 (see [20]). An uncertain variable ξ is a measurable function from an uncertainty
space (Γ,L,M) to the set of real numbers, i.e., for any Borel set of B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ) ∈ B}

is an event. The notion σ(ξ) stands for the smallest σ-algebra containing {{ξ ≤ x}, ∀x ∈ R}.

Definition 3 (see [20]). The uncertainty distribution φ of an uncertain variable ξ is defined by

φ(x) =M{ξ ≤ x}, ∀x ∈ R.

Definition 4 (see [20]). Let ξ be an uncertain variable. Then the expected value of ξ is defined by

E[ξ] =
∫ +∞

0
M{ξ ≥ x}dx−

∫ 0

−∞
M{ξ ≤ x}dx

provided that at least one of the two integrals is finite.

Definition 5 (see [20]). Uncertain variables are said to be identically distributed if they have the
same uncertainty distribution.
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Definition 6. The uncertain variables ξ1, ξ2, · · · , ξn are said to be weakly dependent if

M
{

n⋂
i=1

{ξi ∈ Bi}
}
∈
[ n

∏
i=1
M{ξi ∈ Bi},

n∧
i=1

M{ξi ∈ Bi}
]

for any Borel sets B1, B2, · · · , Bn.

Definition 7. A sequence {ξk}∞
k=1 is called Bernoulli uncertain sequence if it satisfies

(i) For each n ∈ N, the uncertain variables ξ1, ξ2, · · · , ξn are weakly dependent;
(ii) ξi and ξ j are identically distributed uncertain variables for any i 6= j, i, j ∈ N;
(iii) For each n, ξn takes on the values of {a1, a2, · · · , ap}, where ai ∈ R, i = 1, · · · , p, and p ∈ N.

Definition 8. Let (Γ,L,M) be an uncertainty space. An uncertain measureM is called continu-
ity from below or continuity from above if it satisfies
(i) Continuity from below: Λn ∈ L, n ∈ N, Λn ↑,

lim
n→∞

M{Λn} =M
{

∞⋃
n=1

Λn

}
.

(ii) Continuity from above: Λn ∈ L, n ∈ N, Λn ↓,

lim
n→∞

M{Λn} =M
{

∞⋂
n=1

Λn

}
.

Assumption 1. Let (Γ,L,M) be an uncertainty space. For a given n ∈ N, suppose that
Λ1, Λ2, · · · , Λn ∈ L, such that Λi

⋂
Λj = ∅, i 6= j, i, j = 1, · · · , n, and Λ1

⋃ · · ·⋃Λn = Γ.
Then,

M{Λ1}+M{Λ2}+ · · ·+M{Λn} = 1. (1)

Remark 1. The idea of making this assumption is quite natural. Next, we will explain its rationality.
Suppose that Λ1, Λ2, Λ3 ∈ L, such that Λi

⋂
Λj = ∅, i 6= j, i, j = 1, 2, 3, Λ1

⋃
Λ2
⋃

Λ3 = Γ,
and L represents the smallest σ-algebra containing {{Λ1}, {Λ2}, {Λ3}}. It is easily checked that

L = {∅, {Λ1}, {Λ2}, {Λ3}, {Λ1, Λ2}, {Λ1, Λ3}, {Λ2, Λ3}, Γ}.

Applying the duality ofM, we have,

M
{
{Λ1}

⋃
{Λ2}

}
+M{Λ3} = 1.

Denote
M
{
{Λ1}

⋃
{Λ2}

}
= p, M{Λ3} = 1− p.

It is easily seen that if p = 0, then

M{Λ1}+M{Λ2}+M{Λ3} = 1.

If p 6= 0, then we set

Γ1 = {Λ1, Λ2}, L1 = {∅, {Λ1}, {Λ2}, Γ1}, M1 =
1
p
M,

where L1 is the smallest σ-algebra containing {{Λ1}, {Λ2}}. It is obvious thatM1 satisfies the
normality and subadditivity on L1. We hope thatM1 is still an uncertain measure on L1, so we
assume that

M1{Λ1}+M1{Λ2} = 1.
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Then we have
M{Λ1}+M{Λ2}+M{Λ3} = 1.

Using the same method, for a given n ∈ N, we can show that (1) holds. Therefore, our assumption is
reasonable.

Lemma 1. Let (Γ,L,M) be an uncertainty space satisfying Assumption 1. For a given n ∈ N,
suppose that Λ1, Λ2, · · · , Λn ∈ L, such that Λi

⋂
Λj = ∅, i 6= j, i, j = 1, · · · , n, and

Λ1
⋃ · · ·⋃Λn = Γ. Then,

M


ik⋃

j=i1

Λj

 =
ik

∑
j=i1

M
{

Λj
}

, (2)

where {i1, · · · , ik} is the top k items of any permutation of {1, · · · , n}, k = 1, 2, · · · , n.

Proof. Let

Λ =
ik⋃

j=i1

Λj, Λc =
in⋃

k=ik+1

Λk,

where {i1, · · · , in} is any permutation of {1, · · · , n}.
Applying the subadditivity ofM, we can obtain

M{Λ} ≤
ik

∑
j=i1

M
{

Λj
}

(3)

and

M{Λc} ≤
in

∑
k=ik+1

M{Λk}. (4)

If either (3) or (4) is a strict inequality, then (3) plus (4) implies 1 < 1, which contradicts the
facts. Hence, (2) is proved.

3. Main Results

Theorem 1. Let (Γ,L,M) be an uncertainty space satisfying Assumption 1 and {ξk}∞
k=1 be a

Bernoulli uncertain sequence relative toM. Then there exists a probability measure P defined on
σ(ξ1, ξ2, · · · , ξn, · · · ) such that
(a) P{Λ} ≤ M{Λ}, ∀Λ ∈ σ(ξ1, ξ2, · · · , ξn, · · · ).
(b) {ξk}∞

k=1 is a sequence of independent random variables relative to P.
(c) E[ξn

k ] = EP[ξ
n
k ], for any k, n ∈ N, where EP[·] denotes the expected value in the sense of

probability measure P.

Proof. (a) For each k ∈ N, we have

σ(ξk) =

∅,
m⋃

j=1

{ξk = aij}

,

where {i1, · · · , im} is the top m items of any permutation of {1, · · · , p}, m = 1, · · · , p.
By Lemma 1, for any k ∈ N, we can define a finitely additive measure P on σ(ξk)

such that
P{Λ} =M{Λ}, ∀Λ ∈ σ(ξk).

For any fixed n, we want to define a finitely additive measure P′ on σ(ξ1, ξ2, · · · , ξn).
For simplicity, we still denote P′ as P. If Λ = ∅, then we define P{∅} =M{∅} = 0. For
any Λ ∈ σ(ξ1, ξ2, · · · , ξn) and Λ 6= ∅, it is easy to check that Λ has the form{ m1⋃

j1=1

{
ξ1 = ai1j1

}}⋂{
m2⋃

j2=1

{
ξ2 = ai2j2

}}⋂
· · ·

⋂{
mn⋃

jn=1

{
ξn = ainjn

}}
,



Symmetry 2022, 14, 1642 6 of 16

where
{

iq
1, · · · , iq

mq

}
is the top mq items of any permutation of {1, · · · , p}, q = 1, · · · , n,

and m1, · · · , mn = 1, · · · , p.
Thus, P on σ(ξ1, ξ2, · · · , ξn) is defined as

P{Λ} =
mn

∑
jn=1
· · ·

m2

∑
j2=1

m1

∑
j1=1

P
{{

ξ1 = ai1j1

}⋂{
ξ2 = ai2j2

}⋂
· · ·

⋂{
ξn = ainjn

}}

=
mn

∑
jn=1
· · ·

m2

∑
j2=1

m1

∑
j1=1

P
{

ξ1 = ai1j1

}
P
{

ξ2 = ai2j2

}
· · ·P

{
ξn = ainjn

}
=

mn

∑
jn=1
· · ·

m2

∑
j2=1

m1

∑
j1=1
M
{

ξ1 = ai1j1

}
M
{

ξ2 = ai2j2

}
· · ·M

{
ξn = ainjn

}
. (5)

From weakly dependent ofM, we have,

M
{

ξ1 = ai1j1

}
M
{

ξ2 = ai2j2

}
· · ·M

{
ξn = ainjn

}

≤M
{{

ξ1 = ai1j1

}⋂{
ξ2 = ai2j2

}⋂
· · ·

⋂{
ξn = ainjn

}}
. (6)

Further, we obtain

P{Λ} ≤
mn

∑
jn=1
· · ·

m2

∑
j2=1

m1

∑
j1=1
M
{{

ξ1 = ai1j1

}⋂{
ξ2 = ai2j2

}⋂
· · ·

⋂{
ξn = ainjn

}}
(7)

by (5) and (6). Note that Λ on σ(ξ1, ξ2, · · · , ξn) can be represented as the union of finite
sets, and the sets are pairwise disjoint. From Lemma 1, it follows that

M{Λ} =
mn

∑
jn=1
· · ·

m2

∑
j2=1

m1

∑
j1=1
M
{{

ξ1 = ai1j1

}⋂{
ξ2 = ai2j2

}⋂
· · ·

⋂{
ξn = ainjn

}}
. (8)

Hence, from (7) and (8), we obtain P{Λ} ≤ M{Λ}, ∀Λ ∈ σ(ξ1, ξ2, · · · , ξn).

It is easily seen that
∞⋃

n=1

σ(ξ1, ξ2, · · · , ξn) is an algebra, and for any Λ ∈

∞⋃
n=1

σ(ξ1, ξ2, · · · , ξn), there exists n1 ∈ N, such that Λ ∈ σ(ξ1, ξ2, · · · , ξn1). So, we define

P′′{Λ} = P{Λ}, ∀Λ ∈
∞⋃

n=1

σ(ξ1, ξ2, · · · , ξn).

For simplicity, we still denote P′′ as P. By (5), we know that P satisfies finite additivity on

σ(ξ1, ξ2, · · · , ξn). Thus, P is a finitely additive measure defined on
∞⋃

n=1

σ(ξ1, ξ2, · · · , ξn).

We can endow the space Γ with an auxiliary compact topology. This topology has

as basis the algebra
∞⋃

n=1

σ(ξ1, ξ2, · · · , ξn) itself (see Lemma 9 [44] p. 155). From the def-

inition of regular (see Definition A1 in Appendix A), we can verify that P is regular

on
∞⋃

n=1

σ(ξ1, ξ2, · · · , ξn). By Theorem A1 in Appendix A, it follows that P is a count-

ably additive measure on
∞⋃

n=1

σ(ξ1, ξ2, · · · , ξn). Therefore, P is a probability measure on

∞⋃
n=1

σ(ξ1, ξ2, · · · , ξn).
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Since, σ(ξ1, ξ2, · · · , ξn, · · · ) is the σ-algebra generated by
∞⋃

n=1

σ(ξ1, ξ2, · · · , ξn), then a

standard application of Caratheodory’s extension theorem (see Theorem A2 in Appendix A)
ensures the existence of a unique probability measure on σ(ξ1, ξ2, · · · , ξn, · · · ) that extends
P. We still denote it as P. This is the probability measure on σ(ξ1, ξ2, · · · , ξn, · · · ) we are
looking for. Thus, (a) is proved.

(b) By (5), we know that {ξk}∞
k=1 is a sequence of independent random variables

relative to P.
(c) Without loss of generality, we only prove that ξk is a positive uncertain variable

and the value of ξk is either a1 or a2. The proof of other cases is similar.
Let us set 0 < a1 < a2. By Definition 4, we have,

E[ξn
k ] =

∫ ∞

0
M{ξn

k ≥ x}dx

=
∫ an

1

0
1dx +

∫ an
2

an
1

M{ξn
k = an

2}dx

= an
1 + (an

2 − an
1 )M{ξn

k = an
2}

= an
1M{ξn

k = an
1}+ an

2M{ξn
k = an

2}
= an

1P{ξn
k = an

1}+ an
2P{ξn

k = an
2}

= EP[ξ
n
k ].

Thus, (c) is proved.

Theorem 2. Let (Γ,L,M) be an uncertainty space satisfying Assumption 1 and {ξk}∞
k=1 be a

Bernoulli uncertain sequence relative toM. For fixed n, uncertain variable Yn is a measurable
function on σ(ξ1, ξ2, · · · , ξn). Suppose that P is the probability measure provided by Theorem 1.
Then,
(a)

lim
p→∞

lim
n→∞

lim
m→∞

lim
k→∞
M
{

γ : Yn ≥ α +
1
m
− 1

p
, · · · , Yn+k ≥ α +

1
m
− 1

p

}

≥ P
{

γ : lim inf
n→∞

Yn ≥ α
}

. (9)

(b)

lim
m→∞

lim
n→∞

lim
p→∞

lim
k→∞
M
{

γ : Yn ≤ α +
1
m
− 1

p
, · · · , Yn+k ≤ α +

1
m
− 1

p

}

≥ P
{

γ : lim sup
n→∞

Yn ≤ α

}
. (10)

(c)

lim
n→∞

lim
p→∞

lim
k→∞
M
{{

γ : Yn > α− 1
p

}⋃
· · ·

⋃{
γ : Yn+k > α− 1

p

}}

≥ P
{

γ : lim sup
n→∞

Yn ≥ α

}
. (11)

(d) Furthermore, ifM satisfies (i) and (ii) in Definition 8, then
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M
{

γ : lim inf
n→∞

Yn ≥ α
}
≥ P

{
γ : lim inf

n→∞
Yn ≥ α

}
. (12)

M
{

γ : lim sup
n→∞

Yn ≤ α

}
≥ P

{
γ : lim sup

n→∞
Yn ≤ α

}
. (13)

M
{

γ : lim sup
n→∞

Yn ≥ α

}
≥ P

{
γ : lim sup

n→∞
Yn ≥ α

}
. (14)

Proof. (a) By Theorem 1 (a), we have

M
{

γ : Yn ≥ α +
1
m
− 1

p
, · · · , Yn+k ≥ α +

1
m
− 1

p

}

≥ P
{

γ : Yn ≥ α +
1
m
− 1

p
, · · · , Yn+k ≥ α +

1
m
− 1

p

}
,

since

∞⋂
k=n

{
γ : Yk ≥ α +

1
m
− 1

p

}
=

{
γ : inf

k≥n
Yk ≥ α +

1
m
− 1

p

}
, (15)

then

lim
k→∞
M
{

γ : Yn ≥ α +
1
m
− 1

p
, · · · , Yn+k ≥ α +

1
m
− 1

p

}

≥ P
{

γ : inf
k≥n

Yk ≥ α +
1
m
− 1

p

}
,

by (15) and the continuity from above of P.
Note

∞⋃
m=1

{
γ : inf

k≥n
Yk ≥ α +

1
m
− 1

p

}
=

{
γ : inf

k≥n
Yk > α− 1

p

}
. (16)

From (16) and the continuity from below of P, it follows that

lim
m→∞

lim
k→∞
M
{

γ : Yn ≥ α +
1
m
− 1

p
, · · · , Yn+k ≥ α +

1
m
− 1

p

}

≥ P
{

γ : inf
k≥n

Yk > α− 1
p

}
.

Next, it is easily checked that

∞⋃
n=1

{
γ : inf

k≥n
Yk > α− 1

p

}
=

{
γ : lim inf

n→∞
Yn > α− 1

p

}
. (17)

Thus, by (17) and the continuity from below of P, we have,

lim
n→∞

lim
m→∞

lim
k→∞
M
{

γ : Yn ≥ α +
1
m
− 1

p
, · · · , Yn+k ≥ α +

1
m
− 1

p

}
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≥ P
{

γ : lim inf
n→∞

Yn > α− 1
p

}
.

Finally, it is obvious that

∞⋂
p=1

{
γ : lim inf

n→∞
Yn > α− 1

p

}
=
{

γ : lim inf
n→∞

Yn ≥ α
}

, (18)

we obtain

lim
p→∞

lim
n→∞

lim
m→∞

lim
k→∞
M
{

γ : Yn ≥ α +
1
m
− 1

p
, · · · , Yn+k ≥ α +

1
m
− 1

p

}

≥ P
{

γ : lim inf
n→∞

Yn ≥ α
}

,

by applying (18) and the continuity from above of P. Hence, the proof of (a) is completed.
The proof of Theorem 2 (b) and (c) can be established using the technique of that of

Theorem 2 (a), so we omit it.
(d) In the following proof, we only prove (12) holds, and (13) and (14) can be proved

by the same method.
Note thatM satisfies (i) and (ii) in Definition 8. We can conclude that

lim
p→∞

lim
n→∞

lim
m→∞

lim
k→∞
M
{

γ : Yn ≥ α +
1
m
− 1

p
, · · · , Yn+k ≥ α +

1
m
− 1

p

}

=M
{

γ : lim inf
n→∞

Yn ≥ α
}

.

By applying (9), it follows that

M
{

γ : lim inf
n→∞

Yn ≥ α
}
≥ P

{
γ : lim inf

n→∞
Yn ≥ α

}
.

Hence, (12) is proved.

Theorem 3 (SLLN). Let (Γ,L,M) be an uncertainty space satisfying Assumption 1 and {ξk}∞
k=1

be a Bernoulli uncertain sequence relative toM. Set µ = E[ξk], Sn =
n

∑
i=1

ξi. Then,

(a)

lim
p→∞

lim
n→∞

lim
m→∞

lim
k→∞
M
{

γ :
Sn

n
≥ µ +

1
m
− 1

p
, · · · ,

Sn+k
n + k

≥ µ +
1
m
− 1

p

}
= 1. (19)

(b)

lim
m→∞

lim
n→∞

lim
p→∞

lim
k→∞
M
{

γ :
Sn

n
≤ µ +

1
m
− 1

p
, · · · ,

Sn+k
n + k

≤ µ +
1
m
− 1

p

}
= 1. (20)

(c) Furthermore, ifM satisfies (i) and (ii) in Definition 8, then

M
{

γ : lim
n→∞

Sn

n
= µ

}
= 1. (21)

Proof. (a) By Theorem 2 (a), we have



Symmetry 2022, 14, 1642 10 of 16

lim
p→∞

lim
n→∞

lim
m→∞

lim
k→∞
M
{

γ :
Sn

n
≥ µ +

1
m
− 1

p
, · · · ,

Sn+k
n + k

≥ µ +
1
m
− 1

p

}

≥ P
{

γ : lim inf
n→∞

Sn

n
≥ µ

}
.

From Theorem 1 (b) and (c), it can be shown that {ξk}∞
k=1 is a sequence of independent

random variables relative to P, µ = E[ξk] = EP[ξk], for any k ∈ N. Hence, by applying
Kolmogorov’s strong law of large numbers ( see Theorem A3 in Appendix A ), it follows that

P
{

γ : lim inf
n→∞

Sn

n
≥ µ

}
= 1,

which implies,

lim
p→∞

lim
n→∞

lim
m→∞

lim
k→∞
M
{

γ :
Sn

n
≥ µ +

1
m
− 1

p
, · · · ,

Sn+k
n + k

≥ µ +
1
m
− 1

p

}
= 1.

Hence, the proof of (a) is completed.
From Theorem 2 (b) and using the similar method of the proof of Theorem 3 (a), we

can prove Theorem 3 (b). So it is omitted.
(c) Applying (12), (13) and Kolmogorov’s strong law of large numbers, it yields that

M
{

γ : lim inf
n→∞

Sn

n
≥ µ

}
= 1 and M

{
γ : lim sup

n→∞

Sn

n
≤ µ

}
= 1. (22)

Now we show that (21)⇔ (22). Since, (21)⇒ (22) is obvious, we only need to prove
that (22)⇒ (21). Let

Λ1 =

{
γ : lim inf

n→∞

Sn

n
≥ µ

}
, Λ2 =

{
γ : lim sup

n→∞

Sn

n
≤ µ

}
.

Then,

Λ1
⋂

Λ2 =

{
γ : lim

n→∞

Sn

n
= µ

}
.

Due to Γ = Λc
1
⋃
{Λ1

⋂
Λ2}

⋃
Λc

2, we obtain

M{Γ} ≤ M{Λc
1}+M

{
Λ1
⋂

Λ2

}
+M{Λc

2}, (23)

by the subadditivity of M. Note M
{

Λc
1
}
= 0, M{Λc

2} = 0. From (23), it follows that
M{Λ1

⋂
Λ2} = 1, i.e.,

M
{

γ : lim
n→∞

Sn

n
= µ

}
= 1.

Hence, (c) is proved.

Remark 2. For (c), denote ξ = lim
n→∞

Sn − nµ

n
, thenM{γ : ξ = 0} = 1. Furthermore,

M{γ : ξ ≤ x}+M{γ : ξ ≤ −x} = 1, ∀x ∈ R\{0}.

Thus, ξ is symmetrical (see, e.g., [45]).

Theorem 4 (WLLN). Let (Γ,L,M) be an uncertainty space satisfying Assumption 1 and

{ξk}∞
k=1 be a Bernoulli uncertain sequence relative to M. Set µ = E[ξk], Sn =

n

∑
i=1

ξi. Then,

for any ε > 0, we have,
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lim
n→∞

M
{

γ :

∣∣∣∣∣Sn

n
− µ

∣∣∣∣∣ < ε

}
= 1. (24)

Proof. By Theorem 1 (a), we have,

M
{

γ : µ− ε <
Sn

n
< µ + ε

}
≥ P

{
γ : µ− ε <

Sn

n
< µ + ε

}
.

Note Theorem 1 (b) and (c). From Khinchin’s weak law of large numbers (see Theo-
rem A4 in Appendix A), for any ε > 0, it follows that

lim
n→∞

P
{

γ :

∣∣∣∣∣Sn

n
− µ

∣∣∣∣∣ < ε

}
= 1,

which implies,

lim
n→∞

M
{

γ :

∣∣∣∣∣Sn

n
− µ

∣∣∣∣∣ < ε

}
= 1.

Theorem 5 (CLT). Let (Γ,L,M) be an uncertainty space satisfying Assumption 1 and {ξk}∞
k=1 be

a Bernoulli uncertain sequence relative toM. Set µ = E[ξk], σ2 = E[ξk
2]− µ2 > 0, Sn =

n

∑
i=1

ξi.

Then,

lim
n→∞

M
{

γ :
Sn − nµ√

nσ
≤ x

}
=

1√
2π

∫ x

−∞
e−

t2
2 dt ≈ φ(x), ∀x ∈ R, (25)

where φ(x) =

(
1 + exp

(
−πx√

3

))−1

.

Proof. Set Yn = Sn−nµ√
nσ

. Then, by Theorem 1 (a), we have

P{γ : Yn ≤ x} ≤ M{γ : Yn ≤ x}, (26)

P{γ : Yn > x} ≤ M{γ : Yn > x}. (27)

If either (26) or (27) is a strict inequality, then (26) plus (27) implies 1 < 1, which contradicts
the facts. Therefore,

P{γ : Yn ≤ x} =M{γ : Yn ≤ x}.

From Theorem 1 (b) and (c), it follows that {ξk}∞
k=1 is a sequence of independent

random variables relative to P, µ = E[ξk] = EP[ξk], and σ2 = E[ξk
2]− µ2 = EP[ξ

2
k ]− µ2,

for any k ∈ N.
Applying Lindeberg–Lévy’s central limit theorem (see Theorem A5 in Appendix A),

we have

lim
n→∞

P
{

γ :
Sn − nµ√

nσ
≤ x

}
=

1√
2π

∫ x

−∞
e−

t2
2 dt,

which implies,

lim
n→∞

M
{

γ :
Sn − nµ√

nσ
≤ x

}
=

1√
2π

∫ x

−∞
e−

t2
2 dt.
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Remark 3. Note that

lim
n→∞

M
{

γ :
Sn − nµ√

nσ
≤ x

}
= lim

n→∞
M
{

γ :
Sn − nµ√

nσ
≥ −x

}
, ∀x ∈ R.

Hence, the asymptotic distribution of
{

Sn − nµ√
nσ

}∞

n=1
is symmetrical (see, e.g., [45]).

Theorem 6 (LIL). Let (Γ,L,M) be an uncertainty space satisfying Assumption 1 and {ξk}∞
k=1

be a Bernoulli uncertain sequence relative toM. Set E[ξk] = 0, σ2 = E[ξk
2] > 0, Sn =

n

∑
i=1

ξi,

Sn = Sn√
2nloglogn

. Then,

(a)

lim
m→∞

lim
n→∞

lim
p→∞

lim
k→∞
M
{

γ : Sn ≤ σ +
1
m
− 1

p
, · · · , Sn+k ≤ σ +

1
m
− 1

p

}
= 1. (28)

(b)

lim
n→∞

lim
p→∞

lim
k→∞
M
{{

γ : Sn > σ− 1
p

}⋃
· · ·

⋃{
γ : Sn+k > σ− 1

p

}}
= 1. (29)

(c) Furthermore, ifM satisfies (i) and (ii) in Definition 8, then

M
{

γ : lim sup
n→∞

Sn = σ

}
= 1. (30)

Proof. (a) By Theorem 2 (b), we have

lim
m→∞

lim
n→∞

lim
p→∞

lim
k→∞
M
{

γ : Sn ≤ σ +
1
m
− 1

p
, · · · , Sn+k ≤ σ +

1
m
− 1

p

}

≥ P
{

γ : lim sup
n→∞

Sn ≤ σ

}
.

According to Theorem 1 (b) and (c), we know that {ξk}∞
k=1 is a sequence of independent

random variables relative to P, E[ξk] = EP[ξk] = 0, and σ2 = E[ξk
2] = EP[ξk

2], for any
k ∈ N.

Applying Kolmogorov’s law of the iterated logarithm (see Theorem A6 in Appendix A),
we obtain

P
{

γ : lim sup
n→∞

Sn ≤ σ

}
= 1,

which implies,

lim
m→∞

lim
n→∞

lim
p→∞

lim
k→∞
M
{

γ : Sn ≤ σ +
1
m
− 1

p
, · · · , Sn+k ≤ σ +

1
m
− 1

p

}
= 1.

Hence, the proof of (a) is completed.
From Theorem 2 (c) and using the similar method of the proof of Theorem 6 (a), we

can prove Theorem 6 (b). So it is omitted.
(c) Combining (13), (14), and Kolmogorov’s law of the iterated logarithm, it yields that

M
{

γ : lim sup
n→∞

Sn ≤ σ

}
= 1 and M

{
γ : lim sup

n→∞
Sn ≥ σ

}
= 1. (31)
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Now, we show that (30)⇔ (31). Since (30)⇒ (31) is obvious, we only need to prove
that (31)⇒ (30). Let

Λ1 =

{
γ : lim sup

n→∞
Sn ≤ σ

}
, Λ2 =

{
γ : lim sup

n→∞
Sn ≥ σ

}
.

Then,

Λ1
⋂

Λ2 =

{
γ : lim sup

n→∞
Sn = σ

}
.

With the similar proof of Theorem 3 (c), we have,

M
{

γ : lim sup
n→∞

Sn = σ

}
= 1.

Hence, (c) is proved.

Now, to better explain our main results, we give the following special case.

Example 1. Let (Γ,L,M) be an uncertainty space satisfying Assumption 1 andM satisfies (i)
and (ii) in Definition 8. Let {ξk}∞

k=1 be a Bernoulli uncertain sequence that takes values of 0

and 1. Suppose that M{ξk = 0} = p, M{ξk = 1} = 1− p = q, Sn =
n

∑
i=1

ξi. Then µ = q,

σ2 = q(1− q) > 0, by Theorems 3–6, it follows that
(a)

M
{

γ : lim
n→∞

Sn

n
= q

}
= 1. (32)

(b) For any ε > 0,

lim
n→∞

M
{

γ :

∣∣∣∣∣Sn

n
− q

∣∣∣∣∣ < ε

}
= 1. (33)

(c)

lim
n→∞

M
{

γ :
Sn − nq√
nq(1− q)

≤ x

}
=

1√
2π

∫ x

−∞
e−

t2
2 dt ≈ φ(x), ∀x ∈ R. (34)

(d) Set Sn =

n

∑
i=1

(ξi − q)
√

2nloglogn
. Then,

M
{

γ : lim sup
n→∞

Sn =
√

q(1− q)
}

= 1. (35)

4. Conclusions

Nowadays, uncertainty theory has developed rapidly in uncertain finance, uncertain
statistics, uncertain calculus, uncertain risk analysis, and other fields. However, so far, very
little attention has been paid to the limit theorems such as LLN, CLT, and LIL for uncertain
variables. This paper has been the first attempt to establish an SLLN, a WLLN, a CLT,
and an LIL for Bernoulli uncertain sequence. We have known that these limit theorems
are well developed in probability theory, so we have naturally thought of obtaining those
for uncertain variables by exploring the relationship between probability measure and
uncertain measure. In this paper, we have proposed a new definition called weakly depen-
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dent, which can be regarded as a generalization of the independence of uncertain variables.
Based on weakly dependent, a Bernoulli uncertain sequence has been introduced where the
uncertain variables take a finite number of values. Besides this, we have introduced a new
way to define the continuity of uncertain measure. After that, in explaining our main idea,
Assumption 1 has been put forward, which is the premise of all theorems in this paper, and
it has stated that, when the uncertainty space can be finitely partitioned, we can generalize
the duality of the uncertain measure defined on this uncertainty space. In Theorem 1,
we have discussed the relationship between probability measure and uncertain measure
on σ-algebra generated by Bernoulli uncertain sequence. Then, the Bernoulli uncertain
sequence has been proved to be a sequence of independent random variables under proba-
bility measure. Lastly, we have shown that the expected value of the Bernoulli uncertain
sequence in the sense of uncertain measure is equal to its expected value in the sense of
probability measure. Theorem 2, as an application of Theorem 1 (a), combined with the
continuity of the probability measure, has yielded more specific results. It is worth noting
that both Theorems 1 and 2 are essential tools to prove the main results (Theorems 3–6) of
this paper. Theorem 3 has been established as an SLLN for Bernoulli uncertain sequence. In
a special case where the uncertain measure satisfies continuity from below and continuity
from above, the SLLN for Bernoulli uncertain sequence becomes Kolmogorov’s SLLN.
In addition, Theorems 4 and 5 have been presented as a WLLN and a CLT for Bernoulli
uncertain sequence, respectively. Theorem 4 has the form corresponding to Khinchin’s
WLLN. Theorem 5 has the form corresponding to Lindeberg–Lévy’s CLT. Finally, we have
illustrated an LIL for Bernoulli uncertain sequence by Theorem 6. Particularly, when the
uncertain measure satisfies continuity from below and continuity from above, the LIL for
Bernoulli uncertain sequence becomes Kolmogorov’s LIL. Future research may consider
generalizing the limit theorems for Bernoulli uncertain sequence proved in this paper
to those for general uncertain sequence. Although the relationship between probability
measure and uncertain measure based on general uncertain sequence is difficult to handle,
we will actively explore more and better ways to solve this problem.
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Appendix A

Definition A1 (see [46]). Let (Γ, ρ) is a metric space, and O and C are the classes of all open and
closed sets in (Γ, ρ), respectively, and L is the Borel σ-algebra on Γ, i.e., it is the smallest σ-algebra
containing O. A measure µ on (Γ, ρ) is called regular, if for any Λ ∈ L and δ > 0, there exists a
closed set Fδ and an open set Gδ of Γ, such that Fδ ⊂ Λ ⊂ Gδ and µ{Gδ − Fδ} < δ.

Theorem A1 (Alexandroff Theorem, see [47]). Let µ be a regular finitely additive measure
defined on algebra Σ of subsets of a compact topological space Γ. Thus, µ is countably additive.

Theorem A2 (Caratheodory’s Extension Theorem, see [48]). Let A ⊂ 2Ω be an algebra
and P be a probability measure on A. There exists a unique measure P1 on σ(A) such that
P1{Λ} = P{Λ} for all Λ ∈ A.

Theorem A3 (Kolmogorov’s SLLN, see [49]). Let (Γ,L,P) be a probability space and
ξ1, · · · , ξn, · · · be i.i.d.random variables with a finite expected value EP[ξ1] = µ ∈ R. Set

Sn =
n

∑
i=1

ξi. Then, P
{

lim
n→∞

Sn

n
= µ

}
= 1.

Theorem A4 (Khinchin’s WLLN, see [49]). Let (Γ,L,P) be a probability space and
ξ1, · · · , ξn, · · · be i.i.d.random variables with a finite expected value EP[ξ1] = µ ∈ R. Set

Sn =
n

∑
i=1

ξi. Then, for any ε > 0, lim
n→∞

P
{
| Sn

n
− µ |< ε

}
= 1.

Theorem A5 (Lindeberg–Lévy’s CLT, see [49]). Let (Γ,L,P) be a probability space and
ξ1, · · · , ξn, · · · be i.i.d.random variables with a finite expected value and variance. Set EP[ξ1] =

µ ∈ R, DP[ξ1] = EP[ξ1
2]− µ2 = σ2 > 0, Sn =

n

∑
i=1

ξi. Then,

lim
n→∞

P{Sn − nµ√
nσ

≤ x} = φ(x),

where φ(x) is the distribution function of the standard normal distribution.

Theorem A6 (Kolmogorov’s LIL, see [49]). Let (Γ,L,P) be a probability space and
ξ1, · · · , ξn, · · · be i.i.d.random variables with mean zero and finite variance. Set DP[ξ1] =

EP[ξ1
2] = σ2 > 0, Sn =

n

∑
i=1

ξi, Sn =
Sn√

2n log log n
. Then,

P
{

lim sup
n→∞

Sn = σ

}
= 1,

where “log” is the natural logarithm.
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