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Abstract: Consistency has always been a hot topic in the study of decision-making based on preference
relations. This paper focuses on the consistency of hesitant fuzzy linguistic preference relations
(HFLPRs). Firstly, a new definition of the additive consistency of HFLPRs is given. Secondly, to
examine whether an HFLPR is additively consistent, two equivalent programming models are
constructed. Thirdly, for inconsistent HFLPRs, the corresponding consistency improvement model is
further proposed, where only upper triangular elements in the HFLPRs are considered in view of the
symmetry of HFLPRs. Using the consistency improvement model, an inconsistent HFLPR can be
adjusted to the consistent one, which retains the original information as much as possible. Fourthly,
a hesitant fuzzy linguistic weight vector is introduced and a programming model is constructed
to derive the weight vector. Finally, the feasibility and effectiveness of the proposed method are
illustrated by numerical examples and comparative analysis. This result demonstrates that the
consistency model proposed considers each element of HFLPRs such that the consistent HFLPRs
derived fully retain the original information. Moreover, only some preference values in the HFLPR
are adjusted, and no preference value is out of range of the predefined HFLTSs.

Keywords: hesitant fuzzy linguistic preference relation; additive consistency; hesitant fuzzy linguistic
weight vector; hesitant fuzzy linguistic term set

1. Introduction

Torra [1] proposed the concept of hesitant fuzzy sets (HFSs), which allows several
values between [0, 1] to indicate its membership. In reality, decision-makers (DMs) may
show hesitant preference for alternatives on account of various factors in the decision-
making process. Hence, HFS has been widely used as a tool to express DMs’ hesitation.
Due to the complexity of real decision-making situations, DMs may have difficulty in
assigning appropriate numerical values to express their preferences. In this case, DMs tend
to use linguistic terms rather than numerical values to express preferences. Due to the
above considerations, Rodriguez et al. [2] proposed the hesitant fuzzy linguistic term sets
(HFLTSs), which allow DMs to express their preferences by using several possible linguistic
variables. Therefore, with the advantages of both HFSs and fuzzy linguistic sets, HFLTSs
enable DMs to express their preferences more flexibly and conveniently in decision-making.

Based on HFLTSs, Rodriguez et al. [2] developed the concept of hesitant fuzzy linguis-
tic preference relations (HFLPRs) as a tool to deal with DMs’ hesitant degree of preference
for several possible linguistic terms over the paired of alternatives. Recently, more and
more research [3–14] on HFLPRs has been performed. Dong et al. [3] proposed a new
distance formula to measure the distance between two HFLTSs and developed the con-
sensus level measure of HFLPRs. Song et al. [4] proposed a definition of multiplicative
consistency of HFLPRs. Tang and Meng [5] introduced some definitions of multiplicative
hesitant fuzzy linguistic preference relations (MHFLPRs) and corresponding consistency
definitions. Wu et al. [6] proposed a new formula to measure the similarity between
HFLTSs and a consensus improvement process based on the local modification mechanism.
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Tang et al. [7] proposed a new definition of interval linguistic hesitant fuzzy preference
relations (ILHFPRs) and a concept of additive consistency, and then, Tang et al. [8] proposed
a new definition of multiplicative interval linguistic hesitant fuzzy preference relations
(MILHFPRs) and discussed the consistency issue. Chen et al. [9] considered the worst
consistency (WCI) of HFLPRs and constructed two models to improve the WCI index and
consensus level. Zhang and Chen [10] proposed a group decision-making (GDM) method
based on the acceptable multiplicative consistency and consensus of HFLPRs. Ren et al. [11]
proposed a kernel-based algorithm and a consensus measure for HFLPRs. Zheng et al. [12]
proposed hesitant degree and fuzzy degree function of HTLTSs and established a model to
normalize different lengths. Xu et al. [13] proposed a new AHP method and some models
to improve the consistency and consensus levels. Li et al. [14] proposed a model to obtain
the incomplete elements for an IHFLPR and an iterative algorithm to reach consensus.

Consistency is regarded as an important indicator for DMs to avoid illogic when
comparing alternatives. Based on cardinal consistency of preference relations, including
addition consistency [15] and multiplication consistency [16], researchers have proposed
different methods to define the consistency of HFLPRs. Both additive consistency and
multiplicative consistency of HFLPRs have been widely discussed [17–26]. Ren et al. [17]
proposed a GDM method based on consistency and consensus measurement of HFLPRs,
and proposed a hesitant fuzzy linguistic geometric consistency index (HFLGCI) and a worst
consensus index of HFLPRs. Xu et al. [18] proposed two additive consistency definitions
for HFLPRs: completely additive consistency (CAC) and weakly additive consistency
(WAC). Zhang and Wu [19] developed the multiplicative consistency of HFLPRs and
defined a consistency indicator to measure the degree of deviation between the original
and the consistent HFLPRs. Zhu and Xu [20] introduced an additive consistency concept
of HFLPRs and developed some consistency and acceptable consistency measures for
HFLPRs. Xu and Wang [21] proposed the additive consistency of hesitant 2-tuple fuzzy
linguistic preference relations (H2TFLPRs) and proposed revised definition of H2TFLPRs
based on Zhu and Xu [20]. Feng et al. [22] proposed an additively consistent definition of
HFLPRs and developed goal programming models to measure consistency. Li et al. [23]
proposed an interval consistency index of HFLPRs, which consists of the worst consistency
index and the best consistency index of HFLPRs. Zhang and Chen [24] proposed a method
to solve weight vector of HFLPRs, based on which the consistency index and acceptable
definition of multiplicative consistency of HFLPR are defined. Liu et al. [25] established
a new model to make HFLPRs achieve the maximum consistency degree. In addition,
Liu et al. [26] calculated the missing elements of incomplete HFLPRs according to the best
and worst consistency.

In the existing studies, there are still many issues deserving further discussion and
improvement. The consistency definitions [22,26] only take part of the original HFLPR
information into account and tend to be too loose. In the consistency optimization
models [19–21], the original preference relations need to be normalized, where the HFLTSs
of HFLPR are further artificially processed to have the same length by adding or deleting
some specified linguistic variables. Such process distorts the original preference informa-
tion, and some preference values in the adjusted preference relations may not belong to
the original linguistic term set. In consistency optimization models [19–21,24], almost all
the preference values in the original preference relation are adjusted, which may not be
accepted by corresponding DMs, and cannot keep the original preference information as
much as possible. In addition, in the additive consistency model [20,21], the preference
values obtained by additive consistency may be out of range of the predefined HFLTSs.

In order to better deal with the above-mentioned issues, this paper proposes a new
consistency concept and corresponding consistency improvement models for HFLPRs. The
main novelties of this paper are listed as follows:

(1) A new additive consistency definition of HFLPRs is introduced. This consistency defi-
nition takes each linguistic term of HFLPR into account. As a result, the consistency
definition can fully reflect consistent information of original HFLPRs.
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(2) To judge if an HFLPR is additively consistent, some programming models are devel-
oped to measure the consistency of the HFLPR. The consistency test method does
not add or remove any value of the HFLTS, which avoids distorting the original
preference information of the HFLPR.

(3) For an HFLPR not satisfying additive consistency, a consistency improvement model is
developed to derive the corresponding consistent HFLPR, where only some preference
values in the HFLPR are adjusted and no preference value is out of range of the
predefined HFLTS. Moreover, the deviation between the corresponding consistent
HFLPR and the original one is minimal, which ensures the new constructed additively
consistent HFLPR keeps the original information as much as possible.

(4) To determine the ranking order of the alternatives, hesitant fuzzy linguistic weight
vector (HFLWV) is defined and the corresponding model is established to derive the
HFLWV.

The remainder of this paper is organized as follows. Section 2 introduces some fun-
damental definitions. In Section 3, new concept of additive consistency of HFLPR is
introduced. Then, two programming models are developed to measure the consistency
of an HFLPR. For inconsistent HFLPRs, a consistency improvement model is constructed
to adjust the inconsistent HFLPRs. In addition, a programming model is constructed to
derive the priority weights for additively consistent HFLPRs. In Section 4, some numer-
ical examples and comparisons with the existing methods are presented to illustrate the
effectiveness of the proposed method. Conclusions are given in Section 5.

2. Preliminaries

In this section, the relevant basic definitions and some consistency definitions for
HFLPRs are reviewed.

For decision-making problems under linguistic environment, a linguistic term set
S =

{
s0, s1, . . . , sg

}
is always utilized, where g+1 is named the cardinality of S.

2.1. Basic Definitions

Definition 1 [27]. Let β ∈ [0, g] be a value derived from the result of a symbolic aggregation
operation in S =

{
s0, s1, . . . , sg

}
. The equivalent information for β in the 2-tuple is obtained by the

function as follows:
∆ : [0, g]→ S× [−0.5, 0.5) (1)

∆(β) =

{
si i = round(β)

α = β− iα ∈ [−0.5, 0.5)
(2)

where round denotes the rounding operation.

Definition 2 [27]. Suppose S =
{

s0, s1, . . . , sg
}

is a linguistic term set and (si, α) is a 2-tuple.
There always exists the following function ∆−1 which can transform a 2-tuple into its equivalent
numerical value γ ∈ [0, g] . The function is defined as follows:

∆−1 : S× [−0.5, 0.5)→ [0, g] (3)

∆−1(si, α) = i + α (4)

In addition, let (si, α) and
(
sj, γ

)
be 2-tuples, then:

(1) If i < j, then (si, α) is smaller than
(
sj, γ

)
.

(2) If i = j, then:

(a) If α = γ, then (si, α) and
(
sj, γ

)
represent the same information.

(b) If α < γ, then (si, α) is smaller than
(
sj, γ

)
.
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Definition 3 [28]. Suppose S =
{

s0, s1, . . . , sg
}

is a linguistic term set, where g + 1 is odd.

An HFLTS, Hs =
{

sσ(l)

∣∣∣sσ(l) ∈ S, l = 1, 2, . . . , #Hs

}
, is an ordered finite subset of consecutive

linguistic terms of S, where sσ(l) is the lth linguistic term of Hs and #Hs is the number of linguistic
terms of Hs.

Definition 4 [2]. For HFLTS Hs, there are the following operations:

(1) Lower bound: H−s = min(si), ∀si ∈ Hs.
(2) Upper bound: H+

s = max(si), ∀si ∈ Hs.

To rank HFLTSs, Liu and Jiang [29] defined the following score function:

Score(Hs) =
1

#Hs

#Hs

∑
l=1

∆−1
(

sσ(l)

)
(5)

When two HFLTSs have the same score function value, their degree of accuracy can
be compared by the following precision function.

H(Hs) = ∆−1(H−s
)
− ∆−1(H+

s
)
+ g (6)

The larger the value of H(Hs), the better performance it has.

Definition 5 [3]. Suppose S =
{

s0, s1, . . . , sg
}

is a linguistic term set. For two HFLTSs H1
s and

H2
s , the distance between H1

s and H2
s can be measured by

D
(

H1
s , H2

s

)
=
∣∣∣∆−1

(
H1−

s

)
− ∆−1

(
H2−

s

)∣∣∣+ ∣∣∣∆−1
(

H1+
s

)
− ∆−1

(
H2+

s

)∣∣∣ (7)

where H1−
s
(

H2−
s
)

and H1+
s
(

H2+
s
)

denote the lower and upper bounds of H1
s
(

H2
s
)
, respectively.

Definition 6 [30]. A fuzzy linguistic preference relation (FLPR) is defined as A =
(
aij
)

n×n, where
aij ∈ S denotes the preference degree of alternative xi to xj, which satisfies

∆−1(aij
)
+ ∆−1(aji

)
= g, i, j = 1, 2, . . . , n (8)

aii = sg/2, i = 1, 2, . . . , n (9)

Definition 7 [2]. Suppose S =
{

s0, s1, . . . , sg
}

is a linguistic term set. An HFLPR is expressed as
H =

(
hij
)

n×n, where hij ∈ S represents the preference degree of alternative xi to xj, if the following
conditions are satisfied:

∆
(

∆−1
(

hσ(r)
ij

)
+ ∆−1

(
hσ(r)

ji

))
= sg, i, j = 1, 2, . . . , n (10)

hii = sg/2, i = 1, 2, . . . , n (11)

#hij = #hji, i, j = 1, 2, . . . , n (12)

hσ(r)
ij < hσ(r+1)

ij , hσ(r)
ji < hσ(r+1)

ji , i, j = 1, 2, . . . , n (13)

where hij =
{

hr
ij|r = 1, 2, . . . , # hij

}
(#hij is the number of linguistic terms in hij), hσ(r)

ij is the rth
linguistic term in hij.

2.2. Some Consistency Definitions

Definition 8 [30]. An FLPR A =
(
aij
)

n×n is additively consistent if

∆−1(aij
)
= ∆−1(aik) + ∆−1

(
akj

)
− g

2
, i, j, k = 1, . . . , n (14)
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According to the additive consistency definition of FLPRs [30], Feng et al. [22] pro-
posed an additively consistency definition of HFLPRs.

Definition 9 [22]. An HFLPR H =
(
hij
)

n×n is consistent if there exists a consistent FLPR
A =

(
aij
)

n×n with aij ∈ hij, for i, j = 1, 2, . . . , n.

As the sums of elements are not necessarily the same in HFLTSs of HFLPRs, Zhu and
Xu [20] made each HFLTSs have the same length by adding or reducing some specified
linguistic variables, and defined such HFLPRs as normalized HFPRs (NHFLPRs).

Xu and Wang [21] proposed the definition of additively consistency of HFLPR based
on the additively consistency definition of Zhu and Xu [20].

Definition 10 [21]. Given an HFLPR H =
(
hij
)

n×n and its NHFLPR H =
(

hij

)
n×n

, if

∆−1
(

h(r)ij

)
+ ∆−1

(
s g

2

)
= ∆−1

(
h(r)ik

)
+ ∆−1

(
h(r)kj

)
(i, j, k = 1, 2, . . . , n) (15)

then H is a consistent NHFLPR.

Furthermore, Xu and Wang [21] proposed a method to derive the corresponding
additively consistency HFLPR for an original inconsistent one.

Definition 11 [21]. Assume an HFLPR H =
(
hij
)

n×n and its additively consistency NHFLPR
R =

(
rij
)

n×n, if

r(r)ij =

(
1
n

n

∑
k=1

(
∆−1

(
h(r)ik

)
+ ∆−1

(
h(r)kj

))
− g

2

)
(i, j, k = 1, 2, . . . , n) (16)

then R =
(
rij
)

n×n is a consistent NHFLPR.

3. Models on Additive Consistency of HFLPRs

In this section, new additive consistency definitions of HFLPRs are introduced, to-
gether with the corresponding consistency improvement method. For additively consistent
HFLPRs, a programming model is proposed to obtain the priority weights.

3.1. New Additive Consistency Definition of HFLPRs

New consistency definition takes all linguistic elements into account and requires
linguistic elements at any position to satisfy additively consistency condition.

Definition 12. An HFLPR H =
(
hij
)

n×n with hij =
{

hr
ij|r = 1, 2, . . . , # hij

}
(#hij is the number

of linguistic terms in hij) is called an additively consistent HFLPR, if for ∀hr
ij ∈ hij, ∃aik ∈ hik,

∃akj ∈ hkj such that

∆−1
(

hr
ij

)
= ∆−1(aik) + ∆−1

(
akj

)
− g

2
, i, j, k = 1, 2, . . . , n (17)

where hr
ij is the rth linguistic terms of hij.

Remark 1. It is easy to know that Definition 12 does not change with the different ordering of
comparison objects in the HFLPRs.

Based on Definition 12, the following programming model can be constructed to judge if an
HFLPR H =

(
hij
)

n×n is additively consistent:

(M− 1) minF =
n

∑
i,j=1

#hij

∑
r=1

∣∣∣∆−1
(

hr
ij

)
−
(

∆−1(aik) + ∆−1
(

akj

)
− g

2

)∣∣∣



Symmetry 2022, 14, 1601 6 of 16

s.t 
hr

ij ∈ hij, aik ∈ hik, akj ∈ hkj

r = 1, 2, . . . , #hij

i, j, k = 1, 2, . . . , n

H =
(
hij
)

n×n is consistent according to Definition 12 if the target function value of
Model 1 is equal to 0. Otherwise, it is not consistent.

Since all the elements in HFLTSs are taken into account in Definition 12, M-1 is always
fairly complicated. For simplicity, another simpler definition on additive consistency of
HFLPRs is introduced, which only considers the boundary element.

Definition 13. An HFLPR H =
(
hij
)

n×n with hij =
{

hr
ij|r = 1, 2, . . . , # hij

}
(#hij is the

number of linguistic terms in hij) is called an additively consistent HFLPR, if for ∀h−ij , h+ij ∈ hij,
∃aik, bik ∈ hik and ∃akj, bkj ∈ hkj, such that

∆−1
(

h−ij
)
= ∆−1(aik) + ∆−1

(
akj

)
− g

2
∆−1

(
h+ij
)
= ∆−1(bik) + ∆−1

(
bkj

)
− g

2
i, j, k = 1, 2, . . . , n

(18)

where h−ij and h+ij denote the upper and lower bounds of hij, respectively.

Theorem 1. Definition 12 is equivalent to Definition 13.

Proof of Theorem 1: It is easy to know that if an HFLPR is additively consistent according
to Definition 12 then it must also be additively consistent according to Definition 13. Thus,
in what follows, only the inverse proposition needs to be proved.

Since ∆−1
(

h−ij
)
≤ ∆−1

(
h+ij
)

, ∆−1(aik) +∆−1
(

akj

)
≤ ∆−1(bik) +∆−1

(
bkj

)
is obtained.

Thus, there only exist the following three cases:
(1) ∆−1(aik) ≤ ∆−1(bik) and ∆−1

(
akj

)
≤ ∆−1

(
bkj

)
. This case means the value do-

mains of ∆−1(hr
ik
)

and ∆−1
(

hr
kj

)
(1 ≤ r ≤ #hij) contain all the integers in the intervals[

∆−1(aik), ∆−1(bik)
]

and
[
∆−1

(
akj

)
, ∆−1

(
bkj

)]
, respectively.

Let Iik and Ikj be the corresponding integers in the intervals
[
∆−1(aik), ∆−1(bik)

]
and[

∆−1
(

akj

)
, ∆−1

(
bkj

)]
, respectively. Thus, the value domain of the sum of Iik and Ikj

contains all the integers in the intervals
[
∆−1(aik) + ∆−1

(
akj

)
, ∆−1(bik) + ∆−1

(
bkj

)]
, i.e.,[

∆−1
(

h−ij
)
+ g

2 , ∆−1
(

h+ij
)
+ g

2

]
, which ensures that Equation (17) always holds.

(2) ∆−1(aik) ≤ ∆−1(bik) and ∆−1
(

akj

)
≥ ∆−1

(
bkj

)
. This case means the value do-

mains of ∆−1(hr
ik
)

and ∆−1
(

hr
kj

)
(1 ≤ r ≤ #hij) contain all the integers in the intervals[

∆−1(aik), ∆−1(bik)
]

and
[
∆−1

(
bkj

)
, ∆−1

(
akj

)]
, respectively. Similarly, the value domain

of the sum of Iik and Ikj contains all the integers in the intervals
[
∆−1(aik) + ∆−1

(
bkj

)
,

∆−1(bik) + ∆−1
(

akj

)]
, whichcontainstheinterval

[
∆−1(aik) + ∆−1

(
akj

)
, ∆−1(bik) + ∆−1

(
bkj

)]
.

Thus, Equation (17) always holds.
(3) ∆−1(aik) ≥ ∆−1(bik) and ∆−1

(
akj

)
≤ ∆−1

(
bkj

)
. The proof is similar to (2) and

is omitted.
In summary, the inverse proposition abovementioned is proved, and Definition 12 is

equivalent to Definition 13.
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According to Definition 13, the following integer programming model can be con-
structed to judge if an HFLPR is additively consistent:

(M− 2)
minF =

n
∑

i,j=1

∣∣∣∆−1
(

h−ij
)
−
(

∆−1(aik) + ∆−1
(

akj

)
− g

2

)∣∣∣+
n
∑

i,j=1

∣∣∣∆−1
(

h+ij
)
−
(

∆−1(bik) + ∆−1
(

bkj

)
− g

2

)∣∣∣
s.t 

aik ∈ hik, akj ∈ hkj

bik ∈ hik, bkj ∈ hkj

i, j, k = 1, 2, . . . , n

�

Remark 2. The construction and solution of Model 2 is simpler and more convenient than that
of Model 1. H =

(
hij
)

n×n is consistent according to Definition 13 if the target function value of
Model 2 is equal to 0. Otherwise, it is not consistent.

3.2. Consistency Improvement for HLFPRs

In real life, due to the complexity of decision-making, DMs cannot guarantee that the
original preference relations given are consistent. Therefore, in order to ensure effectiveness
and reasonability of decision-making, an important process is to improve the consistency
of the original preference relation not satisfying consistency. In this section, a programming
model is built to adjust an inconsistent HFLPR to a consistent one, which retains the original
information as much as possible.

To facilitate calculation, only the upper triangle elements of HFLPRs are used to
construct the model, in view of the symmetry of HFLPRs.

(M− 3) minF =
n

∑
i<j

(∣∣∣∆−1
(

r−ij
)
− ∆−1

(
h−ij
)∣∣∣+ ∣∣∣∆−1

(
r+ij
)
− ∆−1

(
h+ij
)∣∣∣)

s.t

n
∑
i<j

(∣∣∣∆−1
(

r−ij
)
−
(

∆−1(aik) + ∆−1
(

akj

)
− g

2

)∣∣∣+ ∣∣∣∆−1
(

r+ij
)
−
(

∆−1(bik) + ∆−1
(

bkj

)
− g

2

)∣∣∣) = 0

∆−1
(

r−ij
)

, ∆−1
(

r+ij
)
∈ [o, g]

∆−1
(

r−ij
)
< ∆−1

(
r+ij
)

aik ∈ rik, akj ∈ rkj

bik ∈ rik, bkj ∈ rkj

i, j, k = 1, 2, . . . , n

where R =
(
rij
)

n×n represents the adjusted HFLPR, and r−ij and r+ij denote the upper and
lower bounds of R =

(
rij
)

n×n, respectively.
In what follows, an example is provided to illustrate the above procedure.

Example 1 [9]. Let S be a linguistic term set defined as follows:

S =

{
s0 = extremely poor, s1 = very poor, s2 = poor, s3 = slightly poor,

s4 = f air, s5 = slight good, s6 = good, s7 = very good, s8 = extremely good

}

Consider the following HFLPR H:
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H =


s4 {s6, s7} {s5, s6} {s2, s3, s4}

{s2, s1} s4 {s7} {s6}
{s3, s2} {s1} s4 {s4, s5, s6}
{s6, s5, s4} {s2} {s4, s3, s2} s4


According to Model 2, the following model is constructed:

min =
∣∣∆−1(s6)−

(
∆−1(a13) + ∆−1(a32)− 4

)∣∣+ ∣∣∆−1(s6)−
(
∆−1(a14) + ∆−1(a42)− 4

)∣∣+∣∣∆−1(s7)−
(
∆−1(b13) + ∆−1(b32)− 4

)∣∣+ ∣∣∆−1(s7)−
(
∆−1(b14) + ∆−1(b42)− 4

)∣∣+∣∣∆−1(s5)−
(
∆−1(a12) + ∆−1(a23)− 4

)∣∣+ ∣∣∆−1(s5)−
(
∆−1(a14) + ∆−1(a43)− 4

)∣∣+∣∣∆−1(s6)−
(
∆−1(b12) + ∆−1(b23)− 4

)∣∣+ ∣∣∆−1(s6)−
(
∆−1(b14) + ∆−1(b43)− 4

)∣∣+∣∣∆−1(s2)−
(
∆−1(a12) + ∆−1(a24)− 4

)∣∣+ ∣∣∆−1(s2)−
(
∆−1(a13) + ∆−1(a34)− 4

)∣∣+∣∣∆−1(s4)−
(
∆−1(b12) + ∆−1(b24)− 4

)∣∣+ ∣∣∆−1(s4)−
(
∆−1(b13) + ∆−1(b34)− 4

)∣∣+∣∣∆−1(s7)−
(
∆−1(a21) + ∆−1(a13)− 4

)∣∣+ ∣∣∆−1(s7)−
(
∆−1(a24) + ∆−1(a43)− 4

)∣∣+∣∣∆−1(s7)−
(
∆−1(b21) + ∆−1(b13)− 4

)∣∣+ ∣∣∆−1(s7)−
(
∆−1(b24) + ∆−1(b43)− 4

)∣∣+∣∣∆−1(s6)−
(
∆−1(a21) + ∆−1(a14)− 4

)∣∣+ ∣∣∆−1(s6)−
(
∆−1(a23) + ∆−1(a34)− 4

)∣∣+∣∣∆−1(s6)−
(
∆−1(b21) + ∆−1(b14)− 4

)∣∣+ ∣∣∆−1(s6)−
(
∆−1(b23) + ∆−1(b34)− 4

)∣∣+∣∣∆−1(s4)−
(
∆−1(a31) + ∆−1(a14)− 4

)∣∣+ ∣∣∆−1(s4)−
(
∆−1(a32) + ∆−1(a24)− 4

)∣∣+∣∣∆−1(s6)−
(
∆−1(b31) + ∆−1(b14)− 4

)∣∣+ ∣∣∆−1(s6)−
(
∆−1(b32) + ∆−1(b24)− 4

)∣∣+∣∣∆−1(s1)−
(
∆−1(a23) + ∆−1(a31)− 4

)∣∣+ ∣∣∆−1(s1)−
(
∆−1(a24) + ∆−1(a41)− 4

)∣∣+∣∣∆−1(s2)−
(
∆−1(b23) + ∆−1(b31)− 4

)∣∣+ ∣∣∆−1(s2)−
(
∆−1(b24) + ∆−1(b41)− 4

)∣∣+∣∣∆−1(s2)−
(
∆−1(a32) + ∆−1(a21)− 4

)∣∣+ ∣∣∆−1(s2)−
(
∆−1(a34) + ∆−1(a41)− 4

)∣∣+∣∣∆−1(s3)−
(
∆−1(b32) + ∆−1(b21)− 4

)∣∣+ ∣∣∆−1(s3)−
(
∆−1(b34) + ∆−1(b41)− 4

)∣∣+∣∣∆−1(s4)−
(
∆−1(a42) + ∆−1(a21)− 4

)∣∣+ ∣∣∆−1(s4)−
(
∆−1(a43) + ∆−1(a31)− 4

)∣∣+∣∣∆−1(s6)−
(
∆−1(b42) + ∆−1(b21)− 4

)∣∣+ ∣∣∆−1(s6)−
(
∆−1(b43) + ∆−1(b31)− 4

)∣∣+∣∣∆−1(s1)−
(
∆−1(a31) + ∆−1(a12)− 4

)∣∣+ ∣∣∆−1(s1)−
(
∆−1(a34) + ∆−1(a42)− 4

)∣∣+∣∣∆−1(s1)−
(
∆−1(b31) + ∆−1(b12)− 4

)∣∣+ ∣∣∆−1(s1)−
(
∆−1(b34) + ∆−1(b42)− 4

)∣∣+∣∣∆−1(s2)−
(
∆−1(a41) + ∆−1(a12)− 4

)∣∣+ ∣∣∆−1(s2)−
(
∆−1(a43) + ∆−1(a32)− 4

)∣∣+∣∣∆−1(s2)−
(
∆−1(b41) + ∆−1(b12)− 4

)∣∣+ ∣∣∆−1(s2)−
(
∆−1(b43) + ∆−1(b32)− 4

)∣∣+∣∣∆−1(s2)−
(
∆−1(a41) + ∆−1(a13)− 4

)∣∣+ ∣∣∆−1(s2)−
(
∆−1(a42) + ∆−1(a23)− 4

)∣∣+∣∣∆−1(s4)−
(
∆−1(b41) + ∆−1(b13)− 4

)∣∣+ ∣∣∆−1(s4)−
(
∆−1(b42) + ∆−1(b23)− 4

)∣∣
s.t 

a12 ∈ {s6, s7 }, a13 ∈ {s5, s6 }, a14 ∈ {s2, s3, s4 }, a23 ∈ {s7 }, a24 ∈ {s6 }, a34 ∈ {s4, s5, s6 }
a21 ∈ {s2, s1}, a31 ∈ {s3, s2}, a41 ∈ {s6, s5, s4}, a32 ∈ {s1}, a42 ∈ {s2}, a43 ∈ {s4, s3, s2}
b12 ∈ {s6, s7}, b13 ∈ {s5, s6}, b14 ∈ {s2, s3, s4}, b23 ∈ {s7}, b24 ∈ {s6}, b34 ∈ {s4, s5, s6}
b21 ∈ {s2, s1 }, b31 ∈ {s3, s2 }, b41 ∈ {s6, s5, s4 }, b32 ∈ {s1 }, b42 ∈ {s2 }, b43 ∈ {s4, s3, s2 }

By solving this model, minF = 132 is obtained, which means that HFLPR H =
(
hij
)

n×n
is not additively consistent. Thus, according to Model 3, the following model is constructed:

min =
∣∣∆−1(r−12

)
− ∆−1(s6)

∣∣+ ∣∣∆−1(r+12
)
− ∆−1(s7)

∣∣+ ∣∣∆−1(r−13
)
− ∆−1(s5)

∣∣+ ∣∣∆−1(r+13
)
− ∆−1(s6)

∣∣+∣∣∆−1(r−14
)
− ∆−1(s2)

∣∣+ ∣∣∆−1(r+14
)
− ∆−1(s4)

∣∣+ ∣∣∆−1(r−23
)
− ∆−1(s7)

∣∣+ ∣∣∆−1(r+23
)
− ∆−1(s7)

∣∣+∣∣∆−1(r−24
)
− ∆−1(s6)

∣∣+ ∣∣∆−1(r+24
)
− ∆−1(s6)

∣∣+ ∣∣∆−1(r−34
)
− ∆−1(s4)

∣∣+ ∣∣∆−1(r+34
)
− ∆−1(s6)

∣∣
s.t
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∣∣∆−1(r−12
)
−
(
∆−1(a13) +

(
8− ∆−1(a23)

)
− 4
)∣∣+ ∣∣∆−1(r−12

)
−
(
∆−1(a14) +

(
8− ∆−1(a24)

)
− 4
)∣∣+∣∣∆−1 (r+12

)
−
(
∆−1 (b13) +

(
8− ∆−1 (b23)

)
− 4
)
|+ |∆−1 (r+12

)
−
(
∆−1 (b14) +

(
8− ∆−1 (b24)

)
− 4
)∣∣+∣∣∆−1(r−13

)
−
(
∆−1(a12) + ∆−1(a23)− 4

)∣∣+ ∣∣∆−1(r−13
)
−
(
∆−1(a14) +

(
8− ∆−1(a34)

)
− 4
)∣∣+∣∣∆−1(r+13

)
−
(
∆−1(b12) + ∆−1(b23)− 4

)∣∣+ ∣∣∆−1(r+13
)
−
(
∆−1(b14) +

(
8− ∆−1(b34)

)
− 4
)∣∣+∣∣∆−1(r−14

)
−
(
∆−1(a12) + ∆−1(a24)− 4

)∣∣+ ∣∣∆−1(r−14
)
−
(
∆−1(a13) + ∆−1(a34)− 4

)∣∣+∣∣∆−1(r+14
)
−
(
∆−1(b12) + ∆−1(b24)− 4

)∣∣+ ∣∣∆−1(r+14
)
−
(
∆−1(b13) + ∆−1(b34)− 4

)∣∣+∣∣∆−1(r−23
)
−
((

8− ∆−1(a12)
)
+ ∆−1(a13)− 4

)∣∣+ ∣∣∆−1(r−23
)
−
(
∆−1(a24) +

(
8− ∆−1(a34)

)
− 4
)∣∣+∣∣∆−1(r+23

)
−
((

8− ∆−1(b12)
)
+ ∆−1(b13)− 4

)∣∣+ ∣∣∆−1(r+23
)
−
(
∆−1(b24) +

(
8− ∆−1(b34)

)
− 4
)∣∣+∣∣∆−1(r−24

)
−
((

8− ∆−1(a12)
)
+ ∆−1(a14)− 4

)∣∣+ ∣∣∆−1(r−24
)
−
(
∆−1(a23) + ∆−1(a34)− 4

)∣∣+∣∣∆−1(r+24
)
−
((

8− ∆−1(b12)
)
+ ∆−1(b14)− 4

)∣∣+ ∣∣∆−1(r+24
)
−
(
∆−1(b23) + ∆−1(b34)− 4

)∣∣+∣∣∆−1(r−34
)
−
((

8− ∆−1(a13)
)
+ ∆−1(a14)− 4

)∣∣+ ∣∣∆−1(r−34
)
−
((

8− ∆−1(a23)
)
+ ∆−1(a24)− 4

)∣∣+∣∣∆−1(r+34
)
−
((

8− ∆−1(b13)
)
+ ∆−1(b14)− 4

)∣∣+ ∣∣∆−1(r+34
)
−
((

8− ∆−1(b23)
)
+ ∆−1(b24)− 4

)∣∣ = 0

a12 ∈ {s6, s7}, a13 ∈ {s5, s6}, a14 ∈ {s2, s3, s4}, a23 ∈ {s7}, a24 ∈ {s6}, a34 ∈ {s4, s5, s6}
b12 ∈ {s6, s7}, b13 ∈ {s5, s6}, b14 ∈ {s2, s3, s4}, b23 ∈ {s7}, b24 ∈ {s6}, b34 ∈ {s4, s5, s6}
∆−1

(
r−ij
)

, ∆−1
(

r+ij
)
∈ [o, g], i, j = 1, 2, . . . , n

∆−1
(

r−ij
)
< ∆−1

(
r+ij
)

Then, the adjusted HFLPR R =
(
rij
)

n×n is obtained as follows:

R =


s4 {s3, s4, s5} {s4, s5, s6} {s4, s5, s6}

{s5, s4, s3} s4 {s5, s6, s7} {s5, s6, s7}
{s4, s3, s2} {s3, s2, s1} s4 {s4, s5, s6}
{s4, s3, s2} {s3, s2, s1} {s4, s3, s2} s4


3.3. Models to Derive Priority Weights from Additively Consistent HFLPRs

The main purpose of solving a decision problem is to find the optimal alternative
according to the preference relation given by DMs, so deriving the weight vector is always
performed in many existing literatures. Generally speaking, crisp and interval weight
vector are always applied to solve decision-making problems based on crisp and interval
preference relations, respectively. Accordingly, for decision-making problems with HFLPRs,
applying weight vector denoted by HFLTSs is more natural and practical. Thus, in what
follows, the definition of hesitant fuzzy linguistic weight vector (HFLWV) is introduced,
which adopts several possible linguistic terms to express the importance of each alternative.

Definition 14. Suppose S =
{

s0, s1, . . . , sg
}

is a linguistic term set. W = (w1, w2, . . . , wn)
T

is called a hesitant fuzzy linguistic weight vector (HFLWV), if wi(i = 1, 2, . . . , n) is an or-
dered finite subset of consecutive linguistic terms of S, where wi =

{
wr

i |r = 1, 2, . . . , # wi
}

(#wi is the number of linguistic terms in wi) reflects the importance degree of the
ith alternative.

According to Equation (17) in Definition 12, each element hr
ij is supposed to be ex-

pressed by specified aik and akj. If aik and akj can be determined as

∆−1(aik) = 0.5
(

∆−1(wa
i )− ∆−1(wa

k) + g
)

, wa
i ∈ wi, wa

k ∈ wk (19)

∆−1
(

akj

)
= 0.5

(
∆−1

(
wb

k

)
− ∆−1

(
wb

j

)
+ g
)

, wb
k ∈ wk, wb

j ∈ wj (20)

then hr
ij can be expressed as follows:
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∆−1
(

hr
ij

)
= 0.5

(
∆−1(wa

i
)
− ∆−1(wa

k
)
+ g
)
+ 0.5

(
∆−1

(
wb

k

)
− ∆−1

(
wb

j

)
+ g
)
− g

2 ,

i, j, k = 1, 2, . . . , n
(21)

Based on this idea, the following model is constructed to derive the HFLWV, where its
number of linguistic terms is as small as possible.

(M− 4) minF =
n

∑
i=1

∣∣∣∆−1(w+
i
)
− ∆−1(w−i )∣∣∣

s.t

∆−1
(

hr
ij

)
= 0.5

(
∆−1(wa

i
)
− ∆−1(wa

k
)
+ g
)
+ 0.5

(
∆−1

(
wb

k

)
− ∆−1

(
wb

j

)
+ g
)
− g

2
wa

i ∈ wi, wa
k ∈ wk

wb
k ∈ wk, wb

j ∈ wj

i, j, k = 1, 2, . . . , n

r = 1, 2, . . . , #hij

In what follows, one example is provided to illustrate the above model.

Example 2. Let S be a linguistic term set defined as follows:

S =

{
s0 = extremely poor, s1 = very poor, s2 = poor, s3 = slightly poor,

s4 = f air, s5 = slight good, s6 = good, s7 = very good, s8 = extremely good

}

Consider the following HFLPR H:

H =


s5 {s4, s5, s6} {s3, s4} {s5, s6, s7}

{s6, s5, s4} s5 {s3} {s6, s7, s8}
{s7, s6} {s7} s5 {s8, s9}
{s5, s4, s3} {s4, s3, s2} {s2, s1} s5


According to Model 2, the objective function value is not equal to 0. That is, the

HFLPR H =
(
hij
)

n×n is not additively consistent; according to Model 3, the adjusted
HFLPR R =

(
rij
)

n×n is obtained as follows:

R =


s5 {s4, s5, s6} {s3, s4} {s6, s7}

{s6, s5, s4} s5 {s3, s4} {s6, s7, s8}
{s7, s6} {s7, s6} s5 {s8, s9}
{s4, s3} {s4, s3, s2} {s2, s1} s5


Using Model 4, the following HFLWV is obtained:

w1 = {s3, s4}, w2 = {s2, s3, s4, s5}, w3 = {s6, s7}, w4 = {s0}

By Equation (5), the following score function can be obtained:

Score(w1) =
1

#w1

#w1

∑
l=1

∆−1
(

sσ(l)

)
= 3.5, Score(w2) =

1
#w2

#w2

∑
l=1

∆−1
(

sσ(l)

)
= 3.5

Score(w3) =
1

#w3

#w3

∑
l=1

∆−1
(

sσ(l)

)
= 6.5, Score(w4) =

1
#w4

#w4

∑
l=1

∆−1
(

sσ(l)

)
= 0
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By Equation (6), the following accurate functions can be obtained:

H(w1) = ∆−1(w−1 )− ∆−1(w+
1
)
+ g = 9, H(w2) = ∆−1(w−2 )− ∆−1(w+

2
)
+ g = 7

Thus, the ranking results should be

x3 � x1 � x2 � x4

Alternative x3 is the best option.

4. Examples and Comparative Analysis

In this section, some numerical examples are presented to illustrate the proposed methods.

Example 3 [26]. Let S = {s0, s1, . . . , s6} be a linguistic term set, and consider the following HFLPR H:

H =


s3 {s5} {s0, s1, s2} {s2, s3}
{s1} s3 {s0, . . . , s6} {s1, s2}

{s6, s5, s4} {s6, . . . , s0} s3 {s4}
{s4, s3} {s5, s4} {s2} s3


Liu et al. [26] improved the additive consistency of the HFLPR to an acceptable level

(consistency threshold is 0.9), and the improved HFLPR is listed as follows:

RLiu et al. =


s3 {s5} {s2} {s3}
{s1} s3 {s0, s1} {s1}
{s4} {s6, s5} s3 {s4}
{s3} {s5} {s2} s3


By Model 3, the following consistent HFLPR is derived:

R =


s3 {s4, s5} {s1, s2} {s2, s3}

{s2, s1} s3 {s0, s1} {s1, s2}
{s5, s4} {s6, s5} s3 {s4}
{s4, s3} {s5, s4} {s2} s3


By Equation (7), distance between the original and adjusted HFLPRs can be obtained,

where only the HFLTSs in the upper triangular matrix are considered. The results are
showed as D1 in Table 1. In addition, D2 in Table 1 describes the sum of HFLTSs adjusted in
the upper triangular matrix. For example, H14 = {s2, s3} 6=RLiu et al.

14 = {s3}, which means
that original HFLTS H14 is adjusted by Liu et al. [26]. There are altogether four HFLTSs that
are adjusted in RLiu et al. . The comparative results are given in Table 1.

Table 1. Comparison results for different methods.

Improved HFLPRs D1 D2

RLiu et al. 9 4
R 7 3

As shown in Table 1, the distance between H and RLiu et al. is larger than that between
H and R. Fewer HFLTSs are adjusted in R, compared with RLiu et al. . These results show
that the adjusted HFLPR derived by this paper contains much more information of the
original HFLPR.

Example 4 [9]. Let S = {s0, s1, . . . , s6} be a linguistic term set, and consider the following HFLPR H:



Symmetry 2022, 14, 1601 12 of 16

H =


s4 {s2, s3, s4} {s5, s6} {s4}

{s6, s5, s4} s4 {s1, s2, s3} {s6, s7}
{s3, s2} {s7, s6, s5} s4 {s4, s5}
{s4} {s2, s1} {s4, s3} s4


By the method of Chen et al. [9], the additive consistency of the HFLPR is improved

to an acceptable level (consistency threshold is 0.95), and the improved HFLPR is listed
as follows:

RChen et al. =


s4 {s3, s4} {s4} {s4}

{s5, s4} s4 {s4} {s5}
{s4} {s4} s4 {s4, s5}
{s4} {s3} {s4, s3} s4


By Model 3, the following consistent HFLPR is derived:

R =


s4 {s2, s3, s4} {s4, s5} {s4, s5}

{s6, s5, s4} s4 {s4, s5, s6} {s5, s6, s7}
{s4, s3} {s4, s3, s2} s4 {s4, s5}
{s4, s3} {s3, s2, s1} {s4, s3} s4


Similar to Example 3, D1 and D2 are also applied, and the comparative results are

given in Table 2:

Table 2. Comparison results for different methods.

Improved HFLPRs D1 D2

RChen et al. 11 4
R 10 4

As shown in Table 2, the distance between H and RChen et al. is larger than that between
H and R. These results show that the adjusted HFLPR derived by this paper contains much
more information of the original HFLPR.

Example 5 [19]. Let S be a linguistic term set defined as follows, S = {s0, s1, . . . , s8} be a linguistic
term set, and consider the following HFLPR H:

H =


s4 {s2, s3, s4} {s5, s6} {s1, s2}

{s6, s5, s4} s4 {s7} {s6}
{s3, s2} {s1} s4 {s4, s5, s6}
{s7, s6} {s2} {s4, s3, s2} s4


According to the methods of Zhang and Wu [19] and Zhu and Xu [20], the correspond-

ing multiplicative consistency HFLPR RZhang and Wu and additively consistent HFLPR
RZhu and Xu are obtained as follows:

RZhang and Wu =


s4 {s1.27, s2.13, s2.55} {s3.96, s4.99, s4.95} {s2.40, s4.00, s4.55}

{s6.73, s5.87, s5.45} s4 {s6.71, s6.57, s6.22} {s5.56, s5.87, s5.90}
{s4.04, s3.05, s3.01} {s1.29, s1.43, s1.78} s4 {s2.44, s3.01, s3.58}
{s5.60, s4.00, s3.45} {s2.44, s2.13, s2.10} {s5.56, s4.99, s4.42} s4
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RZhu and Xu =


s4 {s1.25, s2.25, s2.75} {s4.00, s4.75, s4.75} {s2.75, s4.00, s4.50}

{s6.75, s5.75, s5.25} s4 {s6.00, s6.50, s6.75} {s5.50, s5.75, s5.75}
{s4.00, s3.25, s3.25} {s2.00, s1.50, s1.25} s4 {s2.75, s3.25, s3.75}
{s5.25, s4.00, s3.50} {s2.50, s2.25, s2.25} {s5.25, s4.75, s4.25} s4


By Model 3, the consistency HFLPR is derived as follows:

R =


s4 {s2, s3} {s5, s6} {s3, s4}

{s6, s5} s4 {s7} {s5, s6}
{s3, s2} {s1} s4 {s2, s3}
{s5, s4} {s3, s2} {s6, s5} s4


Both Zhang and Wu [19] and Zhu and Xu [20] performed the normalization process,

where some specified linguistic terms are added to HFLTSs with fewer elements until all
the HFLTSs in HFLPR H have the same sum of linguistic terms. Such a process not only
increases the burden of DMs but also easily distorts the original preference information. In
addition, in Zhang and Wu [19] and Zhu and Xu [20], most of the original linguistic terms
in the HFLPRs are adjusted and the modified elements no longer belong to the original
linguistic term set, which may not be agreed to by DMs. By contrast, the method proposed
by this paper does not have the above related problems.

Example 6. Let S = {s0, s1, . . . , s8} be a linguistic term set, and consider the following HFLPR H:

H =


s4 {s5, s6, s7} {s7, s8} {s6, s7}

{s3, s2, s1} s4 {s0} {s1}
{s1, s0} {s8} s4 {s6}
{s2, s1} {s7} {s2} s4


According to the methods of Xu and Wang [21], a normalization procedure is also

performed. If the corresponding upper bounds of HFLTSs are added in Xu and Wang [21],
the additively consistent HFLPR is obtained as follows:

RXu and Wang =


s4 {s7.50, s8.50, s9.00} {s4.75, s5.75, s6.00} {s5.75, s6.75, s7.00}

{s0.50, s−0.50, s−1.00} s4 {s1.25, s1.25, s1.00} {s2.25, s2.25, s2.00}
{s3.25, s2.25, s2.00} {s6.75, s6.75, s7.00} s4 {s5.00, s5.00, s5.00}
{s2.25, s1.25, s1.00} {s5.75, s5.75, s6.00} {s3.00, s3.00, s3.00} s4


By Model 3, the following additively consistent HFLPR is derived:

R =


s4 {s7, s8} {s4, s5} {s6, s7}

{s1, s0} s4 {s0, s1} {s2, s3}
{s4, s3} {s8, s7} s4 {s6}
{s2, s1} {s6, s5} {s2} s4


In the method of Xu and Wang [21], the normalization process is indispensable to

ensure each HFLTS has the same length. In addition, it is worth mentioning that some
modified elements, such as s9.00 and s−1.00, are out of the range of the original linguistic
set S. Although such elements can be transformed into certain elements in the range of S,
this transformation process may distort the preference information. On the contrary, the
method proposed by this paper does not need the normalization process and maintains the
objective of decision-making.
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Example 7. Let S = {s0, s1, . . . , s8} be a linguistic term set, and consider the following HFLPR H:

H =


s4 {s3, s4, s5} {s5, s6} {s7}

{s5, s4, s3} s4 {s5, s6} {s6, s7, s8}
{s3, s2} {s3, s2} s4 {s3, s4, s5, s6}
{s1} {s2, s1, s0} {s5, s4, s3, s2} s4


By the method of Xu and Wang [21], two NHFLPRs can be derived by normalization

procedure, where the lower and upper bounds of HFLTS are added, respectively.

RXu and Wang
1 =


s4 {s3.75, s3.75, s4.00, s4.25} {s5.50, s5.25, s5.25, s6.00} {s5.75, s6.00, s6.75, s7.75}

{s4.25, s4.25, s4.00, s3.75} s4 {s5.75, s5.50, s5.25, s5.75} {s6.00, s6.25, s6.75, s7.50}
{s2.50, s2.75, s2.75, s2.00} {s2.25, s2.50, s2.75, s2.25} s4 {s4.25, s4.75, s5.50, s5.75}
{s2.25, s2.00, s1.25, s0.25} {s2.00, s1.75, s1.25, s0.50} {s3.75, s3.25, s2.50, s2.25} s4



RXu and Wang
2 =


s4 {s3.75, s4.00, s4.25, s4.25 } {s5.50, s6.25, s6.25, s6.00 } {s5.75, s6.75, s7.50, s7.75 }

{s4.25, s4.00, s3.75, s3.75 } s4 {s5.75, s6.25, s6.00, s5.75 } {s6.00, s6.75, s7.25, s7.50 }
{s2.50, s1.75, s1.75, s2.00 } {s2.25, s1.75, s2.00, s2.25 } s4 {s4.25, s4.50, s5.25, s5.75 }
{s2.25, s1.25, s0.50, s0.25 } {s2.00, s1.25, s0.75, s0.50 } {s3.75, s3.5, s2.75, s2.25 } s4


In the method of Xu and Wang [21], the hesitant fuzzy linguistic averaging (HFLA)

operator and a hesitant fuzzy linguistic geometric (HFLG) operator [5] are used to obtain
the aggregated HFLTSs. Then, the ranking order can be determined by score function,
which is listed in Table 3.

Table 3. Results and comparisons of different models.

Methods Consistency Terms Added Selection Process Ranking Values Ranking Order

Xu and Wang [21] Additive Low bounds HFLA 0.630.63 0.44 0.30 x2 � x1 � x3 � x4
Xu and Wang [21] Additive Low bounds HFLG 0.61 0.62 0.42 0.27 x2 � x1 � x3 � x4
Xu and Wang [21] Additive Up bounds HFLA 0.66 0.65 0.41 0.29 x1 � x2 � x3 � x4
Xu and Wang [21] Additive Up bounds HFLG 0.64 0.63 0.37 0.23 x1 � x2 � x3 � x4

This method Additive Not added Priority weights 6.50 7.00 3.50 1.50 x2 � x1 � x3 � x4

By Model 3, the consistent HFLPR is obtained as follows:

R =


s4 {s3, s4, s5} {s5, s6, s7} {s7}

{s5, s4, s3} s4 {s5, s6} {s6, s7, s8}
{s3, s2, s1} {s3, s2} s4 {s4, s5, s6}
{s1} {s2, s1, s0} {s4, s3, s2} s4


Then, based on Model 4, the HFLWV of R can be derived, and corresponding results

are showed in Table 3.
According to Table 3, the ranking order varies with different linguistic terms added

in the normalization procedure of Xu and Wang [21]. The method of determining the
ranking order in this paper avoids the above problems and keeps the objective principle of
decision-making.

5. Conclusions

This paper introduces a new additively consistent definition for HFLPRs. For incon-
sistent HFLPRs, a model to improve its consistency is constructed. To obtain the ranking
order, a new definition of HFLWV is introduced and a programming model is proposed to
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determine the weight vector. Compared with other existing methods, the method in this
paper has the following characteristics:

(1) The proposed additively consistent definition for HFLPRs takes all the elements of
HFLTSs into account. Some existing additively consistent definitions [22,26] only
consider local elements in HFLPR, which easily results in the loss of information. In
addition, the proposed additively consistent definition does not require the HFLTSs
in the same HFLPR to have the same length. In the normalization process in [19–21],
the original opinions of DMs are inclined to be distorted.

(2) Model 3, which proposed to improve additive consistency, takes all the elements of
HFLTSs into account. Of course, in actual application, an equivalent Model 4 can be
easily constructed and solved. The improved HFLPRs keep the original information
of HFLPRs as much as possible. In the additively consistent HFLPRs obtained, all the
elements are derived from the original linguistic term set. In the method of Zhang
and Wu [19], Zhu and Xu [20], Xu and Wang [21], most of the original linguistic terms
in the HFLPR are adjusted and no longer belong to the original linguistic term set.
Even some the modified elements are beyond the range of the original linguistic set.

(3) The HFLWV is based on the additively consistent definition proposed in this paper.
The HFLWV can be directly obtained from a simple programming model, and the
ranking order can be finally determined by score and accurate functions. In hesi-
tant fuzzy linguistic decision-making, HFLWV may be more suitable and accepted
by DMs.

This paper mainly takes additive consistency of HFLPRs into account. In light of
the fact that consensus issue is also an important topic in group decision-making, group
decision-making modeling involving both consistency and consensus issues of HFLPRs
will be carried out in our future studies.

Author Contributions: The ideas and conceptual models of the paper were proposed by H.Z. and
data calculation and paper writing were carried out by Y.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by Soft Science Project of Henan Science and Technology
Department under grant No. 222400410293.

Acknowledgments: We sincerely appreciate the careful and careful work of the editors and thank
the reviewers for their suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [CrossRef]
2. Rodríguez, R.M.; Martinez, L.; Herrera, F. Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 2012,

20, 109–119. [CrossRef]
3. Dong, Y.C.; Chen, X.; Herrera, F. Minimizing adjusted simple terms in the consensus reaching process with hesitant linguistic

assessments in group decision making. Inf. Sci. 2015, 297, 95–117. [CrossRef]
4. Song, Y.M.; Li, G.X. A mathematical programming approach to manage group decision making with incomplete hesitant fuzzy

linguistic preference relations. Comput. Ind. Eng. 2019, 135, 467–475. [CrossRef]
5. Tang, J.; Meng, F.Y. Decision making with multiplicative hesitant fuzzy linguistic preference relations. Neural Comput. Appl. 2019,

31, 2749–2761. [CrossRef]
6. Wu, P.; Zhu, J.M.; Zhou, L.G.; Chen, H.Y. Local feedback mechanism based on consistency derived for consensus building in

group decision making with hesitant fuzzy linguistic preference relations. Comput. Ind. Eng. 2019, 137, 106001. [CrossRef]
7. Tang, J.; Meng, F.Y.; Zhang, S.L.; An, Q.X. Group decision making with interval linguistic hesitant fuzzy preference relations.

Expert Syst. Appl. 2019, 119, 231–246. [CrossRef]
8. Tang, J.; Chen, S.M.; Meng, F.Y. Group decision making with multiplicative interval linguistic hesitant fuzzy preference relations.

Inf. Sci. 2019, 495, 215–233. [CrossRef]
9. Chen, X.; Peng, L.J.; Wu, Z.B.; Pedrycz, W. Controlling the worst consistency index for hesitant fuzzy linguistic preference

relations in consensus optimization models. Comput. Ind. Eng. 2020, 143, 106423. [CrossRef]
10. Zhang, Z.M.; Chen, S.M. Group decision making based on acceptable multiplicative consistency and consensus of hesitant fuzzy

linguistic preference relations. Inf. Sci. 2020, 541, 531–550. [CrossRef]

http://doi.org/10.1002/int.20418
http://doi.org/10.1109/TFUZZ.2011.2170076
http://doi.org/10.1016/j.ins.2014.11.011
http://doi.org/10.1016/j.cie.2019.06.036
http://doi.org/10.1007/s00521-017-3227-x
http://doi.org/10.1016/j.cie.2019.106001
http://doi.org/10.1016/j.eswa.2018.10.051
http://doi.org/10.1016/j.ins.2019.05.005
http://doi.org/10.1016/j.cie.2020.106423
http://doi.org/10.1016/j.ins.2020.07.024


Symmetry 2022, 14, 1601 16 of 16

11. Ren, P.J.; Xu, Z.S.; Wang, X.X.; Zeng, X.J. Group decision making with hesitant fuzzy linguistic preference relations based on
modified extent measurement. Expert Syst. Appl. 2021, 171, 114235. [CrossRef]

12. Zheng, C.L.; Zhou, Y.Y.; Zhou, L.G.; Chen, H.Y. Clustering and compatibility-based approach for large-scale group decision
making with hesitant fuzzy linguistic preference relations: An application in e-waste recyclin. Expert Sys. Appl. 2022, 197, 116615.
[CrossRef]

13. Xu, Y.; Liu, S.F.; Wang, J.; Shang, X.P. Consensus checking and improving methods for AHP with q-rung dual hesitant fuzzy
preference relations. Expert Syst. Appl. 2022, 208, 117902. [CrossRef]

14. Li, Z.L.; Zhang, Z.; Yu, W.Y. Consensus reaching with consistency control in group decision making with incomplete hesitant
fuzzy linguistic preference relations. Comput. Ind. Eng. 2022, 170, 108311. [CrossRef]

15. Xu, Y.; Herrera, F. Visualizing and rectifying different inconsistencies for fuzzy reciprocal preference relations. Fuzzy Set. Syst.
2019, 362, 85–109. [CrossRef]

16. Xu, Y.; Wang, Q.; Cabrerizo, F. Methods to improve the ordinal and multiplicative consistency for reciprocal preference relations.
Appl. Soft Comput. 2018, 67, 479–493. [CrossRef]

17. Ren, P.J.; Liu, Z.X.; Zhang, W.G.; Wu, X.L. Consistency and consensus driven for hesitant fuzzy linguistic decision making with
pairwise comparisons. Expert Sys. Appl. 2022, 202, 117307. [CrossRef]

18. Xu, Y.J.; Dai, W.J.; Huang, J.; Li, M.Q.; Herrera, E. Some models to manage additive consistency and derive priority weights from
hesitant fuzzy preference relations. Inf. Sci. 2022, 586, 450–467. [CrossRef]

19. Zhang, Z.M.; Wu, C. On the use of multiplicative consistency in hesitant fuzzy linguistic preference relations. Knowl.-Based Syst.
2014, 72, 13–27. [CrossRef]

20. Zhu, B.; Xu, Z.S. Consistency measures for hesitant fuzzy linguistic preference relations. IEEE Trans. Fuzzy Syst. 2014, 22, 35–45.
[CrossRef]

21. Xu, Y.J.; Wang, H.M. A group consensus decision support model for hesitant 2-tuple fuzzy linguistic preference relations with
additive consistency. J. Intell. Fuzzy Syst. 2017, 33, 41–54. [CrossRef]

22. Feng, X.Q.; Zhang, L.; Wei, C.P. The consistency measures and priority weights of hesitant fuzzy linguistic preference relations.
Appl. Soft Comput. 2018, 65, 79–90. [CrossRef]

23. Li, C.C.; Rodríguez, R.M.; Martínez, L.; Dong, Y.C.; Herrera, F. Consistency of hesitant fuzzy linguistic preference relations: An
interval consistency index. Inf. Sci. 2018, 432, 347–361. [CrossRef]

24. Zhang, Z.M.; Chen, S.M. A consistency and consensus-based method for group decision making with hesitant fuzzy linguistic
preference relations. Inf. Sci. 2019, 501, 317–336. [CrossRef]

25. Liu, N.N.; He, Y.; Xu, Z.S. A new approach to deal with consistency and consensus issues for hesitant fuzzy linguistic preference
relations. Appl. Soft Comput. 2019, 76, 400–415. [CrossRef]

26. Liu, H.B.; Ma, Y.; Jiang, L. Managing incomplete preferences and consistency improvement in hesitant fuzzy linguistic preference
relations with applications in group decision making. Inf. Fusion. 2019, 51, 19–29. [CrossRef]

27. Herrera, F.; Martínez, L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 2000,
8, 746–752.

28. Meng, F.Y.; Chen, S.M.; Zhang, S.L. Group decision making based on acceptable consistency analysis of interval linguistic hesitant
fuzzy preference relations. Inf. Sci. 2020, 530, 66–84. [CrossRef]

29. Liu, H.B.; Jiang, L. Optimizing consistency and consensus improvement process for hesitant fuzzy linguistic preference relations
and the application in group decision making. Inf. Fusion. 2020, 56, 114–127. [CrossRef]

30. Alonso, S.; Cabrerizo, F.; Chiclana, F.; Herrera, F.; Herrera-Viedma, E. Group decision making with incomplete fuzzy linguistic
preference relations. Int. J. Intell. Syst. 2009, 24, 201–222. [CrossRef]

http://doi.org/10.1016/j.eswa.2020.114235
http://doi.org/10.1016/j.eswa.2022.116615
http://doi.org/10.1016/j.eswa.2022.117902
http://doi.org/10.1016/j.cie.2022.108311
http://doi.org/10.1016/j.fss.2018.09.009
http://doi.org/10.1016/j.asoc.2018.03.034
http://doi.org/10.1016/j.eswa.2022.117307
http://doi.org/10.1016/j.ins.2021.12.002
http://doi.org/10.1016/j.knosys.2014.08.026
http://doi.org/10.1109/TFUZZ.2013.2245136
http://doi.org/10.3233/JIFS-161029
http://doi.org/10.1016/j.asoc.2017.12.050
http://doi.org/10.1016/j.ins.2017.12.018
http://doi.org/10.1016/j.ins.2019.05.086
http://doi.org/10.1016/j.asoc.2018.10.052
http://doi.org/10.1016/j.inffus.2018.10.011
http://doi.org/10.1016/j.ins.2020.03.070
http://doi.org/10.1016/j.inffus.2019.10.002
http://doi.org/10.1002/int.20332

	Introduction 
	Preliminaries 
	Basic Definitions 
	Some Consistency Definitions 

	Models on Additive Consistency of HFLPRs 
	New Additive Consistency Definition of HFLPRs 
	Consistency Improvement for HLFPRs 
	Models to Derive Priority Weights from Additively Consistent HFLPRs 

	Examples and Comparative Analysis 
	Conclusions 
	References

