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Abstract: In multiple response regression, the reduced rank regression model is an effective method
to reduce the number of model parameters and it takes advantage of interrelation among the response
variables. To improve the prediction performance of the multiple response regression, a method for
the sparse robust reduced rank regression with covariance estimation(Cov-SR4) is proposed, which
can carry out variable selection, outlier detection, and covariance estimation simultaneously. The
random error term of this model follows a multivariate normal distribution which is a symmetric
distribution and the covariance matrix or precision matrix must be a symmetric matrix that reduces
the number of parameters. Both the element-wise penalty function and row-wise penalty function
can be used to handle different types of outliers. A numerical algorithm with a covariance estimation
method is proposed to solve the robust sparse reduced rank regression. We compare our method
with three recent reduced rank regression methods in a simulation study and real data analysis. Our
method exhibits competitive performance both in prediction error and variable selection accuracy.

Keywords: reduced rank regression; robust; sparsity; precision matrix

1. Introduction

In traditional statistical models, the response variables are usually studied in the
one-dimensional case, for example, references [1-4]. Recently, there has been an increasing
need to predict several response variables by a common set of covariates. For example,
in bioinformatics, multiple phenotypes of a patient are to be predicted based on measures
of genetic variation. In economics, the returns of multiple stocks can be predicted based
on a common set of economic and market variables. In neuroscience, the responses of
different regions of the brain can be predicted based on the input stimulus. Such data
analysis problems are widely available in multiple regression.

For multiple response variable regression, one can naively model linear regression
for each response variable individually by ignoring the inherent correlation structure
between the response variables. In fact, performing a separate ordinary least squares
regression for each response variable to estimate the coefficient matrix is consistent with
performing maximum likelihood estimation. Another practical problem is that the number
of parameters in the regression coefficient matrix can be huge even for a modest number of
response variables.

It is natural to think of ways to improve this simple approach. Here two directions
can be used to reduce the degrees of freedom parameters of the model and to improve
its predictive power and interpretability. One of these directions is to reduce the dimen-
sionality of the coefficient matrix. To take advantage of correlations between the response
variables, the rank of the coefficient matrix is restricted, which gives rise to the well-known
reduced-order regression (RRR), as in references [5,6]. RRR allows the response variables to
borrow information from each other through a common set of latent factors to improve the
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prediction accuracy. However, each latent factor is a linear combination of all predictors.
When there are a large number of predictor variables, some of them may not be useful for
prediction. Therefore, an alternative approach is to reduce the number of free parameters
by variable selection to exclude redundant predictors in forming latent factors. The issue
of rank reduction estimation and variable selection in the RRR framework has been exten-
sively studied in the recent literature [7-12]. However, in all these works, the components
of the error terms are assumed to be independently identically distributed. Ref. [13] added
variable selection and covariance estimation to the RRR model to improve the predictive
performance and facilitate interpretation.

Although RRR can substantially reduce the number of free parameters in multivariate
problems, Ref. [14] found that it is extremely sensitive to outliers. In real-world data
analysis, outliers and leverage points are bound to occur, and thus, the genuine reduced-
rank structure could easily be masked or distorted. Ref. [15] proposed a method to detect
outliers in a continuous distribution based on the cumulative distribution function. Ref. [16]
proposes the use of order statistics to detect extreme values in continuously distributed
samples. Ten case studies of outlier detection are given in reference [16], the method of
order statistics demonstrates its excellence in a comparative study. However, this method
of outlier detection is without covariates and the effect of covariates needs to be taken into
account in our paper.

The closely related research of this paper includes sparse reduced-rank regression with
covariance estimation (Cov-SRRR) in literature [13] and robust reduced-rank regression (R4)
in literature [14]. However, the Cov-SRRR method does not consider the robustness and
the R4 method does not consider the correlations among error terms and the sparsity of the
coefficient matrix. They only considered a subset of our objectives. The main contributions
of this paper are highlighted as follows.

¢  Inthis work, the mean-shift method is used to get a robust estimation that can explicitly
detect outliers, account for general correlations among error terms, and improve
estimation accuracy by applying shrinkage on the precision matrix. In addition, we
also incorporate variable selection in the model estimation, which is done through a
penalty function on the coefficient.

* A block coordinate descent algorithm is proposed to obtain parameter estimates of
the objective function. The monotonicity of the algorithm is also given.

The rest of the paper is organized as follows: in Section 2, we formally introduce the
framework of reduced-rank regression with a sparse mean-shift outlier component and
an unknown error covariance matrix. The penalized estimation method is used to get a
sparse estimation. A block coordinate descent algorithm is developed in Section 3 to get
the estimation of the RRR model proposed in Section 2. The simulation studies are given
in Section 4, which compared the proposed model to relevant competitors. A real data
application is shown in Section 5. Finally, a summary and brief discussion are given in
Section 6.

2. Robust Reduced-Rank Regression Model with Unknown Covariance

Firstly, we write the multivariate regression model in matrix notation as
Y = XB + &€ subjectto r(B) =, 1)

resulting in the famous RRR model, where Y = (y, .. .,yn)T, X = (x1,...,%1)7, y, € R", x; €
R?, r < min(p, m), r(-) denote rank and B is a p x m coefficient matrix, and € = (ey, ..., &)
is a random n x m matrix and &; from the N (0, Z;) distribution.

Ref. [17] investigates the outlier detection from the perspective of adding a mean shift
parameter for each data point in a one-dimensional response variable. Ref. [14] introduces
a multivariate mean-shift regression model for detecting outlier terms. We introduce a
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mean-shift regression model that includes multivariate response variable dependence.
The mean-shift multivariate response variable regression model can be written as

Y=XB+C+E, @)

where Y is the n X m response matrix, X is the n x p predictor matrix, B is the p x m coeffi-
cient matrix, C is the n X m matrix which describes the outlying effects on Y and £ is the
n X m error matrix whose rows are independent draws from N (0, Z.) which is a symmetric
distribution. The unknown parameters in the model can be collectively written as (B, C, Z)
or (B,C,Q), where Q = £_! denotes the precision matrix. The assumption that errors
are correlated is necessary for many applications, for example, when the predictors are
not sufficient to eliminate all the correlations between the dependent variables. Obviously,
this leads to an over-parameterized model, so we must regularize the unknown matrices
appropriately. We assume that B has a low-rank structure and C is a sparse matrix with
only a few nonzero terms due to their inconsistency with the majority of the data. So the
following sparse robust reduced-rank regression problem is proposed

1 T
min Etr{(Y —XB-C)Q(Y-XB-C)'} —log|Q| + M ]; |wjsjl

+P(B; Ay) + P(C; A3) subjectto r(B) <r, 3)

where P(B; A;) and P(C; A3) are the penalty functions for B and C. The penalty parameters
are A and A3, respectively. The term wy; is the ( j',j) entry in €3 and the lasso penalty on
the off-diagonal entries of () has two reasons. First, it ensures the optimal solution of 2
has a finite objective function value when there are more responses than samples; second,
the penalty has the effect of getting a sparse estimation. The penalty of P(B; A;) encourages
sparsity estimation of coefficient matrix B. The term of P(C; A3) is used to get a sparse
estimation of C. The Ay, Ay and A3 are the tuning parameters. Based on the symmetry
of multivariate normal distribution, the covariance matrix or precision matrix must be a
symmetric matrix, which reduces the number of parameters and improves the efficiency of
parameter estimation. Following reference [18], we estimate the precision matrix using the
Gaussian likelihood together with a sparsity-inducing L;-penalty on all of its entries

n}i)ntr(SeQ) —log|Q|+ A1 )] lwjrjl @)
J#

where tr is the trace of the matrix and S, = 1 (Y — XB - C)"(Y — XB - C).

As shown in the above formula rank(B) = r and r < min(p, m) resulting in the
reduced-rank regression (RRR) model given in book [19]. The reduced-rank restriction
means a number of linear constraints on regression coefficients which can reduce the
number of parameters and improve the estimation efficiency. According to the rank
constraint B can be expressed as a product of two rank r matrices as follows

B=svT. (5)

Inspired by the penalized regression with a grouped lasso penalty in literature [12,20]
consider the following optimization problem

1 p .
in—tr(Y — XSV T(y — xsvT Ail|S/
min  tr( svT( S )+]; il1S1]2
subject to viv =1.. 6)

where §/ is the jth row of S, Aj is the corresponding tuning parameter and I, is a unit matrix
of order r. The sparsity of the rows means that the unselected variables are not associated
with any response variable. The element-wise sparsity penalty can also be applied to S.
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1

These two types of sparsity can be blended, firstly, with row sparsity employed in a

screening step to reduce p to some dimension d (d < p) desired, and then, the element-wise

sparsity pursuit in each individual loading vector. In this paper, similar to sparse reduced

rank regression (SRRR) in literature [12], only the row-wise sparsity is considered for S.
The problem (3) can be expressed as

. 1 T T T
min f = —tr{(Y -XSV' - C)Q(Y-XSV' - C log || + A E Wir;
S,V}:‘,Q'f n r{( ) ( ) } 0g| | 1]‘ 4]'/‘ ]]‘

+P(S; A2) + P(C; A3) subjectto VIQV = 1,. (7)

As mentioned above, the assumptions of the model are very mild and, therefore, it can be
applied to a wide range of applications. In addition, the model parameters are appropriately
regularized, so the model fitting should be robust and the result has well interpretations.
As is given in Theorem 2 by paper [14], when the covariance matrix is not considered,
the mean-shift model is equivalent to the robust M-estimation problem for B. There is
no doubt that both simulation studies and the form of model expressions can show the
robustness of the method.

3. Computational Algorithm

This section presents an algorithm for solving the optimization problem (7), iteratively
optimizing with respect to S, V, C and Q.

For given (i, v, clt)y, the problem of solving for the precision matrix 2 can be
expressed as

ngntr(SRQ) —log Q|+ A1 Y |wyl, 8)
i#

where Sg = 1(v — xslyln’ — cthT(y — xslyl’ — Ct). Reference [21] describes that
this problem can be solved by applying the DP-GLASSO algorithm in the R package
dpglasso. The DP-GLASSO algorithm optimizes the primal objective with the actual
precision matrix and the GLASSO algorithm given in reference [22] can solve the dual of
the graphical lasso penalized likelihood with the covariance matrix. However, reference [21]
shows that the DP-GLASSO algorithm performs better than the GLASSO algorithm.

For fixed Q1 and ClY, the objective of minimization over (S, V) is

%tr{(Y —xsvT — chol+(y — xsvT — chT} 4 p(s; A,), ©)

subject to the constraint vialtly = 1,. Applying the transformation V = (Q“H] )12y,
wehave V!V =1 r. The first term in the objective function (9) can be written as

< HH1N1/2 _ Al olt+1N1/2 _ v [t+1N\1/2 _ Al olt+131/2 _ 7 \T
tr{(v(Q*) cll(olt+1]) XSV (y(alt+) cll(al+1)) xsviH™

= |l¥-xsv'|P (10)

= H(S,V),

where Y = Y(QI1)1/2 — cll(Qlt+11)1/2 When P(S; A2) = T, A2]|si|2, then the prob-
lem (9) becomes a SRRR problem given in literature [12], which can be solved iteratively.
For the sparsity-inducing penalty functions P(S; A;), there are a lot of choices. The ¢;
penalty in reference [23] is most popular among the sparse penalty literature but suffers
from inconsistency and biased estimates, especially when predictors are correlated. To al-
leviate those problems, some non-convex penalties such as the £,(0 < p < 1) penalty,
SCAD and the capped /¢; penalty are proposed to approximate the ideal non-convex

Co(I[S]lo = Xij 1s;20) penalty.
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To solve the S-optimization problem for a general penalty function P(#; A), we propose
to use a threshold rule based ©@-estimator as multiple penalty functions usually correspond
to a threshold rule. The threshold-based iterative selection procedure (TISP) in reference [24]
can be used to solve the penalty problem for any P associated with a threshold rule (an
odd, unbounded monotone shrinkage function) given in reference [17].

According to reference [25], @-estimator is linked to a general penalty function P(t; A) by

p(tA) —p(O;A) = /Ot|(sup{s :0O(s,A) <up—u)du+q(tA), (11)

for some nonnegative g(-; A) such that g(©(s,A); A) = 0 for all s. Any thresholding rule
can be solved by this method. We can apply this technique to solve all popular penalties
including but not limited to the aforementioned ¢, SCAD, /g and /,(0 < p < 1). This
means this method is universally valid. The partial derivative of the function H(S, V) at S
can be calculated:

VsH(S, V) = XT(xs(V)T —Y)V. (12)

The closed-form solution for S given V[ is
glt+1] — @(s[f] _ VSH(SM,VM)/p; qs), (13)

where p > ||XTX]||3 and @ is the thresholding function corresponding to penalty P(S; A,).
The further details are given in the literature [25].
When s+ s given, the optimization problem of V becomes

min ||¥ — XSV 2 subject to VIV = I, (14)
%

This can be identified as a Procrustes rotation problem, realizable through computing the
singular value decomposition of ¥' XS = PDQT. The optimal V = (Ql*11)=1/2pQT. The
full algorithm is presented in Algorithm 1.
For fixed Q1 s+ and VI the problem of solving C reduces to the minimiza-
tion of
1

F(C) = —tr{(Y - xslHy _ oyoltrtly — xslHyIT o4 p(c;A5). (15)

Suppose £(C) = Ltr{(y — xslHyl" — oyl (y — xsl+yT — )Ty To solve
problem (15), construct a surrogate function

g(c;clly = o(cl) +(ve(cly,c - ey + Blic— R+ Pcas),  (16)

where V¢(C!) is the gradient of £ with respect to C. Now define the (¢ + 1)th iterate as
clt+1] = argmincg(C;C[t]). (17)

The problem of minimizing C boils down to the g-optimization in (17), which is simpler
than direct minimizing F. We rewrite the problem in the form of

1

mcingHC —cl ; (Y — xSty _ clholt+1)2 4 p(c; A,). (18)

To solve this problem (18), for a general penalty function P(C; A3), we still propose to use
the thresholding rule based ®-estimators. The {; penalty has the appealing properties
of promoting sparsity and can directly restrict the cardinality of nonzero elements/rows
in the estimation matrix. Moreover, it is easy to see that tuning for the constraint form
Yijlc;#0/ (pm) < qcis intuitive and easy compared to the penalty form A|[C||o. Here g, is
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used as an upper bound for the percentage of nonzero terms. In this paper, to guarantee
the sparsity of C, we advise using ¢, constraint in place of the {; penalty A||C||o for tuning
ease. By employing a quantile thresholding rule ©F, this problem can be solved through
TISP easily. The quantile thresholding rule is a special case of hard thresholding which
correspond £ penalty. Let ®*(C;g,) be the element-wise quantile threshold function, then

0, el <A

0 (Cge) =< ~ | TF 19

(€8] { Cijr - lcijl > Ae, 19)

where A, is the (1 — g.)™ quantile of the [c;j|. The tuning parameter g, has a defined range
(0 < ge < 1) as an upper bound for the nonzero percentage, which is easier to interpret.

The row sparsity regularization can be used for variable selection in our multiple

response problem and is used in our main algorithm. In particular, for the row sparsity

regularization /g constraint ||C||2,0/p < qg, it calls for the multivariate version of quantile
—
thresholding ©%(c;qg):

I

Yeg) =
0%(c;qq) ¢, lella> Ag,

where A is the (1 — qg)th quantile of the norm of the vector c¢. The row-wise constraint
version can be realized by simply changing ©° to e:.

Both the row-wise sparsity and element-wise sparsity are considered for P(C; A3) to
find the outlier rows and outlier elements, respectively.

Assuming that P(C; A3) is constructed by (11), our algorithm iteratively applies the DP-
GLASSO, the SRRR, and simple multivariate thresholding operations until the function (7)
has converged. The complete numerical algorithm is summarized in Algorithm 1.

Algorithm 1 Algorithm to solve Cov-SR4

Require: Y € R"*™ X € R"*P, r: the desired rank; M: the maximum iteration number; ¢:
error tolerance; and the initial estimates slol ¢ RPX*T, vl ¢ Rmxr C [0] ¢ Rrxm,
1: t+0;

2: repeat
3:  for fixed (S[t], vl ¢l ), solve Q) with objective function (8) using the DP-GLASSO
algorithm;

4:  for fixed (Q[H'l], clt! ), solve (S, V) defined by the SRRR problem (11).
for fixed (S [H”, V[t“], Qlt+1] ), the multivariate thresholding operations can be used
to solve problem (18) to get C [t-+1]
6 t+t+1;
7. Calculate f+1) and £l according to Equation (7);
8 until t > Mor [flI1) — fl] <
9: return SIU v+l cli+l] apng Qlt+1,

7

Theorem 1. Assume the largest eigenvalue of Ol equals to L. Then, as long as p > L, the sequence
of iterates defined by (1) satisfies

F(st1, it el oli+tly < sl vl ¢l ol), (21)
That is, the objective function values are non-increasing during the iteration.

Proof. Firstly, for fixed sltl, vl and clt, the optimization for € with objective function (8)
using the DP-GLASSO algorithm is a block coordinate descent (BCD) which is given in
reference [21].
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Secondly, for fixed Q[Hl], vl and C [f], the optimization for S with closed-form
solution (13) is equivalent to the minimization of following equation

h(s; sty = H(sM, vy + (vgH(sM, vIT), s — sy 4 %’Hs — SN2+ P(S;1,).  (22)

Let G(S) = H(S, VI!l) 4+ P(S; A;). Then
G(S[Hl]) < h(S[H”;S[t]) < h(SM;S[t]) < G(SM), (23)

where the first inequality comes from the Taylor expansion and p > ||XTX]||3, and the
second inequality holds because S 1) is a minimum point of h(S; S 1. The monotonicity
of V-optimality is due to the fact that it is a closed form minimization.

The monotonicity of C-optimality can be deduced from the following inequality
F(cl) < (e clly < g(cl; ety < F(clh), (24)

where the first inequality comes from the Taylor expansion and p > L, and the second
inequality holds because C t+1] s a minimum point of g(C; C . o

4. Simulation
4.1. Related Methods

In this section, the simulation method is used to illustrate the proposed method (Cov-
SR4) and compare it with some related methods. In particular, we compare Cov-SR4
with SRRR, Cov-SRRR, and R4. For the methods of SRRR and R4, the R package rrpack
is available. Ref. [13] gives two Cov-SRRR methods according to two cross-validation
criteria for tuning. The first one (Cov-SRRR1) is based on likelihood and the second one
(Cov-SRRR?2) is based on the prediction error. Based on the similar results in literature [13],
for convenience, only the Cov-SRRR2 is considered in our paper. To ensure comparability
of model effects and algorithm times, all algorithms were rewritten in R and the R packages
CVXR and glasso were used in the optimization algorithm. In our simulation, SRRR and R4
assume uncorrelated and homogeneous errors, which means the unweighted residual sum
of squares is used to measure the goodness-of-fit. For Algorithm 1, the stopping criterion
is based on the difference between the current and previous objective functions. That is,
the algorithm used stops if

|f(st, vl clt, oy — g(stt=1 ylit=1 clt=1 olt=1h| < 4, (25)
where 6 = 10~% is used for our simulation study.

4.2. Simulation Setups

In the simulation study, the training data are generated using the model Y = XB + C +
£ and the prediction data are generated using the model Y = XB + €. The design matrix
X is generated by sampling its n rows from multivariate normal distribution N(0,Xy),
where Z, (i, j) = 0.5/ 7/|. The rows of the # x m random noise matrix £ are generated from

N(0,02%;). The error structure of Z; is Z¢ (i, j) = p‘;*] l, denoted by ar(p). The correspond-
ing precision matrix € is a tri-diagonal matrix and therefore sparse. We set p. = 0, 0.5 or
0.9, representing independent errors, moderate correlation or strongly correlated errors.
In each simulation, o2 is calculated to control the signal-to-noise ratio. In our paper, 0 is
chosen to let trace(CTZ,C) /trace(ETE) equal 1.

According to reference [10], the coefficient matrix B has the low-rank structure
B = SVT and row-wise sparsity. For the p x r component matrix S, the elements of its first
po rows are generated from N (0, 1) and the rest p — py rows are set to be zero. The elements
of m x r matrix V are generated from N(0,1).
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All the elements of the first g row of C are added by 10. This yields some outliers with
high leverage values. Overall, the signal is contaminated by both random errors and gross
outliers. Under each setting, the entire data generation process described above is replicated
50 times. The rank for all the methods in our simulation is set to the true value. To choose
the optimal combination of parameters for the Cov-SR4 method, cross-validation (CV)
would seem to be an option. However, it lacks theoretical support in the robust low-rank
setting, and for three tuning parameters, cross-validation can be quite expensive. As used
in reference [14], the predictive information criterion is used for tuning. The five-fold CV is
used for tuning the parameters for the other methods.

4.3. Performance Evaluation

In our simulation, the performance of prediction error and variable selection accuracy
is considered. We compared the predictive error of these methods in terms of the mean
squared prediction error (MSE), defined as

MSE = tr||(Y — XB)|[?/(mn), (26)

where B = SIVI1" and the algorithm stop at step t. As used in reference [13], two other
aspects of the row-wise variable selection for the coefficient matrix B and the element-wise
variable selection for the precision matrix ) are also considered. The first one is sensitivity,
the proportion of non-zero elements which are correctly selected and the second one is
specificity, the proportion of zero elements that are correctly excluded.

4.4. Simulation Results

The data size of the prediction data set is the same as the training data set, which is
used for the evaluation of the prediction error. The five-fold cross-validation is used to
choose tuning parameters for all methods based on the prediction error.

We show the prediction errors in Table 1. Firstly, we consider the result without
outliers. When p, = 0, these four methods shows the similar prediction error results.
However, when p, = 0.5 or 0.9, the Cov-SR4 is similar to Cov-SRRR2 and these two method
shows better performance than the other two methods because they do not consider the
dependency between Y except the predictor matrix X. When outliers are considered,
Cov-SR4 and R4 show better results than the other two methods because highly leveraged
outliers have a significant influence on the other two methods. The mean shift method
can stably capture outliers. The Cov-SR4 and R4 show robust estimation results and the
performance of Cov-SR4 is slightly better than R4.

Table 1. Comparison of four methods in terms of prediction errors with rank » = 3. The means and
SEs (in parentheses) are given based on 50 simulation runs.

Parameters Predictions

n p Po q X, Cov-SR4 SRRR R4 Cov-SRRR2
50 10 5 0 ar(0) 0.448(0.272) 0.548(0.212) 0.370(0.228) 0.452(0.274)
ar(0.5) 0.361(0.324) 0.470(0.247) 0.355(0.259) 0.369(0.254)

ar(0.9) 0.312(0.270) 0.478(0.242) 0.329(0.250) 0.315(0.268)

50 10 5 1 ar(0) 0.484(0.240) 0.636(0.203) 0.542(0.211) 1.056(0.552)
ar(0.5) 0.394(0.234) 0.571(0.205) 0.488(0.207) 0.802(0.465)

ar(0.9) 0.343(0.181) 0.524(0.188) 0.428(0.184) 0.851(0.665)

100 20 10 0 ar(0) 0.275(0.035) 0.402(0.047) 0.267(0.029) 0.276(0.036)
ar(0.5) 0.330(0.091) 0.451(0.056) 0.344(0.082) 0.332(0.092)

ar(0.9) 0.507(0.098) 0.626(0.086) 0.408(0.112) 0.512(0.095)

100 20 10 1 ar(0) 0.395(0.120) 0.584(0.133) 0.425(0.170) 1.292(0.311)
ar(0.5) 0.417(0.143) 0.578(0.179) 0.416(0.151) 1.835(1.445)

ar(0.9) 0.368(0.151) 0.561(0.153) 0.403(0.177) 1.312(0.773)
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The results in terms of variable selection of coefficient matrix and precision matrix
are given in Table 2. Here, sen is sensitivity and spe is specificity. Their formulas can be
found in reference [26]. Firstly, the variable selection of coefficient matrix are considered.
The method of R4 in reference [14] does not consider the sparsity of coefficient matrix and
the function r4 in R package rrpack to calculate R4 estimation does not give a sparsity
coefficient matrix estimation. So we do not consider the variable selection of coefficient
matrix accuracy of R4. When outliers are not considered, all the other three methods give
a good performance in terms of the sensitivity of the coefficient matrix. When p. # 0,
the Cov-SR4 and Cov-SRRR2 show similar results about specificity, which are slightly better
than SRRR. When outliers are considered, the Cov-SR4 also shows a good performance
in terms of sensitivity, while Cov-SRRR2 and SRRR influenced by the outliers show a bad
performance in sensitivity. However, in this case, the results regarding specificity are similar.
From the simulation study, we see that, on the whole, the Cov-SR4 method always shows
satisfactory results. Secondly, the variable selection of the precision matrix is considered.
When outliers are considered and p, # 0, the Cov-SR4 shows a better performance than
Cov-SRRR2 both in sensitivity and specificity.

Table 2. Comparison of four methods in terms of variable selection accuracy with rank r = 3.

Parameters Variable Selection

n p po m X, Cov-SR4 SRRR R4 Cov-SRRR2
Sen Spe Sen Spe Sen Spe Sen Spe

50 10 5 5 ar(0) 1 0.96 1 0.98 - - 1 0.96
ar(0.5) 098 0.98 0.99 0.96 - - 0.98 1

ar(0.9) 0.99 1 0.98 0.99 - - 1 0.99

50 10 5 5 ar(0) 1 0.98 1 0.84 - - 0.98 0.96
ar(0.5) 098 0.98 0.99 0.86 - - 0.98 1

ar(0.9) 098 0.99 0.94 0.96 - - 0.93 0.99

100 20 10 5 ar(0) 0.99 0.99 1 0.99 - - 0.99 1
ar(0.5) 1 0.98 0.99 0.99 - - 0.99 0.98

ar(0.9) 1 0.99 1 1 - - 0.99 1

100 20 10 5 ar(0) 1 0.98 0.96 0.99 - - 0.96 0.99
ar(0.5) 098 0.98 0.99 0.98 - - 0.97 0.98

ar(0.9) 1 0.99 1 1 - - 0.99 1

parameters O

50 10 5 5 ar(0) - 0.92 - - - - - 0.92
ar(0.5) 0.30 0.90 - - - - 0.32 0.88

ar(0.9) 0.50 0.68 - - - - 0.52 0.63

50 10 5 5 ar(0) - 0.95 - - - - - 0.67
ar(0.5) 0.58 0.80 - - - - 0.52 0.68

ar(0.9) 073 0.57 - - - - 0.65 0.47

100 20 10 5 ar(0) - 0.98 - - - - - 0.98
ar(0.5) 040 0.98 - - - - 0.42 0.98

ar(0.9) 0.86 0.58 - - - - 0.86 0.67

100 20 10 5 ar(0) - 0.97 - - - - - 0.50
ar(0.5) 0.57 0.87 - - - - 0.55 0.53

ar(0.9) 0.69 0.71 - - - - 0.56 0.48

The results of the average running time are given in Table 3. Algorithm runtimes
are measured in CPU time (seconds). Each algorithm was run on a Windows 10 laptop
with an Intel(R) Core(TM) i7-7500U CPU 2.70GHz and 8GB of RAM, and all simulations
were computed using R-4.1.0. There is no significant difference in the running time of
these models for different values of p.. Therefore only the results for p. = 0 are shown.
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Because the algorithm of Cov-SR4 is the most complex, its running time is the longest,
while the algorithm of SRRR is the simplest, so its running time is the shortest.

Table 3. Comparison of four methods in terms of running time with rank » = 3. Average running
time(s) comparison based on 50 simulation runs.

n p Po m q Cov-SR4 SRRR R4 Cov-SRRR2
50 10 5 5 0 64.58 4.44 51.12 47.39
50 10 5 5 1 103.19 4.65 81.51 77.03
100 20 10 5 0 176.41 451 116.28 68.22
100 20 10 5 1 241.49 4.47 146.68 123.85

5. Real Data Applications
5.1. Stock Data

The weekly log returns of nine stocks from 2004 available from the R package MRCE
in the literature [27] are considered. This data are also analyzed by reference [14]. The data
is modeled with a first-order vector autoregressive model both in references [14,27],

Y=YB+C+E, (27)

where Y and Y are (n — 1) x g matrix. Y has rows y,, ..., y, and the predictor Y has rows
Yq,---,Y,_1- y; means the log returns for the nine companies at week i. For the convenience
of calculation, we expanded the data by 100 times.

Following the approach of reference [14], using the weekly log-returns in the first
26 weeks (n = 26) for training and those in the last 26 weeks for forecast. All of the
four methods introduced in our paper are used to analyze this data. All of the methods
resulted in unit-rank models. The row-wise outliers detect method is used. The Cov-
SR4 method and R4 method automatically detected week sixteen as outliers. This outlier
corresponds to a real major market disturbance in the automotive industry. Our robust
approach automatically takes into account outlier samples, leading to a more reliable model.
The mean squared prediction errors for Cov-SR4, SRRR, R4, and Cov-SRRR?2 are 7.008,
7.526, 8.543, and 7.022, respectively. The row sparsity is used to estimate coefficient matrix
B in our method. The estimation of the unit lag coefficient matrix B for the approximate
Cov-SR4 method is reported in Table 4. The cells on the rows of Exxon, GM, and IBM
are zeros in our results which are the same as the coefficient matrix estimated by MRCE
(Rothman et al., 2010). The only difference is that the coefficient of Walmart is also zeros
in our work. From the coefficient matrix B, it can be found that GE, CPhillips, Citigroup,
and AIG have a significant effect on the stock prices of all companies.

Table 4. Estimated coefficient matrix B of Cov-SR4 for stock data..

Wal Exx GM Ford GE CPhil Citi IBM AIG

Walmart 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Exxon 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ford —0.008 —0.004 —0.016 —0.002 —0.006 —0.006 —0.002 —0.005 —0.006

GE 0.047 0.028 0.100 0.012 0.035 0.040 0.009 0.030 0.037
CPhillips —0.138 —0.082 —0.292 —0.034 —0.103 —0.116 —0.028 —0.089 —0.107
Citigroup 0.133 0.079 0.281 0.033 0.099 0.112 0.027 0.085 0.103
IBM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

AlIG 0.130 0.077 0.276 0.032 0.097 0.110 0.026 0.084 0.101

The estimation for the inverse error covariance matrix for the Cov-SR4 method is

reported in Table 5 and this result is also similar to the inverse error covariance matrix
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estimated by MRCE in reference [27]. The non-zero term in Table 5 implies that the errors
of the two firms are correlated to a given set of errors of the other firms. We see that AIG
(an insurance company) is estimated to be partially correlated with most other companies.
And companies with similar businesses are also more likely to be partially correlated, such
as Ford and GM, both in the automotive industry, GE and IBM, both in the technology
industry, and CPhillips and Exxon, both related to the oil industry. These results are
meaningful in financial market practical applications.

Table 5. Inverse error covariance estimate of Cov-SR4 for stock data.

Wal Exx GM Ford GE CPhil Citi IBM AIG

Walmart 1547.025 0.000 —214.459 0.000 0.000 91.522 0.000 0.000 0.000
Exxon 0.000 3037.352 0.000 0.000 0.000 —936.069 0.000 0.000 —45.210
GM —214.459 0.000 2116.922 -1103.131 —167.819 0.000 —255.571 0.000 —20.347

Ford 0.000 0.000 —1103.131  1007.451 0.000 0.000 0.000 0.000 0.000

GE 0.000 0.000 —167.819 0.000  2031.920 0.000 —118.701 —-1013.879 —118.590
CPhillips 91.522 —936.069 0.000 0.000 0.000 2233.820 0.000 0.000 —96.543
Citigroup 0.000 0.000 —255.571 0.000 —118.701 0.000 2918.238 0.000 —257.842
IBM 0.000 0.000 0.000 0.000 —1013.879 0.000 0.000  3203.400 0.000

AIG 0.000 —45.210 —20.347 0.000 —118.590 —96.543 —257.842 0.000 1668.546

5.2. US COVID-19 State-Level Mortality Rate Analysis

As the coronavirus is spreading, causing millions of deaths and hundreds of millions
of people getting sick, it is extremely important to know the case fatality rate (CRF). Data
comes from the r package covid19nytimes. This package contains the daily number of cases
of infections and deaths in various states in the United States. Naive estimates of CFR from
the reported numbers of total confirmed cases and total deaths are difficult to interpret due
to the advances in treatment technology and differences in medical resources. The daily
data is so irregular the features once we are settled on the appropriate lag time, we can
look at the fatality rate per identified case. This is one possible measure of fatality rate over
time. The 7-day moving averages were used to smooth the series. Divide the number of
deaths in a moving average of seven days by the number of infections in a moving average
of seven days as the daily mortality rate.

Data from eight states in the southeastern United States are used, such as Alabama,
Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee.
Data for 110 days from 8 April 2020 to 29 July 2020 are used. This data is also modeled
with a first-order vector autoregressive model,

Y=YB+C+E, (28)

where Y and Y are (n — 1) x g matrix. Y has rows y,,...,y, and the predictor Y has
rows y,...,Y,_q1- ¥; means the daily mortality rate for the eight states at day i. For the
convenience of calculation, we also expanded the data by 100 times.

Similar to the previous example, the daily mortality rate for the first 60 days (n = 60)
is used for training, and the daily mortality rate for the 50 days after is used for prediction.
All four methods described in our paper are also used to analyze this data. The model is
best when the rank of all methods is 6. The row-wise outliers detect method is used. Both
Cov-SR4 and R4 methods automatically detect that 25 April 2020 is an outlier. According to
the CDC, the outlier mortality rate for that day’s data may be due to a decrease in COVID-19
mortality compared to last week but may rise again as more death certificates are counted.
The outlier has a surprising effect on both coefficient estimation and model prediction.
This can be seen from ||B — B||r/||B||r ~ 61.6% and ||XB — XB||r/||XB||r ~ 14.5%,
where B and B denote the Cov-SR4 and the Cov-SRRR2 estimates, respectively. The mean
squared prediction errors for Cov-SR4, SRRR, R4, and Cov-SRRR2 are 0.130, 0.167, 0.133,
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and 0.156, respectively. The robust method of Cov-SR4 and R4 shows better performance.
The estimation of the coefficient matrix B for the Cov-SR4 method is reported in Table 6.
From the coefficient matrix B, a significant positive correlation can be found for CRF in the
southeastern states of the United States. The estimation for the inverse error covariance
matrix for the Cov-SR4 method is reported in Table 7, which cannot be obtained from the
R4 method. The non-zero term in Table 7 implies that Louisiana is partially correlated
with most other states. South Carolina is also partially correlated with Alabama and
Georgia. These results have practical application to the study of CRF due to COVID-19 in
the southeastern United States.

Table 6. Estimated coefficient matrix B of Cov-SR4 for US COVID-19 data.

Ala FL Ge Lou Mis NC SC Ten
Alabama 0.550 0.055 0.027 —0.201 —0.076 —0.127 0.015 0.024
Florida 0.207 0.222 0.009 0.016 0.127 —0.021 0.333 —0.074
Georgia 0.037 0.116 0.677 0.032 0.110 0.151 0.031 —0.027
Louisiana 0.088 0.119 —0.044 0.738 —0.001 0.210 0.017 —0.011
Mississippi —0.125 0.316 0.141 —0.134 0.778 —0.106 —0.225 0.094
North Carolina —0.090 0.012 0.220 0.932 —0.092 0.380 —0.075 0.051
South Carolina 0.050 0.207 0.008 —0.010 0.088 0.072 0.789 0.025
Tennessee 0.234 —0.206 0.116 0.222 0.078 0.232 0.113 0.826
Table 7. Inverse error covariance estimate of Cov-SR4 for US COVID-19 data.
Ala FL Ge Lou Mis NC SC Ten
Alabama 5.119 0.000 0.000 0.000 0.000 0.000 0.188 0.000
Florida 0.000 5.355 0.000 —0.059 0.000 0.000 0.000 0.000
Georgia 0.000 0.000 5.590 0.722 0.000 0.000 —0.097 0.000
Louisiana 0.000 —0.059 0.722 1.482 —0.171 0.000 0.000 0.000
Mississippi 0.000 0.000 0.000 —0.171 7.379 0.000 0.000 0.000
North Carolina 0.000 0.000 0.000 0.000 0.000 7.503 0.000 0.000
South Carolina 0.188 0.000 —0.097 0.000 0.000 0.000 4171 0.000
Tennessee 0.000 0.000 0.000 0.000 0.000 0.000 0.000 19.458

6. Discussion

In this paper, we propose a block coordinate descent algorithm to solve the sparse
robust reduced-rank regression with covariance estimation and prove the monotonicity
of the new algorithm. This method can explicitly detect outliers, account for general
correlations among error terms, and incorporate variable selection. In the multiple response
variable regression model, the new method outperformed other methods in terms of
prediction error and variable selection. Both simulation studies and real data analysis
demonstrate the effectiveness of the new models and algorithms.

Although the mean-shift method is used to detect the outliers in the new model,
in the future, we will consider the general robust loss to conquer leverage outliers. The
method of order statistics used in reference [16] is a new approach to outlier detection. In
addition, for non-Gaussian distributed multivariate response variables, how to capture
the dependence among response variables is a very challenging but widely used scenario.
And the application of this dependence to regression models of multivariate non-Gaussian
response variables is a topic worthy of further study. As far as I know, there are few studies
on statistical tests in this direction.
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