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Abstract: There are many symmetries in intuitionistic fuzzifying topology. In the present paper, the
notion of intuitionistic fuzzifying topology as an extension of fuzzifying topology and a preliminary
of the research on bi-intuitionistic fuzzy topology is introduced. A theory of intuitionistic fuzzy
topology with the semantic method of intuitionistic fuzzy logic is established.
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1. Introduction

Symmetry takes place not only in geometry but also in other branches of mathematics.
In particular, there are many symmetries in groups, rings, fields, lattices, fuzzy logic,
topology, and fuzzy topology. In fuzzy topology, the intuitionistic fuzzifying topology is
one of the most basic notions. Intuitionism is a very important mathematical property, and
it exists in many research areas, such as vector space, metric space, and partially ordered
sets. By abstracting the common properties of intuitionistic fuzzy sets, the intuitionistic
fuzzy structures were proposed. We already see that serious research on this topic is
absolutely necessary, even in hindsight.

Fuzzy sets were introduced by L. A. Zadeh [1] in 1965. In 1983, Atanassov proposed
the concept of intuitionistic fuzzy set [2]. Some basic results on intuitionistic fuzzy sets
were published in [3,4], and the book [5] offers a comprehensive study and applications
of intuitionistic fuzzy sets. In fact, intuitionistic fuzzy sets are a topic of research by many
scholars [6,7]. In particular, elements of intuitionistic fuzzy logic and, in the area of appli-
cations, were studied by Atanassov and co-workers (see [5,8,9]). According to Ref. [10],
the kind of topologies defined by Chang [11] and Goguen [12] is called the topologies of
fuzzy subset, and is called L-topological spaces if a lattice L of membership values has been
chosen. From another side, Höhle in [13] proposed the term L-fuzzy topology to be a map
from P(X ) to X . The authors in [14,15] defined an L-fuzzy topology to be a map from LX

of X . Çoker [16,17] established the intuitionistic fuzzy topological space. The intuitionistic
fuzzy topology is a family τ of intuitionistic fuzzy subsets of a non-empty set X , and τ
satisfies the basic conditions of classical topologies [18]. Ying, in 1991–1993 [19–21], used
a semantical method of multi-valued logic to develop methodically fuzzifying topology.
Now, we suggest the following problems: What are the details of the many-valued theories
beyond the level of intuitionistic predicates calculus? To provide a partial answer to this
issue in topology, we use a semantical method of intuitionistic fuzzy logic to develop
methodically intuitionistic fuzzifying topology. Intuitionistic fuzzifying topology is an
extension of fuzzifying topology and introductory research on bi-intuitionistic fuzzy topol-
ogy. The rest of this paper is organized as follows. The next section contains necessary
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concepts and properties. Section 3 is exclusively devoted to intuitionistic fuzzy logics. In
Section 4, the concept of bi-intuitionistic fuzzy topological spaces is defined and some
examples are introduced. In Section 5, in the intuitionistic fuzzifying topology, we discuss
the neighborhood system of a point. In Section 6, we introduce the concepts of intuitionistic
fuzzifying closure, intuitionistic fuzzifying boundary, intuitionistic fuzzifying derived set,
and intuitionistic fuzzifying interior. The goal of the last section is to conclude this paper
with a succinct but precise recapitulation of our main findings, and to give some lines for
future research.

2. Preliminaries

First, we recall some necessary notations that will be used throughout the whole paper.

Definition 1 ([2]). Let X be a non-empty set. An intuitionistic fuzzy set (IF set for short) Â, is
an object having the form (mÂ, nÂ), where the functions mÂ : X → [0, 1] and nÂ : X → [0, 1]
denote the degree of membership (namely mÂ(x)) and the degree of non-membership (namely
nÂ(x)) of each element x ∈ X to the set Â, respectively, and 0 ≤ mÂ(x) + nÂ(x) ≤ 1 for each
x ∈ X . The set of all intuitionistic fuzzy set of X is denoted by IF (X ). Note that an intuitionistic
fuzzy set becomes a fuzzy set when we dispense with non-membership.

The next definitions present some basic set-theoretic operations for intuitionistic
fuzzy sets.

Definition 2 ([4]). Let X be a non-empty set, and Â, B̂ ∈ IF (X ). Then
(a) Â ⊆ B̂ if and only if mÂ(x) ≤ mB̂(x) and nÂ(x) ≥ nB̂(x) for all x ∈ X ;
(b) Â = B̂ if and only if Â ⊆ B̂ and B̂ ⊆ Â;
(c) ¬Â = (nÂ, mÂ);
(d) Â ∩ B̂ = (mÂ ∧mB̂, nÂ ∨ nB̂));
(e) Â ∪ B̂ = (mÂ ∨mB̂, nÂ ∧ nB̂).

Definition 3 ([16]). Let
{
Âλ : λ ∈ Λ

}
⊆ IF (X ). Then

(a)
⋂

λ∈Λ
Âλ =

( ∧
λ∈Λ

mÂλ(x),
∨

λ∈Λ
nÂλ(x)

)
;

(b)
⋃

λ∈Λ
Âλ =

( ∨
λ∈Λ

mÂλ(x),
∧

λ∈Λ
nÂλ(x)

)
;

(c) 1̂ = (1, 0) and 0̂ = (0, 1).

Remark 1. (1) IfA ∈ P(X ), thenA is identified with an IF set Â of X such that mÂ = A and
nÂ = X −A;

(2) If Ã ∈ =(X ) (=(X ) is the set of all fuzzy subsets of X ), then Ã is identified with an IF
set Â of X such that mÂ = Ã and nÂ = 1− nÃ [2];

(3) Â ∈ IF (X ) is called normal if and only if there exists x ∈ X such that Â(x) = (1, 0).
The set of all normal IF sets of X will be denoted by IFN (X );

(4) The dual complement of Â, denoted by ¬Â, is defined as follows:

¬Â(x) = ¬(Â(x)) = (nÂ(x), mÂ(x)).

3. Intuitionistic Fuzzy Logic

Now, we give the intuitionistic fuzzy logical and corresponding intuitionistic fuzzy
set-theoretical notions. Let

Z = {(α, β)|(α, β) ∈ [0, 1]× [0, 1], α + β ≤ 1} .

By an intuitionistic fuzzy well formed formula ϕ we mean any proposition with
respect to which we assign an element (a, b) ∈ Z . We say that a = m(ϕ) and b = n(ϕ) and
called them the truth degree and the falsity degree of ϕ, respectively. LetM denote the set
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of all intuitionistic fuzzy well formed formula and consider the function V :M−→ Z . If
ϕ ∈ M and V(ϕ) = (a, b) we write [ϕ] = (a, b). We say that ϕ is valid (or a tautology) and
we type |= ϕ if [ϕ] = (1, 0).

Definition 4. (1) The binary relation “ = ”, “ < ”, “≤", “∧" and “∨ ” and the unary operation
“¬” on Z are defined as:

(a) (α, β) = (γ, δ) if and only if α = γ and β = δ;
(b) (α, β) ≤ (γ, δ) if and only if α ≤ γ and β ≥ δ;
(c) (α, β) < (γ, δ) if and only if α < γ and β > δ;
(d) [(α, β) ∧ (γ, δ)] := (min{α, γ}, max{β, δ});
(e) [(α, β) ∨ (γ, δ)] := (max{α, γ}, min{β, δ});
(f) [¬(α, β)] := (β, α).
(2) (a) The intuitionistic fuzzy implications “→, →̇” ∈ ZZ×Z are defined as follows:

[(α, β)→(γ, δ)] = (min(1, 1− α + γ, 1− δ + β), max(0, α− γ, δ− β)),

[(α, β)→̇(γ, δ)] = (min(1, β + γ), max(0, α + δ− 1));

(b) For each α ∈ ZX (i.e., α : X → Z), we have

[∀xα(x)] :=
∧

x∈X
α(x) :=

( ∧
x∈X

mα(x),
∨

x∈X
nα(x)

)
.

For example, if α : X → Z and X = {a, b, c}, where α(a) = (0.3, 0.6), α(b) = (0.4, 0.3)
and α(c) = (0.5, 0.1), then [∀xα(x)] = (0.3, 0.6).

(3) (a)
[(α, β)f (γ, δ)] := [¬((α, β)→¬(γ, δ))],

[(α, β) Z (γ, δ)] := [¬((α, β)→̇¬(γ, δ))];

(b)
[(α, β)g (γ, δ)] := [¬(α, β)→(γ, δ)],

[(α, β) Y (γ, δ)] := [¬(α, β)→̇(γ, δ)];

(4) (a)
[(α, β)←→(γ, δ)] := [((α, β)→(γ, δ)) ∧ ((γ, δ)→(α, β))],

[(α, β)←̇→(γ, δ)] := [((α, β)→̇(γ, δ)) ∧ ((γ, δ)→̇(α, β))].

For example, if (α, β) = (0.6, 0.3) and (γ, δ) = (0.5, 0.4), then
[(α, β)→ (γ, δ)] = (0.9, 0.1) and [(γ, δ)→ (α, β)] = (1, 0).
Therefore [(α, β)←→ (γ, δ)] = (0.9, 0.1) ∧ (1, 0) = (0.9, 0.1).
Similarly, [(α, β)←̇→(γ, δ)] = (0.9, 0).
(b) [∃xα(x)] := [¬(∀x¬(α(x)))];
(5) Let Â, B̂ ∈ IF (X ),
(a) [x ∈ Â] := [Â(x)];
The intuitionistic fuzzy inclusions “⊆ andb", and the intuitionistic fuzzy equalities “≡,≈, ≡̇

and ≈̇" between two intuitionistic fuzzy sets are defined as follows:
(b) [Â ⊆ B̂] := [∀x(x ∈ Â→x ∈ B̂)];
(c) [Â ≡ B̂] := [(Â ⊆ B̂) ∧ (B̂ ⊆ Â)];
(d) [Â ≈ B̂] := [(Â ⊆ B̂)f (B̂ ⊆ Â)];
(e) [Â b B̂] := [∀x(x ∈ Â→̇x ∈ B̂)];
(f) [Â≡̇B̂] := [(Â b B̂) ∧ (B̂ b Â)];
(g) [Â≈̇B̂] := [(Â b B̂) Z (B̂ b Â)].
(6) Let f : X → Y be a function, Â ∈ IF (X ) and B̂ ∈ IF (Y).
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The image f (Â) of Â under f is an intuitionistic fuzzy set in Y defined by:

f (Â)(y) = ( f (mÂ)(y), 1− f (1− nÂ)(y)) ∀y ∈ Y .

The inverse image f−1(B̂) of B̂ under f is an intuitionistic fuzzy set in X defined by:

f−1(B̂) = ( f−1(mB̂)(x), f−1(nB̂)(x)) ∀x ∈ X .

Theorem 1. (Z ,≤,∧,∨,¬) is a complete completely distributive lattice with least element (0, 1)
and greatest element (1, 0), this is equipped with an order reversing involution “¬”.

Remark 2. (1) The completely distributive law in Z is of the form:∧
λ∈Λ

∨
(α,β)∈℘λ

(α, β) =
∨

f∈ π
λ∈Λ

℘λ

∧
λ∈Λ

f (λ),

where ℘λ ⊆ Z for all λ ∈ Λ.
(2) It is clear that (Z ,≤) is not totally ordered set (Indeed, ( 1

4 , 1
3 ), (

1
2 , 1

2 ) ∈ Z , but ( 1
4 , 1

3 ) is
not comparable with ( 1

2 , 1
2 ) by the relation “ ≤ ”.

Theorem 2. Let (α, β), (γ, δ) ∈ Z . Then
(1) [¬(α, β)] = [(α, β)→̇(0, 1)];
(2) [(α, β)f (γ, δ)] = (max(0, α− δ, γ− β), min(1, 1− α + δ, 1− γ + β))
(3) [(α, β)g (γ, δ)] = (min(1, 1− β + γ, 1− δ + α), max(0, β− γ, δ− α))
(4) [(α, β) Z (γ, δ)] = (max(0, α + γ− 1), min(1, β + δ));
(5) [(α, β) Y (γ, δ)] = (min(1, α + γ), max(0, β + δ− 1));
(6) [(α, β)→(γ, δ)] = [¬(α, β)g (γ, δ)];
(7) [(α, β)→̇(γ, δ)] = [¬(α, β) Y (γ, δ)];
(8) [¬((α, β) ∧ (γ, δ))] = [¬(α, β) ∨ ¬(γ, δ)];
(9) [¬((α, β) ∨ (γ, δ))] = [¬(α, β) ∧ ¬(γ, δ)];
(10) [(α, β)g (γ, δ)] = [¬(¬(α, β)f¬(γ, δ))];
(11) [(α, β) Y (γ, δ)] = [¬(¬(α, β) Z¬(γ, δ))].

Proof. (1) [(α, β) ˙−→(0, 1)] = (min(1, β + 0), max(0, α + 1− 1)) = (β, α) = [¬(α, β)];
(2) [(α, β)f (γ, δ)] = [¬((α, β) −→ ¬(γ, δ))] = [¬((α, β) −→ (δ, γ))]
= ¬(min(1, 1− α + δ, 1− γ + β), max(0, α− δ, γ− β))
= (max(0, α− δ, γ− β), min(1, 1− α + δ, 1− γ + β));
(3) [(α, β)g (γ, δ)] = [¬(¬(α, β)f¬(γ, δ))] = [¬((β, α)f (δ, γ))]
= [¬(¬((β, α) −→ ¬(δ, γ)))] = [(β, α) −→ (γ, δ)]
= (min(1, 1− β + γ, 1− δ + α), max(0, β− γ, δ− α));
(4) [(α, β) Z (γ, δ)] = [¬((α, β) ˙−→¬(γ, δ))] = [¬((α, β) ˙−→(δ, γ))]
= ¬(min(1, β + δ), max(0, α + γ− 1)) = (max(0, α + γ− 1), min(1, β + δ));
(5) [(α, β)Y (γ, δ)] = [¬(α, β) ˙−→(γ, δ)] = [(β, α) ˙−→(γ, δ)] = (min(1, α+γ), max(0, β+

δ− 1));
(6) [¬(α, β)g (γ, δ)] = [¬(¬(α, β)) −→ (γ, δ)] = [(α, β) −→ (γ, δ)];
(7) [¬(α, β) Y (γ, δ)] = [¬(¬(α, β)) ˙−→(γ, δ)] = [(α, β) ˙−→(γ, δ)];
(8) [¬((α, β)∧ (γ, δ))] = ¬(min(α, γ), max(β, δ)) = (max(β, δ), min(α, γ)) = [(β, α)∨

(δ, γ)] = [¬(α, β) ∨ ¬(γ, δ)];
(9) The proof is similar to that of (8);
(10) [¬(¬(α, β)f¬(γ, δ))] = [¬((β, α)f (δ, γ))] = ¬(max(0, β− γ, δ− α), min(1, 1−

β + γ, 1− δ + α)) = (min(1, 1− β + γ, 1− δ + α), max(0, β− γ, δ− α)) = [(α, β)g (γ, δ)];
(11) [¬(¬(α, β) Z ¬(γ, δ))] = [¬((β, α) Z (δ, γ))] = ¬(max(0, β + δ − 1), min(1, α +

γ)) = (min(1, α + γ), max(0, β + δ− 1)) = [(α, β) Y (γ, δ)].

Theorem 3. (1) Z and f are isotone functions;
(2) (Z ,Z, (1, 0)) is a commutative monoid;
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(3) (Z ,f) is a commutative semi-group such that [(α, β)f (1, 0)] = [(1, 0)f (α, β)] =
(1− β, β);

(4) Z is distributive over arbitrary joins, i.e.,

(α, β) Z
∨
j∈Λ

(
γj, δj

)
=
∨
j∈Λ

(
(α, β) Z (γj, δj)

)
,

for every (α, β) ∈ Z , {(γj, δj) : j ∈ Λ} ⊆ Z .

Proof. (1) To prove that Z is isotone function, suppose that (α, β) ≤ (α1, β1) and (γ, δ) ≤
(γ1, δ1). Then α ≤ α1, β ≥ β1, γ ≤ γ1 and δ ≥ δ1. Hence, α + γ− 1 ≤ α1 + γ1 − 1 and
β + δ ≥ β1 + δ1. Therefore,

[(α, β) Z (γ, δ)] = (max(0, α + γ− 1), min(1, β + δ))
≤ (max(0, α1 + γ1 − 1), min(1, β1 + δ1)) = [(α1, β1) Z (γ1, δ1)].
Similarly, from Theorem 2 (2) f is isotone function.
(2) To prove the commutative law, suppose that (α, β), (γ, δ) ∈ Z .
[(α, β) Z (γ, δ)] = (max(0, α + γ− 1), min(1, β + δ))
= (max(0, γ + α− 1), min(1, δ + β)) = [(γ, δ) Z (α, β)].
Now, we want to prove Z is associative. Therefore, we prove that [((α, β) Z (γ, δ)) Z

(λ, ξ)] = [(α, β) Z ((γ, δ) Z (λ, ξ))] i.e.,
(max(0, max(0, α+γ− 1)+λ− 1), min(1, min(1, β+ δ)+ ξ)) = (max(0, α+max(0, γ

+λ− 1)− 1), min(1, β + min(1, δ + ξ))). To prove that,
L.H.S = max(0, max(0, α + γ− 1) + λ− 1) = max(0, α + max(0, γ + λ− 1)− 1) =

R.H.S.
First, we prove that L.H.S ≥ R.H.S. If R.H.S = 0, then the result holds.
If max(0, γ + λ− 1) = 0, then L.H.S ≥ max(0, α− 1) = R.H.S. If max(0, γ + λ− 1) =

γ + λ− 1, then R.H.S = α + γ + λ− 2. Now, If α + γ ≥ 1, then L.H.S = max(0, α + γ +
λ− 2) ≥ R.H.S. If α + γ ≤ 1, then L.H.S = 0 = R.H.S. Thus L.H.S ≥ R.H.S.

Second, we prove that L.H.S ≤ R.H.S. If γ + λ − 1 ≥ 0 and α + γ − 1 ≥ 0, then
R.H.S = max(0, α + γ + λ− 2) ≥ α + γ + λ− 2 = L.H.S. If γ + λ− 1 < 0 and α + γ− 1 ≥
0, then R.H.S = 0 = max(0, γ+ λ− 1+ α− 1) = L.H.S. If γ+ λ− 1 < 0 and α+γ− 1 < 0,
then R.H.S = 0 = L.H.S. Hence L.H.S ≤ R.H.S. Therefore, L.H.S = R.H.S.

Similarly, min(1, min(1, β + δ) + ξ) = min(1, β + min(1, δ + ξ)). Therefore, the asso-
ciative law holds.

Now, [(α, β) Z (1, 0)] = (max(0, α + 1− 1), min(1, β + 0)) = (α, β) = [(1, 0) Z (α, β)].
Hence (Z ,Z, (1, 0)) is a commutative moniod.

(3) The proof is similar to the proof of (2);
(4) [(α, β) Z

∨
j∈Λ

(γj, δj)] = [(α, β) Z (
∨

j∈Λ
γj,

∧
j∈Λ

δj)]

= (max(0,
∨

j∈Λ
γj + α− 1), min(1,

∧
j∈Λ

δj + β))

= (
∨

j∈Λ
max(0, γj + α− 1),

∧
j∈Λ

min(1, δj + β))

=
∨

j∈Λ
(max(0, γj + α− 1), min(1, δj + β))

= [
∨

j∈Λ
((α, β) Z (γj, δj))].

Theorem 4. (1) If (α, β) ≤ (α1, β1), then [(α1, β1)→(γ, δ)] ≤ [(α, β)→(γ, δ)], and [(α1, β1)→̇
(γ, δ)] ≤ [(α, β)→̇(γ, δ)].

(2) If (γ, δ) ≤ (γ1, δ1), then [(α, β)→(γ, δ)] ≤ [(α, β)→(γ1, δ1)], and [(α, β)→̇(γ, δ)] ≤
[(α, β)→̇(γ1, δ1)];

(3) (a) [(0, 1)→(γ, δ)] = (1, 0), [(0, 1)→̇(γ, δ)] = (1, 0), [(1, 0)→(γ, δ)] = (γ, 1− γ),
and [(1, 0)→̇(γ, δ)] = (γ, δ).

(b) [(α, β)→(1, 0)] = (1, 0), [(α, β)→̇(1, 0)] = (1, 0), [(α, β)→(0, 1)] = (β, 1− β), and
[(α, β)→̇(0, 1)] = ¬(α, β).

(c) [(α, β) Z (1, 0)] = (α, β), and [(α, β) Z (0, 1)] = (0, 1);
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(4) (a) (α, β) ≤ (γ, δ) if and only if [(α, β)→(γ, δ)] = (1, 0)
(b) β + γ ≥ 1 if and only if [(α, β)→̇(γ, δ)] = (1, 0);
(5) (a) [(α, β)→(γ, δ)] = [¬(γ, δ)→¬(α, β)];
(b) [(α, β)→̇(γ, δ)] = [¬(γ, δ)→̇¬(α, β)];
(6) (λ, ξ) ≤ [(α, β)→̇(γ, δ)] if and only if [(λ, ξ) Z (α, β)] ≤ (γ, δ);
(7)

[(γ, δ)→(λ, ξ)] ≤ [((α, β)f (γ, δ))→((α, β)f (λ, ξ))];

(8)
[(α, β)→(γ, δ)] ≤ [((λ, ξ)→(α, β))→((λ, ξ)→(γ, δ))];

[(α, β)→̇(γ, δ)] ≤ [((λ, ξ)→̇(α, β))→̇((λ, ξ)→̇(γ, δ))];

(9)
[(α, β)→(γ, δ)] ≤ [((γ, δ)→(λ, ξ))→((α, β)→(λ, ξ))];

(10)
[(α, β) Z (γ, δ)→̇(λ, ξ)] = [(α, β)→̇((γ, δ)→̇(λ, ξ))];

(11) (γ, δ) ≤ [(α, β)→̇(γ, δ)];
(12) ∧

j∈Λ

[(αj, β j)→(γj, δj)] ≤ [
∨
j∈Λ

(αj, β j)→
∨
j∈Λ

(γj, δj)];

∧
j∈Λ

[(αj, β j)→̇(γj, δj)] ≤ [
∨
j∈Λ

(αj, β j)→̇
∨
j∈Λ

(γj, δj)];

∧
j∈Λ

[(αj, β j)→(γj, δj)] ≤ [
∧
j∈Λ

(αj, β j)→
∧
j∈Λ

(γj, δj)];

∧
j∈Λ

[(αj, β j)→̇(γj, δj)] ≤ [
∧
j∈Λ

(αj, β j)→̇
∧
j∈Λ

(γj, δj)];

(13)
[(α, β)→((γ, δ) ∧ (λ, ξ))] = [(α, β)→(γ, δ)] ∧ [(α, β)→(λ, ξ)];

[(α, β)→̇((γ, δ) ∧ (λ, ξ))] = [(α, β)→̇(γ, δ)] ∧ [(α, β)→̇(λ, ξ)];

(14)
� (α, β) Z (γ, δ)→ (α, β) ∧ (γ, δ);

� ((α, β)→̇(γ, δ))→ ((α, β)→ (γ, δ)).

Proof. (1) [(α1, β1) −→ (γ, δ)] = (min(1, 1− α1 + γ, 1− δ + β1), max(0, α1 − γ, δ− β1)).
Since (α, β) ≤ (α1, β1), then α ≤ α1 and β1 ≤ β. Therefore,
min(1, 1− α1 +γ, 1− δ+ β1) ≤ min(1, 1− α+γ, 1− δ+ β) and max(0, α−γ, δ− β) ≤

max(0, α1 − γ, δ− β1). Hence
[(α1, β1) −→ (γ, δ)] ≤ (min(1, 1− α+γ, 1− δ+ β), max(0, α−γ, δ− β)) = [(α, β) −→

(γ, δ)].
Similarly, [(α1, β1) ˙−→(γ, δ)] ≤ [(α, β) ˙−→(γ, δ)].
(2) The proof is similar to that of (1).
(3) Since α + β ≤ 1 and γ + δ ≤ 1, the result holds.
(4) (a) Since (α, β) ≤ (γ, δ), then α ≤ γ and δ ≤ β. Hence
[(α, β) −→ (γ, δ)] = (min(1, 1− α + γ, 1− δ + β), max(0, α− γ, δ− β)) = (1, 0).
Conversely, if [(α, β) −→ (γ, δ)] = (1, 0), then min(1, 1− α + γ, 1− δ + β) = 1 or

1− α + γ ≥ 1 and 1− δ + β ≥ 1. Therefore, α ≤ γ and δ ≤ β. Hence (α, β) ≤ (γ, δ).
Additionally, the result holds if we choose max(0, α− γ, δ− β) = 0.

(b) Since β + γ ≥ 1, α + β ≤ 1 and γ + δ ≤ 1, then α + δ ≤ 1. Therefore, the result
holds.

(5) Follows from Definition 4 (2).
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(6) (λ, ξ) ≤ [(α, β) ˙−→(γ, δ)]
⇔ (λ, ξ) ≤ (min(1, β + γ), max(0, α + δ− 1))
⇔ λ ≤ min(1, β + γ) and ξ ≥ max(0, α + δ− 1)
⇔ λ ≤ β + γ and ξ ≥ α + δ− 1
α+β≤1⇔ λ + α− 1 ≤ γ and ξ + β ≥ δ
⇔ max(0, λ + α− 1) ≤ γ and min(1, ξ + β) ≥ δ
⇔ (max(0, λ + α− 1), min(1, ξ + β)) ≤ (γ, δ)
⇔ [(λ, ξ) Z (α, β)] ≤ (γ, δ).

(7) R.H.S = [((α, β)f (γ, δ))→((α, β)f (λ, ξ))]
= [(max(0, α− δ, γ− β), min(1, 1− α+ δ, 1−γ+ β))→ (max(0, α− ξ, λ− β), min(1, 1

−α + ξ, 1− λ + β))]
= (min(1, 1−max(0, α − δ, γ − β) + max(0, α − ξ, λ − β), 1−min(1, 1− α + ξ, 1−

λ + β) + min(1, 1 − α + δ, 1 − γ + β)), max(0, max(0, α − δ, γ − β) − max(0, α − ξ, λ −
β), min(1, 1− α + ξ, 1− λ + β)−min(1, 1− α + δ, 1− γ + β)))

= (min(1, min(1, 1− α+ δ, 1−γ+ β)+max(0, α− ξ, λ− β)), max(0, max(0, α− δ, γ−
β)−max(0, α− ξ, λ− β)))

≥ (min(1, min(1, 1− ξ + δ, 1− γ + λ)), max(0, max(0, γ− λ, ξ − δ)))
= (min(1, 1− γ + λ, 1− ξ + δ), max(0, γ− λ, ξ − δ)) = [(γ, δ)f (λ, ξ)] = L.H.S.
(8) [((λ, ξ)→(α, β))→((λ, ξ)→(γ, δ))]
= [(min(1, 1− λ + α, 1− β + ξ), max(0, λ− α, β− ξ)) → (min(1, 1− λ + γ, 1− δ +

ξ), max(0, λ− γ, δ− ξ))]
= (min(1, 1−min(1, 1−λ+ α, 1− β+ ξ)+min(1, 1−λ+γ, 1− δ+ ξ), 1−max(0, λ−

γ, δ− ξ)+max(0, λ− α, β− ξ)), max(0, min(1, 1−λ+ α, 1− β+ ξ)−min(1, 1−λ+γ, 1−
δ + ξ), max(0, λ− γ, δ− ξ)−max(0, λ− α, β− ξ)))

= (min(1, 1−min(1, 1+ α−λ, 1− β+ ξ)+min(1, 1−λ+γ, 1− δ+ ξ)), max(0, max(0,
λ− γ, δ− ξ)−max(0, λ− α, β− ξ)))

≥ (min(1, 1− α + γ, 1− δ + β), max(0, α− γ, δ− β)) = [(α, β)→(γ, δ)].
Similarly, [(α, β)→̇(γ, δ)] ≤ [((λ, ξ)→̇(α, β))→̇((λ, ξ)→̇(γ, δ))].
(9) The proof is similar to that of (8).
(10) [(α, β) Z (γ, δ)→̇(λ, ξ)] = (max(0, α + γ− 1), min(1, β + δ))→̇(λ, ξ)
= (min(1, min(1, β + δ) + λ), max(0, max(0, α + γ− 1) + ξ − 1))
= (min(1, β + min(1, δ + λ)), max(0, α + max(0, γ + ξ − 1)− 1))
= [(α, β)→̇(min(1, δ + λ), max(0, γ + ξ − 1))]
= [(α, β)→̇((γ, δ)→̇(λ, ξ))].
(11) Obvious.
(12)

∧
j∈Λ

[(αj, β j)→(γj, δj)]

=
∧

j∈Λ
(min(1, 1− αj + γj, 1− δj + β j), max(0, αj − γj, δj − β j))

= (
∧

j∈Λ
min(1, 1− αj + γj, 1− δj + β j),

∨
j∈Λ

max(0, αj − γj, δj − β j))

= (min(1,
∧

j∈Λ
(1− αj + γj),

∧
j∈Λ

(1− δj + β j)), max(0,
∨

j∈Λ
(αj − γj),

∨
j∈Λ

(δj − β j)))

≤ (min(1, 1− ∨
j∈Λ

αj +
∨

j∈Λ
γj, 1− ∧

j∈Λ
δj +

∧
j∈Λ

β j), max(0,
∨

j∈Λ
αj −

∨
j∈Λ

γj,
∧

j∈Λ
δj −

∧
j∈Λ

β j))

= [(
∨

j∈Λ
αj,

∧
j∈Λ

β j) −→ (
∨

j∈Λ
γj,

∧
j∈Λ

δj)] = [
∨

j∈Λ
(αj, β j) −→

∨
j∈Λ

(γj, δj)].

Also,∧
j∈Λ

[(αj, β j) ˙−→(γj, δj)] =
∧

j∈Λ
(min(1, β j + γj), max(0, αj + δj − 1))

= (
∧

j∈Λ
min(1, β j + γj),

∨
j∈Λ

max(0, αj + δj − 1))

≤ (min(1,
∧

j∈Λ
β j +

∨
j∈Λ

γj), max(0,
∨

j∈Λ
αj +

∧
j∈Λ

δj − 1))

= [(
∨

j∈Λ
αj,

∧
j∈Λ

β j) ˙−→(
∨

j∈Λ
γj,

∧
j∈Λ

δj)] = [
∨

j∈Λ
(αj, β j) ˙−→ ∨

j∈Λ
(γj, β j)].

The proofs of the other statements are similar.
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(13) [(α, β)→((γ, δ) ∧ (λ, ξ))] = [(α, β) −→ (γ ∧ λ, δ ∨ ξ)]
= (min(1, 1− α + γ ∧ λ, 1− δ ∨ ξ + β), max(0, α− γ ∧ λ, δ ∨ ξ − β))
= (min(1, (1− α + γ) ∧ (1− α + λ), (1− δ + β) ∧ (1− ξ + β)), max(0, (α− γ) ∨ (α−

λ), (δ− β) ∨ (ξ − β)))
= (min(1, 1− α + γ, 1− α + λ, 1− δ + β, 1− ξ + β), max(0, α− γ, α− λ, δ− β, ξ − β))
= (min(1, 1− α + γ, 1− δ + β), max(0, α− γ, δ− β))∧
(min(1, 1− α− λ, 1− ξ + β), max(0, α− λ, ξ − β))
= [(α, β)→(γ, δ)] ∧ [(α, β)→(λ, ξ)].
Similarly, we can prove that
[(α, β)→̇((γ, δ) ∧ (λ, ξ))] = [(α, β)→̇(γ, δ)] ∧ [(α, β)→̇(λ, ξ)].

(14) [(α, β) Z (γ, δ)→ (α, β) ∧ (γ, δ)]
= [(max(0, α + γ− 1), min(1, β + δ))→ (min(α, γ), max(β, δ))]
= (min(1, 1−max(0, α + γ− 1) + min(α, γ), 1−max(β, δ) + min(1, β + δ)), max(0,

max(0, α + γ− 1)−min(α, γ), max(β, δ)−min(1, β + δ))) = (1, 0).
Similarly, [((α, β)→̇(γ, δ))→ ((α, β)→ (γ, δ))] = (1, 0).

Lemma 1. Let Â, B̂, Ĉ ∈ IF (X ). Then
(1) � Â ⊆ B̂→(B̂ ⊆ Ĉ→Â ⊆ Ĉ);
(2) � Â ≡ B̂→(B̂ ≡ Ĉ→Â ≡ Ĉ);
(3) � Â ≈ B̂→(B̂ ≈ Ĉ→Â ≈ Ĉ);
(4) � B̂ ⊆ Ĉ→(Â ⊆ B̂→Â ⊆ Ĉ);
(5) � B̂ ≡ Ĉ→(Â ≡ B̂→Â ≡ Ĉ);
(6) � B̂ ≈ Ĉ→(Â ≈ B̂→Â ≈ Ĉ);
(7) � Â ⊆ B̂→¬(B̂) ⊆ ¬(Â);
(8) � Â ≡ B̂→¬(B̂) ≡ ¬(Â);
(9) � Â ≈ B̂→¬(B̂) ≈ ¬(Â).

Lemma 2. Let
{
Âλ : λ ∈ Λ

}
,
{
B̂λ : λ ∈ Λ

}
⊆ IF (X ).

(1) � ∀(λ ∈ Λ→̇Âλ ⊆ B̂λ)→
⋂

λ∈Λ
Âλ ⊆

⋂
λ∈Λ
B̂λ;

(2) � ∀(λ ∈ Λ→̇Âλ ≡ B̂λ)→
⋂

λ∈Λ
Âλ ≡

⋂
λ∈Λ
B̂λ;

(3) � ∀(λ ∈ Λ→̇Âλ ≈ B̂λ)→
⋂

λ∈Λ
Âλ ≈

⋂
λ∈Λ
B̂λ;

(4) � ∀(λ ∈ Λ→̇Âλ ⊆ B̂λ)→
⋃

λ∈Λ
Âλ ⊆

⋃
λ∈Λ
B̂λ;

(5) � ∀(λ ∈ Λ→̇Âλ ≡ B̂λ)→
⋃

λ∈Λ
Âλ ≡

⋃
λ∈Λ
B̂λ;

(6) � ∀(λ ∈ Λ→̇Âλ ≈ B̂λ)→
⋃

λ∈Λ
Âλ ≈

⋃
λ∈Λ
B̂λ.

Lemma 3. Let f : X → Y be a function, Â, B̂ ∈ IF (X ) and Ĉ, D̂ ∈ IF (Y). Then
(1) � Â ⊆ B̂ → f (Â) ⊆ f (B̂);
(2) � Â ≡ B̂ → f (Â) ≡ f (B̂);
(3) � Â ≈ B̂ → f (Â) ≈ f (B̂);
(4) � Ĉ ⊆ D̂ → f−1(Ĉ) ⊆ f−1(D̂);
(5) � Ĉ ≡ D̂ → f−1(Ĉ) ≡ f−1(D̂);
(6) � Ĉ ≈ D̂ → f−1(Ĉ) ≈ f−1(D̂).

Remark 3. Lemmas 1–3 are true when we replace “⊆,→,≡ and ≈" by “b, →̇, ≡̇ and ≈̇",
respectively.

Lemma 4. Let Â, B̂, Ĉ ∈ IF (X ). Then
(1) � Â b B̂ → Â ⊆ B̂;
(2) � Â≈̇B̂ → Â≡̇B̂;
(3) � Â≡̇B̂ → Â ≡ B̂;
(4) � Â≈̇B̂ → Â ≡ B̂;
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(5) � Â b B̂ Z B̂ b Ĉ → Â b Ĉ;
(6) � Â≡̇B̂ Z B̂≡̇Ĉ → Â≡̇Ĉ.

Lemma 5. Let Â, B̂ ∈ IF (X ). Then the following are equivalent:
(1) Â(x) = B̂(x);
(2) � Â≡B̂;
(3) � Â≡̇B̂;
(4) � Â≈B̂;
(5) � Â≈̇B̂.

4. Bi-Intuitionistic Fuzzy Topological Space

Now, we introduce the definition of the bi-intuitionistic fuzzy topology and other
related topologies. Additionally, we give some examples.

Definition 5. Let X be a universe of discourse, τ ∈ IF (IF (X ))(τ : IF (X )→ Z), satisfy the
following axioms:

(1) � 1̂ ∈ τ,� 0̂ ∈ τ;
(2) For any Â, B̂ ∈ IF (X ), � Â ∈ τ ∧ B̂ ∈ τ→Â ∩ B̂ ∈ τ;
(3) � For any

{
Âλ : λ ∈ Λ

}
⊆ IF (X ),

� ∀λ(λ ∈ Λ→̇Âλ ∈ τ)→
⋃

λ∈Λ

Âλ ∈ τ.

Then, τ is called a bi-intuitionistic fuzzy topology (BIFT for short) and (X, τ) is a bi-
intuitionistic fuzzy topological space. Specially, if τ ∈ P(IF (X ))(τ : IF (X ) → {0, 1}),
then τ is an intuitionistic fuzzy topology (IFT for short), if τ ∈ IF (P(X ))(τ : P(X ) → Z),
then τ is called an intuitionistic fuzzifying topology (IFuT for short), if τ ∈ IF(F (X ))(τ :
F (X ) → Z), then τ is called an intuitionistic-fuzzy fuzzy topology (IFFT for short), if τ ∈
F (IF (X ))(τ : IF (X ) → [0, 1]), then τ is a fuzzy intuitionistic fuzzy topology (FIFT for
short), if τ ∈ F (F (X ))(τ : F (X ) → [0, 1]), then τ is a bifuzzy topology (BFT for short),
if τ ∈ F (P(X ))(τ : P(X ) → [0, 1]), then τ is a fuzzifying topology (FuT for short), if
τ ∈ P(F (X ))(τ : F (X ) → {0, 1}), then τ is a fuzzy topology (FT for short), and if τ ∈
P(P(X ))(τ : P(X )→ {0, 1}), then τ is a classical topology (T for short). For any Â ∈ IF (X ),
we always suppose that τ(Â) = (mτ(Â), nτ(Â)); the number mτ(Â) is the openness degree of
Â, while the number nτ(Â) is the non-openness degree of Â.

Remark 4. The conditions in Definition 4 may be rewritten respectively as follows:
(1)
′

τ(1̂) = (1, 0) = τ(0̂);
(2)
′

For any Â, B̂ ∈ IF (X ),

mτ(Â) ∧mτ(B̂) ≤ mτ(Â ∩ B̂) and nτ(Â ∩ B̂) ≤ nτ(Â) ∨ nτ(B̂);

(3)
′

For any
{
Âλ : λ ∈ Λ

}
⊆ IF (X ),

∧
λ∈Λ

mτ(Âλ) ≤ mτ

( ⋃
λ∈Λ

Âλ

)
and nτ

( ⋃
λ∈Λ

Âλ

)
≤
∨

λ∈Λ

nτ(Âλ).

Remark 5. In the above diagram, and in the sequel, the symbolH K means that the concept K
is a special case of the conceptH:

Theorem 5. Let X be a non-empty set.
(1) If τ is a BIFT, then τ

∣∣∣F (X ) is a IFFT;

(2) If τ is a BIFT, then τ
∣∣∣P(X ) is a IFuT;

(3) If τ is a FIFT, then τ
∣∣∣F (X ) is a BFT;
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(4) If τ is a FIFT, then τ
∣∣∣P(X ) is a FuT;

(5) If τ is a IFFT, then τ
∣∣∣P(X ) is a IFuT;

(6) If τ is a BFT, then τ
∣∣∣P(X ) is a FuT;

(7) If τ is a IFT, then τ
∣∣∣F (X ) is a FT;

(8) If τ is a IFT, then τ
∣∣∣P(X ) is a T;

(9) If τ is a FT, then τ
∣∣∣P(X ) is a T.

Theorem 6. (1) τ is a IFuT if and only if for any (α, β) ∈ Z , τ(α,β) is a classical topology, where
τ(α,β) = {A : τ(A) ≥ (α, β)} = {A : mτ(A) ≥ α, nτ(A) ≤ β} is the (α, β)-level set

of τ.
(2) τ is BIFT if and only if for any (α, β) ∈ Z , τ(α,β) is a IFT.

Proof. We only prove (1) as (2) is similar.
(=⇒:) Suppose (α, β) ∈ Z . We prove that τ(α,β) is an ordinary topology.
(1) Since τ(X ) = τ(φ) = (1, 0) ≥ (α, β), then X , φ ∈ τ(α,β).
(2) Suppose A,B ∈ τ(α,β). Then τ(A) ≥ (α, β) and τ(B) ≥ (α, β). So, τ(A ∩ B) ≥

τ(A) ∧ τ(B) ≥ (α, β). Therefore A∩ B ∈ τ(α,β).
(3) Suppose {Aλ : λ ∈ Λ} ⊆ τ(α,β). Then for each λ ∈ Λ, we have τ(Aλ) ≥ (α, β). So,∧

λ∈Λ
τ(Aλ) ≥ (α, β). Hence τ

( ⋃
λ∈Λ
Aλ

)
≥ ∧

λ∈Λ
τ(Aλ) ≥ (α, β). Therefore

⋃
λ∈Λ
Aλ ∈ τ(α,β).

(:⇐=) We prove that τ is an intuitionistic fuzzifying topology.
(1) For any (α, β) ∈ Z , X ∈ τ(α,β). Then, for any (α, β) ∈ Z , τ(X ) ≥ (α, β). Therefore,

τ(X ) ≥ ∨
(α,β)∈Z

(α, β) = (1, 0). Hence � X ∈ τ. Similar � φ ∈ τ.

(2) Suppose A,B ⊆ X such that τ(A) ∧ τ(B) ≥ (α, β). Then τ(A) ≥ (α, β) and
τ(B) ≥ (α, β). Hence A,B ∈ τ(α,β). Thus, A∩B ∈ τ(α,β), i.e., τ(A∩B) ≥ (α, β). Therefore,
τ(A∩ B) ≥ τ(A) ∧ τ(B).

(3) Suppose {Aλ|λ ∈ Λ} ⊆ P(X ) such that
∧

λ∈Λ
τ(Aλ) ≥ (α, β). Then {Aλ|λ ∈ Λ} ⊆

τ(α,β) and so
⋃

λ∈Λ
Aλ ∈ τ(α,β). Hence τ

( ⋃
λ∈Λ
Aλ

)
≥ (α, β). Therefore τ

( ⋃
λ∈Λ
Aλ

)
≥∧

λ∈Λ
τ(Aλ).

Example 1. (1) If τ is a IFuT and τ(P(X )) ⊆ {(0, 1), (1, 0)}, then τ is an ordinary topology.
(2) If τ is a FIFT and for each Ã ∈ =(X ), mτ(Ã)+nτ(Ã) = 1, then τ is a fuzzifying topology.
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Example 2. Suppose that τ is an intuitionistic fuzzifying topology and τ̌ ∈ IF (IF (X )) is
defined as Â ∈ τ̌ := ∃A((A ∈ τ) ∧A ≡ Â). Then τ̌ is a bi-intuitionistic fuzzy topology such
that τ̌|P(X ) = τ. In fact, it suffices to check the three conditions in Definition 5.

(1) τ̌(1̃) = τ̌(0̃) = (1, 0).
(2)

τ̌(Â ∩ B̂) =
∨

C∈P(X )

(
τ(C) ∧ [C ≡ Â ∩ B̂]

)
=

∨
A,B⊆X

(
τ(A∩ B) ∧ [A∩ B ≡ Â ∩ B̂]

)
≥

∨
A,B⊆X

(
τ(A) ∧ τ(B) ∧ [A ≡ Â] ∧ [B ≡ B̂]

)
=

∨
A,B⊆X

(
τ(A) ∧ [A ≡ Â]

)
∧

∨
A,B⊆X

(
τ(B) ∧ [B ≡ B̂]

)
= τ̌(Â) ∧ τ̌(B̂).

(3) [ ⋃
λ∈Λ

Âλ ∈ τ̌

]
=

∨
C⊆X

(
τ(C) ∧

[
C ≡

⋃
λ∈Λ

Âλ

])

=
∨
Aλ⊆X

(
τ

( ⋃
λ∈Λ

Aλ

)
∧
[ ⋃

λ∈Λ

Aλ ≡
⋃

λ∈Λ

Âλ

])

≥
∨
Aλ⊆X

( ∧
λ∈Λ

τ(Aλ) ∧
∧

λ∈Λ

[Aλ ≡ Âλ]

)
=

∧
λ∈Λ

∨
Aλ⊆X

(
τ(Aλ) ∧ [Aλ ≡ Âλ]

)
=

∧
λ∈Λ

τ̌(Âλ).

Example 3. Suppose that τ is an inituitionistic fuzzifying topology and τ̆ ∈ IF (IF (X )) is
defined as

Â ∈ τ̆ := ∀(α, β)
(
Â[(α,β)] ∈ τ

)
,

where τ[(α,β)] =
{
Â : τ(Â) > (α, β)

}
=
{
Â : mτ(Â) > α, nτ(Â) < β

}
is the strong [(α, β)]-

level set of τ. Then τ̆ is a bi-intuitionistic fuzzy topology such that τ̆
∣∣∣P(X ) = τ . To show this, it

suffices to check all conditions in Definition 5.
(1) Since 1̂(x) = (1, 0) and (α, β) ≤ (1, 0), then 1̂[(α,β)] = X and τ(1̂) = (1, 0). Hence

[1̂ ∈ τ̆] = τ̆(1̂) =
∧

(α,β)∈Z
(1, 0) = (1, 0). Similarly, [0̂ ∈ τ̆] = (1, 0).

(2)

τ̆(Â ∩ B̂) =
∧

(α,β)∈Z
τ((Â ∩ B̂)[(α,β)])

=
∧

(α,β)∈Z
τ
(
Â[(α,β)] ∩ B̂[(α,β)]

)
≥

∧
(α,β)∈Z

(
τ(Â[(α,β)]) ∧ τ(B̂[(α,β)])

)
=

∧
(α,β)∈Z

τ(Â[(α,β)]) ∧
∧

(α,β)∈Z
τ(B̂[(α,β)])

= τ̆(Â) ∧ τ̆(B̂).
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(3)

τ̆

( ⋃
λ∈Λ

Âλ

)
=

∧
(α,β)∈Z

τ

( ⋃
λ∈Λ

(Âλ)[(α,β)]

)

≥
∧

(α,β)∈Z

∧
λ∈Λ

τ
(
(Âλ)[(α,β)]

)
=
∧

λ∈Λ

τ̆(Âλ).

Definition 6. The family of bi-intuitionistic fuzzy closed sets, denoted by F ∈ IF (IF (X )), is
defined as Â ∈ F := ¬(Â) ∈ τ, i.e., F (Â) = τ(¬(Â)), or equivalently mF (Â) = mτ(¬(Â))
and nF (Â) = nτ(¬(Â)).

Theorem 7. (1) F (1̂) = F (0̂) = (1, 0);
(2) for any Â, B̂ ∈ IF (X ), � Â ∈ F ∧ B̂ ∈ F→Â ∪ B̂ ∈ F ;
(3) for any

{
Âλ : λ ∈ Λ

}
⊆ IF (X ),

� ∀λ
(
λ ∈ Λ→̇Âλ ∈ F

)
→

⋃
λ∈Λ

Âλ ∈ F .

In the sequel, we discuss only intuitionistic fuzzifying topological spaces as a prelimi-
nary of the research on bi-intuitionistic fuzzy topology.

5. Intuitionistic Fuzzifying Neighborhood Structure of a Point

In this section, we introduce the definition of the intuitionistic fuzzifying neighborhood
structure of a point and study its properties.

Definition 7. Let x ∈ X . The intuitionistic fuzzifying neighborhood system of x, denoted by
N̂x ∈ IF (P(X )), is defined as follows:

A ∈ N̂x := ∃B(B ∈ τ ∧ B ∈ M(x,A)),

whereM(x,A) = {B : B ⊆ X , x ∈ B ⊆ A}.

Lemma 6.
∧

x∈A

∨
B∈M(x,A)

τ(B) = τ(A).

Proof. First, for each x ∈ A, we have
∨

B∈M(x,A)
τ(B) ≥ τ(A). So,

∧
x∈A

∨
B∈M(x,A)

τ(B) ≥ τ(A).

Second, for any f ∈ ∏
x∈A
M(x,A) we have

⋃
x∈A

f (x) = A. Therefore

τ(A) = τ

( ⋃
x∈A

f (x)

)
≥
∧

x∈A
τ( f (x)).

So,
τ(A) ≥

∨
f∈ ∏

x∈A
M(x,A)

∧
x∈A

τ( f (x)) =
∧

x∈A

∨
B∈M(x,A)

τ(B).

Corollary 1. τ(A) = ∧
x∈A
N̂x(A).
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Theorem 8. For any x ∈ X and A ∈ P(X ),

� A ∈ τ ←→ ∀x
(

x ∈ A→̇∃B
(
B ∈ N̂x ∧ B ⊆ A

))
.

Proof. [
∀x
(

x ∈ A→̇∃B
(
B ∈ N̂x ∧ B ⊆ A

))]
=

∧
x∈A

∨
B⊆A

N̂x(B)

=
∧

x∈A

∨
B⊆A

∨
C∈M(x,B)

τ(C)

=
∧

x∈A

∨
C∈M(x,A)

τ(C)

=
∧

x∈A
N̂x(A) = τ(A).

Theorem 9. The mapping N̂ : X→IFN (X ), x 7→ N̂x, has the following properties:
(1) For any x ∈ A, � A ∈ N̂x→x ∈ A;
(2) For any x ∈ A,B, � A ∈ N̂x ∧ B ∈ N̂x→A∩B ∈ N̂x;
(3) For any x ∈ A,B, � A ⊆ B→̇

(
A ∈ N̂x→B ∈ N̂x

)
;

(4) For any x,A, � A ∈ N̂x→∃C
(
(C ∈ N̂x) ∧ (C ⊆ A) ∧ ∀(y ∈ C→̇C ∈ N̂y)

)
.

Conversely, if a mapping N̂ satisfies (2) and (3), then τ is an intuitionistic fuzzifying topology
which is defined A ∈ τ := ∀x

(
x ∈ A→̇A ∈ N̂x

)
.

Specially, if it satisfies (1) and (4) also, then for any x ∈ X , N̂x is the neighborhood system of
x with respect to τ.

Proof. (A) Since N̂x(X ) =
∨

B∈M(x,X )
τ(B) ≥ τ(X ) = (1, 0), then N̂x is normal.

(1) If A(x) = (1, 0), then A(x) ≥ N̂x(A). Now, suppose A(x) = (0, 1). We need to
prove that N̂x(A) = (0, 1). Indeed,

N̂x(A) =
∨

B∈P(X )

(τ(B) ∧ x ∈ B ∧ B ⊆ A)

=
∨

x∈B
(τ(B) ∧ B ⊆ A) =

∨
x∈B

(τ(B) ∧ (0, 1))

=
∨

x∈B
(mτ(B) ∧ 0, nτ(B) ∨ 1)

=
∨

x∈B
(0, 1) = (0, 1).

(2)

N̂x(A∩ B) =
∨

x∈C⊆A∩B
τ(C)

=
∨

x∈C1⊆A, x∈C2⊆B
τ(C1 ∩ C2)

≥
∨

x∈C1⊆A, x∈C2⊆B
(τ(C1) ∧ τ(C2))

=
∨

x∈C1⊆A
τ(C1) ∧

∨
x∈C2⊆B

τ(C2)

=
∨

C1∈M(x,A)
τ(C1) ∧

∨
C2∈M(x,B)

τ(C2) = N̂x(A) ∧ N̂x(B).
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(3) If [A ⊆ B] = (0, 1), then the result holds. Suppose [A ⊆ B] = (1, 0) and so to
complete the proof we need to prove that N̂x(A) ≤ N̂x(B). Now,M(x,A) ⊆M(x,B).

Then
N̂x(A) =

∨
C∈M(x,A)

τ(C) ≤
∨

C∈M(x,B)
τ(C) = N̂x(B).

Thus [A ∈ N̂x→̇B ∈ N̂x] = (1, 0).
(4) [

∃C
(
(C ∈ N̂x) ∧ (C ⊆ A) ∧ ∀(y ∈ C→̇C ∈ N̂y)

)]
=

∨
C⊆A

N̂x(C) ∧
∧

y∈C
N̂y(C)


=

∨
C⊆A

(
N̂x(C) ∧ τ(C)

)
=

∨
C⊆A

τ(C) ≥
∨

x∈C⊆A
τ(C)

=
∨

C∈M(x,A)
τ(C) = N̂x(A).

(B) Conversely, we prove that τ(A) =
∧

x∈A
N̂x(A) is an intuitionistic fuzzifying

topology.
(1) (a) τ(φ) =

∧
x∈φ
N̂x(φ) = (1, 0).

(b) For any x ∈ X and since Nx is normal, then there exists A ∈ P(X ) such that
N̂x(A) = (1, 0). Thus, from Condition (3) we have N̂x(X ) ≥ N̂x(A) = (1, 0). Therefore,
τ(X ) =

∧
x∈X
N̂x(X ) = (1, 0).

(2) Applying Condition (2) we have

τ(A∩ B) =
∧

x∈A∩B
N̂x(A∩ B)

≥
∧

x∈A∩B

(
N̂x(A) ∧ N̂x(B)

)
=

∧
x∈A∩B

N̂x(A) ∧
∧

x∈A∩B
N̂x(B)

≥
∧

x∈A
N̂x(A) ∧

∧
x∈B
N̂x(B) = τ(A) ∧ τ(B).

(3) Applying Condition (3) we have

τ

( ⋃
λ∈Λ

Aλ

)
=

∧
x∈ ⋃

λ∈Λ
Aλ

N̂x

( ⋃
λ∈Λ

Aλ

)

=
∧

λ∈Λ

∧
x∈Aλ

N̂x

( ⋃
λ∈Λ

Aλ

)
≥

∧
λ∈Λ

∧
x∈Aλ

N̂x(Aλ) =
∧

λ∈Λ

τ(Aλ).
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(4) From Condition (4), N̂x(A) ≤
∨
B⊆A

(
N̂x(B) ∧

∧
y∈B
N̂y(B)

)
and from Condition (1),

if [x ∈ B] = (0, 1), then N̂x(B) = (0, 1). So,

N̂x(A) ≤
∨

x∈B⊆A

N̂x(B) ∧
∧

y∈B
N̂y(B)

 =
∨

B∈M(x,A)

∧
y∈B
N̂y(B) =

∨
B∈M(x,A)

τ(B).

On the other hand, for each B ∈ M(x,A), from Condition (3) we obtain
∧

y∈B
N̂y(B) ≤

N̂x(B) ≤ N̂x(A). Therefore,

N̂x(A) ≥
∨

B∈M(x,A)

∧
y∈B
N̂y(B) =

∨
B∈M(x,A)

τ(B).

Therefore, we obtain N̂x(A) =
∨

B∈M(x,A)
τ(B).

6. Intuitionistic Fuzzifying Fundamental Concepts

In this section, the concepts of intuitionistic fuzzifying closure, intuitionistic fuzzifying
boundary, intuitionistic fuzzifying derived set, and intuitionistic fuzzifying interior are
investigated. Additionally, the relations among these concepts are derived.

Definition 8. The intuitionistic fuzzifying derived (resp. closure, interior, boundary) operation
will be denoted by D̂ (resp. Ĉl, Înt, b̂) ∈ (IF (X ))P(X ) and defined as follows:

x ∈ D̂(A) := ∀B(B ∈ N̂x→̇B ∩ (A− {x}) 6= φ);
x ∈ Ĉl(A) := ∀B((B ⊇ A) ∧ B ∈ F→̇x ∈ B);
x ∈ Înt(A) := A ∈ N̂x;
x ∈ b̂(A) := x ∈ Ĉl(A) ∧ Ĉl(X −A).

Theorem 10. For any x,A (1) D̂(A)(x) = ¬(N̂x((X −A) ∪ {x});
(2) � A ∈ F ←→ D̂(A) b A.

Proof. (1)

D̂(A)(x) =
∧

B∩(A−{x})=φ

¬(N̂x(B))

= ¬(
∨

B⊆(X−A)∪{x}
N̂x(B))

= ¬(N̂x((X −A) ∪ {x})).

(2)

[D̂(A) b A] =
[
∀x
(
x ∈ D̂(A)→̇x ∈ A

)]
=

∧
x∈X−A

¬(D̂(A))(x)

=
∧

x∈X−A
N̂x((X −A) ∪ {x})

=
∧

x∈X−A
N̂x(X −A) = τ(X −A) = F (A).

Lemma 7. � Ĉl(A) ≡ ¬((X −A) ∈ N̂x).
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Proof.

Ĉl(A)(x) =
∧

x∈X−B⊆X−A
¬(F (B))

= ¬
( ∨

x∈X−B⊆X−A
F (B)

)

= ¬
( ∨

x∈X−B⊆X−A
τ(X −B)

)
= ¬(N̂x(X −A)).

Corollary 2. (1) � Ĉl(A)≡̇¬((X −A) ∈ N̂x);
(2) � Ĉl(A)≈̇¬((X −A) ∈ N̂x)

Theorem 11. (1) Ĉl(φ) = φ;
(2) For any A,� A b Ĉl(A);
(3) For any A,B, if [A ⊆ B] = (1, 0), then � Ĉl(A) ⊆ Ĉl(B);
(4) For any, � Ĉl(A∪ B) ≡ Ĉl(A) ∪ Ĉl(B).

Proof. (1) Ĉl(φ)(x) = ¬(N̂x(X )) = ¬(1, 0) = (0, 1) = φ(x).
(2)

[A b Ĉl(A)] =
[
∀x
(

x ∈ A→̇x ∈ Ĉl(A)
)]

=
∧

x∈A
Ĉl(A)(x) =

∧
x∈A
¬(N̂x(X −A))

= ¬
( ∨

x∈A
N̂x(X −A)

)
= ¬(0, 1) = (1, 0).

(3) Suppose that [A ⊆ B] = (1, 0). Then, from Theorem 9 (3), we have N̂x(X −B) ≤
N̂x(X −A). Hence ¬(N̂x(X −A)) ≤ ¬(N̂x(X −B)). Therefore, Ĉl(A)(x) ≤ Ĉl(B)(x).
Therefore � Ĉl(A) ⊆ Ĉl(B).

(4) Applying (3) above, we obtain � Ĉl(A) ∪ Ĉl(B) ⊆ Ĉl(A∪ B). Now, we need to
prove that � Ĉl(A∪ B) ⊆ Ĉl(A) ∪ Ĉl(B). For any x ∈ X ,

Ĉl(A∪ B)(x) = ¬
(
N̂x(X − (A∪ B))

)
= ¬

(
N̂x((X −A) ∩ (X −B))

)
≤ ¬

(
N̂x(X −A) ∧ N̂x(X −B)

)
= ¬

(
N̂x(X −A)

)
∨ ¬

(
N̂x(X −B)

)
= Ĉl(A)(x) ∨ Ĉl(B)(x).

Theorem 12. For any x,A,
(1) � Ĉl(A)≈̇A ∪ D̂(A), � Ĉl(A)≡̇A ∪ D̂(A) and � Ĉl(A) ≡ A∪ D̂(A);
(2) � x ∈ Ĉl(A)←→ ∀B

(
B ∈ N̂x→̇A ∩ B 6= φ

)
;

(3) � A ∈ F→Ĉl(A)≡̇A;
(4) � A ∈ F→Ĉl(A) ≡ A.
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Proof. (1) If A(x) = (1, 0), then Ĉl(A)(x) = ¬(N̂x(X −A)) = ¬(0, 1) = (1, 0), and so
Ĉl(A)(x) = A(x) = A ∪ D̂(A)(x). If A(x) = (0, 1), then Ĉl(A)(x) = ¬(N̂x(X −A)) =
¬
(
N̂x((X −A) ∪ {x})

)
= D̂(A)(x) = (A ∪ D̂(A))(x). Therefore, by Lemma 5, the

results hold.
(2) [

∀B
(
B ∈ N̂x→̇A ∩ B 6= φ

)]
=

∧
A∩B=φ

¬(N̂x(B))

= ¬

 ∨
A∩B=φ

(N̂x(B))


= ¬

( ∨
B⊆X−A

(N̂x(B))
)

= ¬
(
N̂x(X −A)

)
= Ĉl(A)(x).

(3)

F (A) = [D̂(A) b A] = [D̂(A) b A] ∧ [A b A] ≤ [A∪ D̂(A) b A]
= [A∪ D̂(A) b A] ∧ [A b A∪ D̂(A)] ≤ [A∪ D̂(A)≡̇A]
= [Ĉl(A)≡̇A].

(4) � A ∈ F→Ĉl(A)≡̇A → Ĉl(A)≡A.

Theorem 13. For any A,B, � B≈̇A ∪ D̂(A)→B ∈ F .

Proof. If [A ⊆ B] = (0, 1), then [B≈̇A ∪ D̂(A)] = (0, 1). Suppose [A ⊆ B] = (1, 0). Then

[B b A∪ D̂(A)] =
[
∀x
(

x ∈ B→̇x ∈ A ∪ D̂(A)
)]

=
∧

x∈B
[x ∈ A ∪ D̂(A)]

=
∧

x∈B

(
mA(x) ∨mD̂(A)(x), nA(x) ∧ nD̂(A)(x)

)
=

∧
x∈B−A

(mD̂(A)(x), nD̂(A)(x)) =
∧

x∈B−A
D̂(A)(x)

=
∧

x∈B−A
¬
(
N̂x((X −A) ∪ {x})

)
=

∧
x∈B−A

¬
(
N̂x(X −A)

)
= ¬

( ∨
x∈B−A

N̂x(X −A)
)

.
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[A∪ D̂(A) b B] =
[
∀x
(
x ∈ A ∪ D̂(A)→̇x ∈ B

)]
=

[
∀x
(
x 6∈ B→̇¬

(
x ∈ A ∪ D̂(A)

))]
=

∧
x 6∈B
¬
(
x ∈ A ∪ D̂(A)

)
=

∧
x∈X−B

¬
(
mA(x) ∨mD̂(A)(x), nA(x) ∧ nD̂(A)(x)

)
=

∧
x∈X−B

¬
(
mD̂(A)(x), nD̂(A)(x)

)
=

∧
x∈X−B

¬(D̂(A)(x))

=
∧

x∈X−B
N̂x(X −A).

Suppose B≈̇A ∪ D̂(A) > (t, to). Then

(
max

(
0, m¬(

∨
x∈B−A

N̂x(X −A)) + m
∧

x∈X−B
N̂x(X −A)− 1

)
,

min

(
1, n

(
¬
( ∨

x∈B−A
N̂x(X −A)

))
+ n

∧
x∈B−A

N̂x(X −A)
))

> (t, to).

First,

m¬
( ∨

x∈B−A
N̂x(X −A)

)
+ m

∧
x∈X−B

N̂x(X −A)− 1 > t.

Hence

m
∧

x∈X−B
N̂x(X −A) > 1−m¬

( ∨
x∈B−A

N̂x(X −A)
)
+ t.

For any x ∈ X − B,

mN̂x(X −A) > 1−m¬
( ∨

x∈B−A
N̂x(X −A)

)
+ t,

then

m

( ∨
x∈C⊆X−A

τ(C)
)

> 1−m¬
( ∨

x∈B−A
N̂x(X −A)

)
+ t,

i.e., there exists Cx such that x ∈ Cx ⊆ X −A and

mτ(Cx) > 1−m¬
( ∨

x∈B−A
N̂x(X −A)

)
+ t > t.

Therefore,

mF (B) = mτ(X −B) = m
∧

x∈X−B
N̂x(X −B) ≥ m

( ∧
x∈X−B

τ(Cx)

)
> t.

Second, n
(
¬
( ∨

x∈B−A
N̂x(X −A)

))
+ n

∧
x∈B−A

N̂x(X −A) < to. Hence,

n
∧

x∈B−A
N̂x(X −A) < to − n

(
¬
( ∨

x∈B−A
N̂x(X −A)

))
.
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There exists x′ ∈ X − B such that

n
(
N̂x′(X −A)

)
< to − n

(
¬
( ∨

x∈B−A
N̂x(X −A)

))
.

Thus

n

( ∨
x′∈C⊆X−A

τ(C)
)

< to − n

(
¬
( ∨

x∈B−A
N̂x(X −A)

))
.

So, n(τ(C)) < to. Therefore,

nF (B) = nτ(X −B)

= n

( ∧
x∈X−B

Nx(X −B)
)
≤ n

(
N̂x(X −B)

)
≤ n

( ∨
x∈C⊆X−A

τ(C)
)
≤ nτ(C) < to.

Hence F (B) = (mF (B), nF (B)) > (t, to). Therefore, F (B) ≥ [B≈̇A ∪ D̂(A)]. We
obtain � B≈̇A ∪ D̂(A)→B ∈ F .

Theorem 14. For any x,A,B,
(1) � (B ∈ τ) ∧ (B ⊆ A)→B b Înt(A);
(2) � A≡̇ Înt(A)←→ A ∈ τ, and the statement is true when we replace “≡̇" by “≈̇";
(3) � x ∈ Înt(A)←→ (x ∈ A) ∧ (x ∈ ¬(D̂(X −A))), and the statement is true when we

replace “∧" by “Z";
(4) � Înt(A) ≡ ¬(Ĉl(X −A)) , and the statement is true when we replace “≡" by “≡̇" or

by “≈̇";
(5) � B≡̇ Înt(A)→B ∈ τ, and the statement is true when we replace “≡̇" by “≈̇".

Proof. (1) If [B ⊆ A] = (0, 1), then

[(B ∈ τ) ∧ (B ⊆ A)] = τ(B) ∧ (0, 1) = (0, 1).

If [B ⊆ A] = (1, 0), then

[B b Înt(A)] =
[
∀x
(

x ∈ B→̇x ∈ Înt(A)
)]

≤
∧

x∈B

[
(1, 0)→̇N̂x(A)

]
=

∧
x∈B
N̂x(A) ≥

∧
x∈B
N̂x(B)

= τ(B) = [B ∈ τ] = [(B ∈ τ) ∧ (1, 0)]

= [(B ∈ τ) ∧ (B ⊆ A)].
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(2) [A≡̇ Înt(A)] = [A b Înt(A)] ∧ [ Înt(A) b A]. First,

[ Înt(A) b A] =
[
∀x
(

x ∈ Înt(A)→̇x ∈ A
)]

=
∧

x∈X−A

[
(1, 0)→̇¬(N̂x(A))

]
=

∧
x∈X−A

¬(N̂x(A))

= ¬
( ∨

x∈X−A
N̂x(A)

)
= ¬(0, 1) = (1, 0).

Second,

[A b Înt(A)] =
[
∀x
(

x ∈ A→̇x ∈ Înt(A)
)]

=
∧

x∈A

[
(1, 0)→̇N̂x(A)

]
=
∧

x∈A
N̂x(A) = τ(A) = [A ∈ τ].

(3) If A(x) = (0, 1), then Înt(A)(x) = (0, 1) and the result holds. If A(x) = (1, 0),
then

[x ∈ D̂(X −A)] = D̂(X −A)(x) = ¬(N̂x(A∪ {x})) = ¬(N̂x(A)).

Hence

[x ∈ ¬(D̂(X −A))] = ¬(D̂(X −A))(x) = N̂x(A) = [x ∈ Înt(A)].

Therefore,
[(x ∈ A) ∧ x ∈ ¬(D̂(X −A))] = [x ∈ Înt(A)].

(4) Follows from Lemma 7.
(5) From (4) above, Theorems 12 and 13 (1) we have

[B≡̇ Înt(A)] ≡ [¬(B)≡̇¬( Înt(A))] ≡ [X −B≡̇Ĉl(X −A)] ≤ [X −B ∈ F ] = [B ∈ τ].

Lemma 8.

� x ∈ b̂(A)←→ ∀B
(
B ∈ N̂x→̇((B ∩A 6= φ) ∧ (B ∩ (X −A) 6= φ))

)
.

Proof. [
∀B
(
B ∈ N̂x→̇((B ∩A 6= φ) ∧ (B ∩ (X −A) 6= φ))

)]
=

[
∀B
(
B ∈ N̂x→̇(B ∩A 6= φ)

)]
∧
[
∀B
(
B ∈ N̂x→̇(B ∩ (X −A) 6= φ)

)]
=

∧
B⊆X−A

[
B ∈ N̂x→̇(0, 1)

]
∧
∧
B⊆A

[
B ∈ N̂x→̇(0, 1)

]
=

∧
B⊆A
¬(N̂x(B)) ∧

∧
B⊆X−A

¬(N̂x(B))

= ¬
( ∨
B⊆A
N̂x(B)

)
∧ ¬

( ∨
B⊆X−A

N̂x(B)
)

= ¬(N̂x(A)) ∧ ¬(N̂x(X −A))
= ¬( Înt(A)(x)) ∧ ¬( Înt(X −A)(x))

= Ĉl(X −A)(x) ∧ Ĉl(A)(x)

= b̂(A)(x).
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Theorem 15. For any A,
(1) � b̂(A) ≡ b̂(X −A);
(2) ¬(b̂(A)) ≡ Înt(A) ∪ Înt(X −A);
(3) � Ĉl(A) ≡ A∪ b̂(A), and so � b̂(A) b A ←→ A ∈ F .
(4) � Înt(A) ≡ A∩ ¬(b̂(A)), and so � (b̂(A) ∩A≡̇0̂)←→ A ∈ τ.

Proof. (1) obvious.
(2) From Theorem 14 (4), we obtain

Înt(A)(x) ∨ Înt(X −A)(x) = ¬(Ĉl(X −A)(x)) ∨ ¬( Înt(A)(x)) = ¬(b̂(A)(x)).

(3) If A(x) = (1, 0), then Ĉl(A)(x) = (A∪ b̂(A))(x) = (1, 0). If A(x) = (0, 1), then
(A∪ b̂(A))(x) = b̂(A)(x) = ¬( Înt(A)(x)) ∧ ¬( Înt(X −A)(x)) = (1, 0) ∧ ¬( Înt(X −A)
(x)) = ¬( Înt(X −A)(x)) = Ĉl(A)(x). From Theorem 10 (2), we have � A ∈ F ←→
D̂(A) b A ←→ (D̂(A) b A) ∧ (A b A) ←→ (D̂(A) ∪ A b A) ←→ Ĉl(A) b A ←→
A∪ b̂(A) b A ←→ (A b A) ∧ (b̂(A) b A)←→ (1, 0) ∧ (b̂(A) b A)←→ b̂(A) b A.

(4) Înt(A)(A) ≡ ¬(Ĉl(X −A)) ≡ ¬((X −A) ∪ b̂(X −A)) ≡ A ∩ ¬(b̂(X −A)) =
A∩ ¬(b̂(A)). From Theorem 14 (2), we obtain � b̂(A) ∩A≡̇0̂←→ ¬(b̂(A)) ∪ (X −A)≡̇1̂
←→ A b ¬(b̂(A))←→ A∩¬(b̂(A))≡̇A ←→ Înt(A)≡̇A ←→ A ∈ τ.

Remark 6. All statements in Theorem 15 are true when we replace “≡" by “≡̇" or by “≈̇".

7. Conclusions

As an extension of fuzzifying topology, we discussed intuitionistic fuzzifying neigh-
borhood system of a point. Additionally, we introduced the concepts of intuitionistic
fuzzifying closure, intuitionistic fuzzifying boundary, intuitionistic fuzzifying derived set
and intuitionistic fuzzifying interior. These concepts provide a theoretical basis for the fur-
ther study of intuitionistic fuzzifying topology. In this regard, it is interesting to develop a
mathematical framework that contains continuity, speration axioms, compactness, and vec-
tor spaces. Additionally, we believe that it would be interesting to apply the intuitionistic
fuzzy logic to other structures such as proximity, uniformity, topogenous, syntopogenous,
homotopy, etc. We intend to investigate some of these issues in future research works. We
believe that it is very important to apply both fuzzy logic and intuitionistic fuzzy logic to
convex spaces.
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