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Abstract: The thermodynamics and phase transitions of magnetic Anti-de Sitter black holes were
studied. We considered extended-phase-space thermodynamics, with the cosmological constant
being a thermodynamic pressure and the black hole mass being treated as a chemical enthalpy.
The extended-phase-space thermodynamics of black holes mimic the behavior of a Van der Waals
liquid. Quantities conjugated to the coupling of nonlinear electrodynamics (NED) and a magnetic
charge are obtained. Thermodynamic critical points of phase transitions are investigated. It was
demonstrated that the first law of black hole thermodynamics and the generalized Smarr relation
hold. The Joule–Thomson adiabatic expansion of NED-AdS black holes is studied. The dependence
of inversion temperature on pressure and the minimum of the inversion temperature are found.

Keywords: Anti-de Sitter black holes; thermodynamics; phase transitions; Smarr relation; Joule–Thomson
expansion

1. Introduction

Black hole thermodynamics are important for the understanding and development of
quantum gravity. The matter is that the microscopic structure of a black hole is unknown.
Now, there is evidence that black holes behave as thermodynamic systems [1–3]. The area
of a black hole is considered as the entropy, and the surface gravity is connected with the
temperature [4,5]. The interest in AdS space-time is increased because of a holographic
picture where black holes are systems that are dual to conformal field theories [6–8]. In
addition, space-time with a negative cosmological constant allows phase transitions in
black holes [9]. Holography helps solve some problems in quantum chromodynamics [10]
and condensed matter physics [11,12]. The cosmological constant in gravity theory is
understood as a vacuum expectation value of fields; therefore, it may vary. Hence, the
cosmological constant should be included in black hole thermodynamics. In extended-
phase-space thermodynamics of black holes, the cosmological constant is treated as a
thermodynamic pressure, which is a conjugate to a volume, and the phase transitions
mimic Van der Waals liquid–gas behavior [13,14].

In this paper, we study nonlinear electrodynamics (NED)—proposed in [15–17]—
coupled with AdS gravity in extended-phase-space thermodynamics. In some NED [18–21]
(and others), singularities in the centers of point-like electric charges are absent. In addition,
quantum corrections are taken into account in the Euler–Heisenberg NED [22]. Born–Infeld
AdS gravity was studied in [23–32], where an analogy with Van der Waals fluids was shown.
P−V criticality and extended-phase thermodynamics were studied in [14,23,33–40].

Here, the Joule–Thomson adiabatic thermal expansion of NED–AdS black holes with
heating and cooling regimes is studied. The black hole’s mass is considered as the enthalpy,
which is constant during the Joule–Thomson expansion.
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The structure of the paper is as follows. We obtain the NED–AdS metric function
of magnetic black holes and corrections to the Reissner–Nordström solution in Section 2.
In Section 3, the first law of black hole thermodynamics in the extended phase space
with a negative cosmological constant, which is a pressure, is studied. We define the
thermodynamic magnetic potential and the thermodynamic conjugate to the NED coupling.
It is shown that the generalized Smarr relation holds. The critical specific volume, critical
temperature, and critical pressure are found in Section 4. In Section 4.1, the Gibbs free
energy is analyzed to show the critical behavior. The Joule–Thomson adiabatic NED–AdS
black hole expansion is studied in Section 5. The inversion temperature and pressure are
obtained, and their dependence on the model parameters is investigated. Section 6 is a
summary.

We use units with c = 1, h̄ = 1, and kB = 1.

2. NED–AdS Black Hole Solution

The action of NED coupled with Einstein–AdS gravity is given by

I =
∫

d4x
√
−g
(

R− 2Λ
16πGN

+ L(F )
)

, (1)

where GN is Newton’s constant, Λ = −3/l2 is the negative cosmological constant, and l is
the AdS radius. Here, the NED Lagrangian proposed in [15] (see also [16,17]) is

L(F ) = − F
1 + 4

√
2|βF|

, (2)

whereF = FµνFµν/4 = (B2− E2)/2 is the field strength invariant, B and E are the magnetic
and electric fields, respectively, and Fµν = ∂µ Aν− ∂ν Aµ. At β = 0, Equation (2) is converted
into Maxwell’s electrodynamic Lagrangian. The reason for choosing the theory with the
NED Lagrangian (2) is its simplicity. The metric and other functions are simple elementary
functions. The gravitation and electromagnetic field equations are obtained through the
variation of action (1) with respect to the metric gµν and potential Aµ:

Rµν −
1
2

gµνR + Λgµν = 8πGNTµν, (3)

∂µ

(√
−gLF Fµν

)
= 0, (4)

with LF = ∂L(F )/∂F . Making use of Equation (2), we obtain the energy–momentum
tensor of the NED:

Tµν = FµρF ρ
ν LF + gµνL(F ). (5)

Equations (3)–(5) hold for a general function L(F ). Here, we consider space-time with
spherical symmetry:

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
. (6)

The metric function f (r) is given by [41]

f (r) = 1− 2m(r)GN
r

, (7)

with the mass function
m(r) = M +

∫ r

∞
ρ(r)r2dr. (8)

M is the ADM black hole’s mass and ρ is the energy density. We study magnetic black
holes because models with electrically charged black holes and with the Maxwell weak-field
limit have singularities [41]. Then, B = q/r2, and the Lorentz invariant is F = q2/(2r4),
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where q is the magnetic charge. Therefore, we consider black holes as magnetic monopoles.
By virtue of Equation (5), the energy density with the cosmological constant term is given
by

ρ =
q2

2r3(r +
√

qβ1/4)
− 3

2GN l2 . (9)

This and the following equations are obtained for the NED Lagrangian (2). The mass
function m(r) follows from Equations (8) and (9):

m(r) = M +
q3/2

2β1/4 ln

(
r

r +
√

qβ1/4

)
− r3

2GN l2 . (10)

It is worth mentioning that, in our NED model (2), the total magnetic mass mM =
∫ ∞

0 ρr2dr
is infinite. From Equations (7) and (10), one finds the metric function

f (r) = 1− 2MGN
r
− q3/2GN

β1/4r
ln

(
r

r +
√

qβ1/4

)
+

r2

l2 . (11)

With the help of Equation (11), ignoring the cosmological constant (l → ∞), we obtain
the metric function when r approaches infinity:

f (r) = 1− 2MGN
r

+
q2GN

r2 − q5/2β1/4GN

2r3 +
q3√βGN

3r4 +O(r−5). (12)

Making use of Equation (12), at β = 0, one finds the metric function of the Reissner–
Nordström space-time. From Equation (12), one can obtain corrections to the Reissner–
Nordström black holes in the order of O(r−3). In Figure 1, the plots of the metric function
(11) are depicted at GN = 1 and M = 1 for different parameters.
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Figure 1. The plots of the function f (r) at GN = 1 and M = 1.
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According to Figure 1 black holes could have two event horizon radii or one extreme
event horizon radius for various parameters. It should be noted that, when there is no
horizon, it is not a black hole, and there is a naked singularity. In Figure 1, subplot 1 shows
that, when the coupling β increases—with a fixed magnetic charge q and the AdS radius l—
the event horizon radius r+ (the largest root of the equation f (r+) = 0) increases. However,
if the magnetic charge increases, at a fixed NED parameter β and with the cosmological
constant, the event horizon radius decreases.

3. The First Law of Black Hole Thermodynamics and the Smarr Relation

By introducing the pressure that is connected with a negative cosmological constant
Λ [42–44], we can formulate the generalized first law of black hole thermodynamics:
dM = TdS + VdP + ΩdJ + Φdq. Here, M is treated as a chemical enthalpy [42] so that
M = U + PV, where U is the internal energy. Making use of the Euler scaling
argument [42,45], we can find the generalized Smarr relation from the first law of BH
thermodynamics. The dimensional analysis, with GN = 1, gives [M] = L, [S] = L2,
[P] = L−2, [J] = L2, [q] = L, and [β] = L2. Here, β is considered as a thermodynamic
variable. By using the Euler theorem, one obtains the mass

M = 2S
∂M
∂S
− 2P

∂M
∂P

+ 2J
∂M
∂J

+ q
∂M
∂q

+ 2β
∂M
∂β

, (13)

where ∂M/∂β ≡ B is the thermodynamic conjugate to the NED coupling β. The black
hole’s entropy S, volume V, and pressure P are given by [46,47]

S = πr2
+, V =

4
3

πr3
+, P = − Λ

8π
=

3
8πl2 . (14)

With the aid of Equation (11) and the equation for the event horizon radius f (r+) = 0,
we obtain the black hole’s mass:

M =
r+

2GN
+

r3
+

2GN l2 −
q3/2

2β1/4 ln

(
r+

r+ +
√

qβ1/4

)
. (15)

Making the limit β→ 0 in Equation (15), one finds the mass function of Maxwell–AdS
black holes:

Ml =
r+

2GN
+

r3
+

2GN l2 +
q2

2r+
. (16)

By virtue of Equation (15), for a non-rotating black hole, where J = 0 and GN = 1, we
obtain

dM =

(
1
2
+

3r2
+

2l2 −
q2

2r+(r+ + β1/4√q)

)
dr+ −

r3
+

l3 dl

+

(
−

3
√

q
4β1/4 ln

(
r+

r+ +
√

qβ1/4

)
+

q
4(r+ + β1/4√q)

)
dq

+

(
q3/2

8β5/4 ln

(
r+

r+ +
√

qβ1/4

)
+

q2

8β(r+ + β1/4√q)

)
dβ. (17)

The Hawking temperature is given by

T =
f ′(r)|r=r+

4π
, (18)

with f ′(r) = ∂ f (r)/∂r. From Equations (11) and (18) and with f (r+) = 0 at GN = 1, one
finds

T =
1

4π

(
1

r+
+

3r+
l2 −

q2

r2
+(r+ + β1/4√q)

)
. (19)
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Making use of Equations (14), (17), and (19), we obtain the first law of black hole
thermodynamics:

dM = TdS + VdP + Φdq + Bdβ. (20)

From Equations (17) and (20), one finds the magnetic potential Φ and vacuum polar-
ization B:

Φ = −
3
√

q
4β1/4 ln

(
r+

r+ +
√

qβ1/4

)
+

q
4(r+ + β1/4√q)

,

B =
q3/2

8β5/4 ln

(
r+

r+ +
√

qβ1/4

)
+

q2

8β(r+ + β1/4√q)
. (21)

It should be noted that limβ→0 Φ = q/r+, and the potential Φ at β = 0 corresponds to
the potential of a point-like magnetic monopole q/r+. Thus, the coupling β smoothes the
singularity at r+ = 0. Plots of the potential Φ and B versus r+ are depicted in Figure 2.
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Figure 2. Plots of the functions Φ and B vs. r+ at q = 1.

In Figure 2, subplot 1 shows that, when the coupling β increases, the magnetic potential
Φ decreases, and at r+ → ∞, it vanishes (Φ(∞) = 0). In accordance with subplot 2 of
Figure 2, when the parameter β increases, the vacuum polarization |B| decreases, and as
r+ → ∞, we have B(∞) = 0. Making use of Equations (14), (15), (19), and (21), one can
verify that the generalized Smarr relation holds:

M = 2ST − 2PV + qΦ + 2βB. (22)
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4. Black Hole Thermodynamics

Making use of Equation (19), we obtain the black hole’s equation of state (EoS):

P =
T

2r+
− 1

8πr2
+

+
q2

8πr3
+(r+ + β1/4√q)

. (23)

At β = 0, Equation (23) becomes the EoS for a charged Maxwell–AdS black hole [40].
The EoS of the charged AdS black hole is similar to the EoS of a Van der Waals fluid when
the specific volume v = 2lPr+ [40] with lP =

√
GN = 1. Then, Equation (23) is rewritten as

P =
T
v
− 1

2πv2 +
2q2

πv3(v + 2β1/4√q)
. (24)

Critical points that correspond to inflection points in the P− v diagram can be found
by solving the following equations:

∂P
∂v

= − T
v2 +

1
πv3 −

4q2(2v + 3β1/4√q)
πv4(v + 2β1/4√q)2 = 0,

∂2P
∂v2 =

2T
v3 −

3
πv4 +

8q2(12q
√

β + 15vβ1/4√q + 5v2)

πv5(v + 2β1/4√q)3 = 0. (25)

Making use of Equation (25), one finds the equation for the critical points:

8q2
(

3v2
c + 6q

√
β + 8β1/4√qvc

)
− vc

(
vc + 2β1/4√q

)3
= 0. (26)

By virtue of Equation (25), we obtain the critical temperature and pressure:

Tc =
1

πvc
−

4q2
(

2vc + 3β1/4√q
)

πv2
c
(
vc + 2β1/4√q

)2 , (27)

Pc =
1

2πv2
c
−

2q2
(

3vc + 4β1/4√q
)

πv3
c
(
vc + 2β1/4√q

)2 . (28)

Solutions (which are approximate) to Equation (26), as well as the critical temperatures
and pressures, are presented in Table 1.

Table 1. Critical values of the specific volume and temperature at qm = 1.

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

vc 4.021 3.870 3.772 3.697 3.637 3.585 3.541 3.501 3.466

Tc 0.0502 0.0517 0.0527 0.0535 0.0542 0.0548 0.0553 0.0558 0.0562

Pc 0.0046 0.0048 0.0050 0.0052 0.0054 0.0055 0.0056 0.0057 0.0058

The plots of P− v diagrams for various parameters β are depicted in Figure 3.
The approximate solution to Equation (26) at q = 1, β = 1 is vc ≈ 3.433, and the

critical temperature and pressure are Tc = 0.0566 and Pc = 0.0059, respectively. The critical
isotherm corresponds to Tc = 0.0566, but the non-critical behavior of the P− v diagrams is
for T = 0.4, 0.7, and 0.9. The two upper curves in Figure 3 show the one-phase state for
T > Tc and correspond to an “ideal gas". The lower solid line shows a two-phase behavior
for T < Tc. From Equations (27) and (28), we obtain the critical ratio:
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ρc =
Pcvc

Tc
=

vc(vc + 2β1/4√q)2 − 4q2(3vc + 4β1/4√q)
2[vc(vc + 2β1/4√q)2 − 4q2(2vc + 3β1/4√q)]

. (29)

By virtue of Equation (29), at β = 0 (v2
c = 24q2), one finds the ratio ρc = 3/8, which

corresponds to a Van der Waals fluid.
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Figure 3. Plots of the function P vs. v at q = 1, β = 1. The critical isotherm corresponds to
Tc = 0.0566.

4.1. The Gibbs Free Energy

The Gibbs free energy is given by

G = M− TS, (30)

where the black hole’s mass M is treated as a chemical enthalpy. From Equations (20) and (30),
one finds dG = VdP + Φdq + Bdβ− SdT. Therefore, G is stationary at fixed (P, q, β, T).
With the help of Equations (15), (19), and (30), we obtain (GN = 1):

G =
r+
4
−

2πr3
+P

3
− q3/2

2β1/4 ln

(
r+

r+ +
√

qβ1/4

)
+

q2

4(r+ + β1/4√q)
. (31)

We will study the dependence of the Gibbs free energy G on the temperature T for
different fixed (P, q, β) values. The plots of G versus T, where we took into account that r+
is a function of P and T (see Equation (23)), are depicted in Figure 4.

Subplots 1 and 2 in Figure 4 show first-order phase transitions between small and
large black holes. The Gibbs free energy at P < Pc has a “swallowtail” behavior. The points
on the curves correspond to different event horizon radii of black holes. At the critical
point—vc ≈ 3.433 (rc ≈ 1.7165), Tc ≈ 0.0566, and Pc ≈ 0.0059 at q = β = 1 in subplot
3—a second-order phase transition takes place. Subplot 3 shows that there is a cusp at
the critical point. Hence, the second derivative of the Gibbs free energy G with respect to
temperature T is discontinuous at that point. We check this analytically in Appendix A.
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The behavior is similar to that of the Reissner–Nordström–AdS black hole. In subplot 4,
for P > Pc, only a single phase exists, and we have a smooth single-valued curve. Plots
of entropy S versus temperature T at q = β = 1 are depicted in Figure 5. According to
subplots 1 and 2 of Figure 5, the entropy is an ambiguous function of the temperature for
some regions. This confirms that, for such a region, first-order phase transitions occur.
Subplot 3 of Figure 5 shows the second-order phase transition, where the tangent of the
slope at the critical point at rc ≈ 1.72, Pc ≈ 0.0059, and Tc ≈ 0.0566 is infinite. The critical
point separates a low-entropy state and a high-entropy state. In accordance with subplot 4
of Figure 5, there is not a critical behavior of a black hole.
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Figure 4. Plots of the Gibbs free energy G vs. T with q = 1, β = 1.
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5. Joule–Thomson Expansion of Black Holes

In Joule–Thomson adiabatic expansion (isenthalpic), the black hole’s mass M, which
is the enthalpy, is constant. The Joule–Thomson thermodynamic coefficient, which charac-
terizes cooling–heating phases, is given by

µJ =

(
∂T
∂P

)
M

=
1

CP

[
T
(

∂V
∂T

)
P
−V

]
=

(∂T/∂r+)M
(∂P/∂r+)M

. (32)

The Joule–Thomson coefficient µJ , according to Equation (32), is the slope of the
tangent in P− T diagrams. At the inversion temperature Ti, when µJ(Ti) = 0, the sign of
µJ is changed. When the initial temperature during the isenthalpic expansion is higher than
the inversion temperature Ti, the temperature decreases, which is a cooling phase (µJ > 0);
however, if the initial temperature is lower than Ti, the final temperature increases for this
heating phase. Making use of Equation (32) and µJ(Ti) = 0, one obtains the inversion
temperature:

Ti = V
(

∂T
∂V

)
P
=

r+
3

(
∂T
∂r+

)
P

. (33)

In fact, the inversion temperature is a border between cooling and heating processes.
The inversion temperature goes through the maxima of P − T diagrams, the slopes of
the P− T diagrams are changed, and the cooling and heating phases of black holes are
separated [48,49]. The black hole EoS (23) can be represented as

T =
1

4πr+
+ 2Pr+ −

q2

4πr2
+(r+ + β1/4√q)

. (34)

At β = 0, Equation (34) is converted into the Maxwell–AdS black hole EoS. From
Equation (15) and P = 3/(8πl2), we obtain

P =
3

4πr3
+

[
M− r+

2
+

q3/2

2β1/4 ln

(
r+

r+ +
√

qβ1/4

)]
. (35)

Equations (34) and (35) represent the P− T diagrams in parametric form, and they are
depicted in Figure 6.
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Figure 6. Plots of the temperature T vs. pressure P and the inversion temperature Ti with q = 10,
β = 1. The P− T diagrams correspond to the masses M = 12, 14, and 16, from bottom to top.
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In accordance with Figure 6, when the black hole’s mass increases, the inversion point
increases. Making use of Equations (33) and (34), one finds the equation for the inversion
pressure Pi:

Pi =
q2
(

6r+ + 5β1/4√q
)

16πr3
+

(
r+ + β1/4√q

)2 −
1

4πr2
+

. (36)

By using Equations (34) and (36), we obtain the inversion temperature:

Ti =
q2
(

4r+ + 3β1/4√q
)

8πr2
+

(
r+ + β1/4√q

)2 −
1

4πr+
. (37)

Equations (36) and (37) are equations for the inversion temperature Ti versus Pi in the
parametric form. The plots of Ti versus Pi are depicted in Figure 7. According to subplot 1
of Figure 7, the inversion temperature increases with q. Subplot 2 of Figure 7 shows that
the inversion temperature decreases when the coupling β increases.
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Figure 7. Plots of the inversion temperature Ti vs. pressure Pi.

If µJ > 0, we have a cooling process, while when µJ < 0, a heating process occurs. In
Figure 6, the area with µJ > 0 belongs to the left side of the inversion temperature border
line; however, µJ < 0 corresponds to the right site of the border line Ti. Putting Pi = 0 into
Equation (36), we obtain the equation for the minimum of the event horizon radius rmin:

4r3
min + 8br2

min + 2(2b2 − 3q2)rmin − 5q2b = 0, (38)

where b =
√

qβ1/4. The discriminant of cubic Equation (38) is negative; therefore, Equa-
tion (38) possesses three real solutions—one is a positive physical solution rmin ≥ 0 and two
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are negative non-physical solutions: rmin < 0. The positive physical solution to Equation
(38) is given by

rmin = 2
√

p cos
(

1
3

arccos
(

g
p3/2

))
− 2b

3
,

p =
b2

9
+

q2

2
, g =

b3

27
+

q2b
8

. (39)

Making use of Equations (37) and (39), the plot of the minimum inversion temperature
Tmin versus the coupling β is depicted in Figure 8.
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0.035

β

T
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in

Figure 8. Plots of the minimum inversion temperature Tmin vs. β for q = 1.

By virtue of Equations (38) and (39), at β = 0, we obtain the minimum of the inversion
temperature for Maxwell–AdS magnetic black holes:

Tmin =
1

6
√

6πq
, rmin =

√
6q
2

. (40)

From Equations (26) and (27), at β = 0 (vc = 2
√

6q), and from Equation (40), one finds
the relation Tmin = Tc/2, which is valid for electrically charged AdS black holes [50].

6. Summary

We studied NED coupled with Einstein–AdS black holes and obtained their metric
and mass functions. Black holes can have one or two horizons depending on the magnetic
charge q, coupling β, and AdS radius l. At l = ∞ and r → ∞, the corrections to the
Reissner–Nordström solution are in the order of O(r−3). We formulated NED–AdS black
hole thermodynamics in an extended thermodynamic phase space where the cosmological
constant was considered as a thermodynamic pressure and the mass of the black hole
was treated as the chemical enthalpy. The vacuum polarization B conjugated to the NED
parameter β and the thermodynamic potential Φ conjugated to the magnetic charge q were
obtained. It was demonstrated that the first law of black hole thermodynamics and the
generalized Smarr relation hold. NED–AdS black hole thermodynamics mimic the Van der
Walls liquid–gas behavior. The critical temperature, pressure, and Gibbs free energy were
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calculated, and we showed that first- and second-order phase transitions occur at some
parameter settings. We obtained the critical ratio of ρc = 3/8 +O(β) to show corrections
to the Van der Waals critical ratio of 3/8. A similar behavior took place in another model of
an NED–AdS black hole [51].

The Joule–Thomson adiabatic isenthalpic expansion of NED–AdS black holes was
studied. Cooling- and heating-phase transitions occur depending on the model’s param-
eters. We obtained the inversion temperature and pressure as functions of the magnetic
charge and NED coupling of black holes; they define the border between cooling and
heating phases. The radii rmin corresponding to the minima of the inversion temperature
and pressure were found. As a particular case, we obtained the relation Tmin = Tc/2 at
β = 0 to connect the critical temperature Tc with the minimum inversion temperature.
Previously, this formula was obtained for Einstein–AdS black holes [50].
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Appendix A

One can calculate the second derivative of the Gibbs free energy G with respect to
temperature T with the relation

∂2G
∂T2 =

∂2G/∂r2
+

∂2T/∂r2
+

. (A1)

It follows from Equation (A1) that the second derivative of G with respect to T is
discontinuous when ∂2T/∂r2

+ = 0. Making use of Equation (34), we obtain the second
derivative of the temperature at a constant pressure:

∂2T
∂r2

+

=
r+
(

r+ + β1/4√q
)3
− q2

(
6r2

+ + 8β1/4√qr+ + 3q
√

β
)

2πr4
+

(
r+ + β1/4√q

)3 . (A2)

From Equation (A2), we obtain the equation corresponding to ∂2T/∂r2
+ = 0, giving

the second derivative of G with respect to T being infinite:

r+
(

r+ + β1/4√q
)3
− q2

(
6r2

+ + 8β1/4√qr+ + 3q
√

β
)
= 0. (A3)

The approximate real and positive solution to Equation (A3) at q = β = 1 is the critical
event horizon radius r+ = rc ≈ 1.7165 corresponding to the second-order phase transition
presented in Figure 4, subplot 3. One can verify that the approximate real and positive
solutions to Equation (43) for various β are in accordance with Table 1. This confirms that
the second-order phase transition takes place when the second derivative of G with respect
to T is discontinuous.
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