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Abstract: In the present paper we continue the project of systematic construction of invariant differ-
ential operators on the example of the non-compact algebra so∗(10). We use the maximal Heisenberg
parabolic subalgebra P =M⊕A⊕N withM = su(3, 1)⊕ su(2) ∼= so∗(6)⊕ so(3). We give the
main and the reduced multiplets of indecomposable elementary representations. This includes
the explicit parametrization of the intertwining differential operators between the ERS. Due to
the recently established parabolic relations the multiplet classification results are valid also for
the algebras so(p, q) (with p + q = 10, p ≥ q ≥ 2) with maximal Heisenberg parabolic subalge-
bra: P ′ =M′ ⊕A′ ⊕N ′,M′ = so(p− 2, q− 2)⊕ sl(2, IR), M′C ∼=MC.
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1. Introduction

Invariant differential operators play a very important role in the description of physical
symmetries. Recently, Refs. [1,2] we started the systematic explicit construction of invariant
differential operators. We gave an explicit description of the building blocks, namely,
the parabolic subgroups and subalgebras from which the necessary representations are
induced. Thus, we have set the stage for a study of different non-compact groups.

In the present paper, we focus on the algebra so∗(10). The algebras so∗(2n) (for n ≥ 2)
form a class of Lie algebras that have maximal Heisenberg parabolic subalgebras. The latter
are given as: P =M⊕A⊕N , whereM = so∗(2n− 4)⊕ so(3).

We note that there are low rank level coincidences: so∗(4) ∼= so(3)⊕ so(2, 1), so∗(6) ∼=
su(3, 1), so∗(8) ∼= so(6, 2), which are well studied, cf. e.g., [2].

In order to avoid repetition, we refer to [1–3] for motivations and an extensive list of
literature on the subject.

2. Preliminaries

Let G be a semisimple non-compact Lie group, and K a maximal compact subgroup
of G. Then we have an Iwasawa decomposition G = KA0N0, where A0 is abelian
simply connected vector subgroup of G, N0 is a nilpotent simply connected subgroup
of G preserved by the action of A0. Further, let M0 be the centralizer of A0 in K. Then
the subgroup P0 = M0 A0N0 is a minimal parabolic subgroup of G. A parabolic sub-
group P = MAN is any subgroup of G which contains a minimal parabolic subgroup.

The importance of the parabolic subgroups comes from the fact that the representations
induced from them generate all (admissible) irreducible representations of G [4–7].

Let ν be a (non-unitary) character of A, ν ∈ A∗, let µ fix an irreducible representa-
tion Dµ of M on a vector space Vµ .

We call the induced representation χ = IndG
P (µ⊗ ν⊗ 1) an elementary representation

of G [8,9]. Their spaces of functions are:

Cχ = {F ∈ C∞(G, Vµ) | F (gman) = e−ν(H) · Dµ(m−1)F (g)} (1)
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where a = exp(H) ∈ A, H ∈ A , m ∈ M, n ∈ N. The representation action is the le f t
regular action:

(T χ(g)F )(g′) = F (g−1g′) , g, g′ ∈ G . (2)

For our purposes, here we restrict to maximal parabolic subgroups P, so that rank A = 1.
Thus, for our representations, the character ν is parameterized by a real number d, called
the conformal weight or energy.

An important ingredient in our considerations are the highest/lowest weight represen-
tations of GC. These can be realized as (factor-modules of) Verma modules VΛ over GC,
where Λ ∈ (HC)∗, HC is a Cartan subalgebra of GC, weight Λ = Λ(χ) is determined
uniquely from χ [10,11].

Actually, since our ERs will be induced from finite-dimensional representations
of M (or their limits) the Verma modules are always reducible. Thus, it is more con-
venient to use generalized Verma modules ṼΛ such that the role of the highest/lowest weight
vector v0 is taken by the space Vµ v0 . For the generalized Verma modules (GVMs) the
reducibility is controlled only by the value of the conformal weight d. Relatedly, for the
intertwining differential operators only the reducibility w.r.t. non-compact roots is essential.

Another main ingredient of our approach is as follows. We group the (reducible)
ERs with the same Casimirs in sets called multiplets [11,12]. The multiplet corresponding
to fixed values of the Casimirs may be depicted as a connected graph, the vertices of
which correspond to the reducible ERs and the lines between the vertices correspond to
intertwining operators. The explicit parametrization of the multiplets and their ERs is
important for the understanding of the situation.

In fact, the multiplets contain explicitly all the data necessary to construct the inter-
twining differential operators. Actually, the data for each intertwining differential operator
consists of the pair (β, m), where β is a (non-compact) positive root of GC, m ∈ IN, such that
the BGG [13] Verma module reducibility condition (for highest weight modules) is fulfilled:

(Λ + ρ, β∨) = m , β∨ ≡ 2β/(β, β) . (3)

When (3) holds then the Verma module with shifted weight VΛ−mβ (or ṼΛ−mβ for
GVM and β non-compact) is embedded in the Verma module VΛ (or ṼΛ). This embedding
is realized by a singular vector vs determined by a polynomial Pm,β(G−) in the universal
enveloping algebra (U(G−)) v0 , G− is the subalgebra of GC generated by the negative root
generators [14]. More explicitly, ref. [11], vs

m,β = Pm
β v0 (or vs

m,β = Pm
β Vµ v0 for GVMs).

Then there exists [11] an intertwining differential operator

Dm
β : Cχ(Λ) −→ Cχ(Λ−mβ) (4)

given explicitly by:
Dm

β = Pm
β (Ĝ−) (5)

where Ĝ− denotes the right action on the functions F , cf. (1).

3. The Non-Compact Lie Algebra so∗(10)
3.1. The General Case of so∗(2n)

The group G = SO∗(2n) consists of all matrices in SO(2n,C) which commute with a
real skew-symmetric matrix times the complex conjugation operator C:

SO∗(2n) .
= { g ∈ SO(2n,C) | JnCg = gJnC} (6)

The Lie algebra G = so∗(2n) is given by:
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so∗(2n) .
= { X ∈ so(2n,C) | JnCX = XJnC} = (7)

= { X =

(
a b
−b̄ ā

)
| a, b ∈ gl(n,C), ta = −a, b† = b } .

dimR G = n(2n− 1), rankG = n.
The Cartan involution is given by: ΘX = −X†. Thus, K ∼= u(n):

K = { X =

(
a b
−b a

)
| a, b ∈ gl(n,C), ta = −a = −ā, b† = b = b̄ } . (8)

Thus, G = so∗(2n) has discrete series representations and highest/lowest weight
representations. The complementary space P is given by:

P = { X =

(
a b
b −a

)
| a, b ∈ gl(n,C) , ta = −a = ā, b† = b = −b̄ } . (9)

dimR P = n(n− 1). The split rank is r ≡ [n/2].
We need also the root system of GC = so(2n,C) . The positive roots are given

standardly as:

αij = εi − εj , 1 ≤ i < j ≤ n , (10a)

βij = εi + εj , 1 ≤ i < j ≤ n (10b)

where εi are standard orthonormal basis: 〈εi, εj〉 = δij . We shall need the scalar products
of the roots:

〈αij, αk`〉 = δik − δi` − δjk + δj` (11a)

〈αij, βk`〉 = δik + δi` − δjk − δj` (11b)

〈βij, βk`〉 = δik + δi` + δjk + δj` (11c)

Note that the highest root is β12.
The simple roots are:

π = {γi = αi,i+1, 1 ≤ i ≤ n− 1, γn = βn−1,n} (12)

The compact roots w.r.t. the real form SO∗(2n) are αij - they form (by restriction) the
root system of the semisimple part of KC, namely, KC

s
∼= su(n)C ∼= sl(n,C), while the

roots βij are noncompact.
The minimal parabolics of SO∗(2n) depend on whether n is even or odd and are:

M0 = so(3)⊕ · · · ⊕ so(3), r factors, for n = 2r (13a)

= so(2)⊕ so(3)⊕ · · · ⊕ so(3), r factors, for n = 2r + 1 (13b)

The subalgebras N±0 which form the root spaces of the root system (G,A0) are of real
dimension n(n− 1)− [n/2].

The maximal parabolic subalgebras haveM-factors as follows [1]:

Mmax
j = so∗(2n− 4j)⊕ su∗(2j) , j = 1, . . . , r . (14)

The N± factors in the maximal parabolic subalgebras have dimensions:
dim (N±j )max = j(4n− 6j− 1).

The case j = 1 is special. In this case, we have a maximal Heisenberg parabolic with
M-factor:

Mmax
Heisenberg = so∗(2n− 4)⊕ su(2) (15)

which we use in this paper.
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3.2. The Case so∗(10)

Further, we restrict to our case of study G = so∗(10) with minimal parabolic:

M0 = so(2)⊕ so(3)⊕ so(3) (16)

The Satake-Dynkin diagram of G is:

•−−©−−•|
©

−−©
↖↘

(17)

where, by standard convention, the black dots represent the so(3) subalgebras ofM0, and
the left-right arrow represents the so(2) subalgebra ofM0.

We shall use the Heisenberg maximal parabolic (15) withM-subalgebra:

M = so∗(6)⊕ so(3) ∼= su(3, 1)⊕ su(2) (18)

The Satake-Dynkin diagram ofM is a subdiagram of (17):

• •|
©

−−©
↖↘

(19)

where the single black dot represents the so(3) subalgebra, while the connected part of the
diagram represents the su(3, 1) subalgebra.

From the above follows that theM-compact roots of GC are (given in terms of the
simple roots):

α12 = γ1, (20a)

α34 = γ3, α45 = γ4, β45 = γ5, (20b)

α35 = γ3 + γ4, β34 = γ3 + γ4 + γ5, β35 = γ3 + γ5

By definition the above are the positive roots of MC, namely: su(2)C (20a), and
su(3, 1)C = sl(4,C) (20b).

The positiveM-noncompact roots of GC in terms of the simple roots are:

γ12 = γ1 + γ2, γ13 = γ1 + γ2 + γ3, γ14 = γ1 + γ2 + γ3 + γ4,

γ2, γ23 = γ2 + γ3, γ24 = γ2 + γ3 + γ4, (21a)

β12 = γ1 + 2γ2 + 2γ3 + γ4 + γ5, β13 = γ1 + γ2 + 2γ3 + γ4 + γ5,

β14 = γ1 + γ2 + γ3 + γ4 + γ5, β15 = γ1 + γ2 + γ3 + γ5,

β23 = γ2 + 2γ3 + γ4 + γ5, β24 = γ2 + γ3 + γ4 + γ5,

β25 = γ2 + γ3 + γ5 (21b)

where for convenience we use the notation γij ≡ αi,j+1
To characterize the Verma modules we shall use first the Dynkin labels:

mi ≡ (Λ + ρ, γ∨i ) = (Λ + ρ, γi) , i = 1, . . . , 5, (22)

where ρ is half the sum of the positive roots of GC. Thus, we shall use:

χΛ = {m1, m2, m3, m4, m5} (23)

Note that when all mi ∈ IN then χΛ characterizes the finite-dimensional irreps
of GC and its real forms, in particular, so∗(10). Furthermore, m1 ∈ IN characterizes
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the finite-dimensional irreps of the su(2) subalgebra, while the set of positive integers
{m3, m4, m5} characterizes the finite-dimensional irreps of su(3, 1).

For theM-noncompact roots of GC we shall use also the Harish-Chandra parameters:

mij = (Λ + ρ, γ∨ij ) , (24a)

m̂ij = (Λ + ρ, β∨ij) (24b)

and explicitly in terms of the Dynkin labels (compare (21)):

χHC = {m12 = m1 + m2, m13 = m1 + m2 + m3,

m14 = m1 + m2 + m3 + m4, m2,

m23 = m2 + m3, m24 = m2 + m3 + m4, (25a)

m̂12 = m1 + 2m2 + 2m3 + m4 + m5,

m̂13 = m1 + m2 + 2m3 + m4 + m5,

m̂14 = m1 + m2 + m3 + m4 + m5,

m̂15 = m1 + m2 + m3 + m5,

m̂23 = m2 + 2m3 + m4 + m5,

m̂24 = m2 + m3 + m4 + m5,

m̂25 = m2 + m3 + m5} (25b)

4. Main Multiplets of SO∗(10)

The main multiplets are in 1-to-1 correspondence with the finite-dimensional irreps
of so∗(10), i.e., they are labeled by the five positive Dynkin labels mi ∈ IN.

We take χ0 = χHC. It has one embedded Verma module with HW Λa = Λ0 −m2γ2.
The number of ERs/GVMs in the main multiplet is 40. We give the whole multiplet
as follows:

χ0 = {m1, m2, m3, m4, m5}
χa = {m12,−m2, m23, m4, m5}, Λa = Λ0 −m2γ2

χb = {m2,−m12, m13, m4, m5}, Λb = Λa −m1γ12

χc = {m13,−m23, m2, m34, m3,5}, Λc = Λa −m3γ23

χd = {m23,−m13, m12, m34, m3,5}, Λd = Λb −m3γ23 = Λc −m1γ12

χe = {m14,−m24, m2, m3, m35}, Λe = Λc −m4γ24

χ f = {m13,5,−m23,5, m2, m35, m3}, Λ f = Λc −m5β25

χg = {m3,−m13, m1, m24, m23,5}, Λg = Λd −m2γ13

χh = {m24,−m14, m12, m3, m35}, Λh = Λd −m4γ24

χi = {m23,5,−m13,5, m12, m35, m3}, Λi = Λd −m5β25 = Λ f −m1γ13 (26)

χj = {m15,−m25, m2, m3,5, m34}, Λj = Λe −m5β25

χk = {m34,−m14, m1, m23, m25}, Λk = Λg −m4γ24 = Λh −m2γ13

χl = {m3,5,−m13,5, m1, m25, m23}, Λl = Λg −m5β25

χm = {m25,−m15, m12, m3,5, m34}, Λm = Λh −m5β25

χn = {m15,3,−m25,3, m23, m5, m4}, Λn = Λj −m3β24

χp = {m4,−m14, m1, m2, m25,3}, Λp = Λk −m3γ14

χq = {m35,−m15, m1, m23,5, m24}, Λq = Λk −m5β25

χr = {m5,−m13,5, m1, m25,3, m2}, Λr = Λl −m3β15

χs = {m25,3,−m15,3, m13, m5, m4}, Λs = Λm −m3β24

χt = {m15,23,−m25,3, m3, m5, m4}, Λt = Λn −m2β23
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χ+
p = {m4,−m15, m1, m2, m25,3}, Λ+

p = Λp −m5β12

χ+
q = {m35,−m15,3, m1, m23,5, m24}, Λ+

q = Λq −m3β12

χ+
r = {m5,−m15, m1, m25,3, m2}, Λ+

r = Λr −m4β12

χ+
s = {m25,3,−m15,23, m13, m5, m4}, Λ+

s = Λs −m2β12

χ+
t = {m15,23,−m15,3, m3, m5, m4}, Λ+

t = Λt −m1β12

χ+
k = {m34,−m15,3, m1, m23, m25}, Λ+

k = Λ+
p −m3β25

χ+
l = {m3,5,−m15,3, m1, m25, m23}, Λ+

l = Λ+
q −m4β15 = Λ+

r −m3γ24

χ+
m = {m25,−m15,23, m12, m3,5, m34}, Λ+

m = Λ+
q −m2β24 = Λ+

s −m3γ13

χ+
n = {m15,3,−m15,23, m23, m5, m4}, Λ+

n = Λ+
s −m1β23 = Λ+

t −m2γ12

χ+
h = {m24,−m15,23, m12, m3, m35}, Λ+

h = Λ+
k −m2β24 = Λ+

m −m5γ14

χ+
g = {m3,−m15,3, m1, m24, m23,5}, Λ+

ω = Λ+
l −m5γ14

χ+
i = {m23,5,−m15,23, m12, m35, m3}, Λ+

τ = Λ+
l −m2β24 = Λ+

m −m4β15 (27)

χ+
j = {m15,−m15,23, m2, m3,5, m34}, Λ+

π = Λ+
m −m1β23 = Λ+

n −m3γ13

χ+
e = {m14,−m15,23, m2, m3, m35}, Λ+

α = Λ+
h −m1β23

χ+
d = {m23,−m15,23, m12, m34, m3,5}, Λ+

β = Λ+
g −m2β24 = Λ+

i −m5γ14

χ+
f = {m13,5,−m15,23, m2, m35, m3}, Λ+

γ = Λ+
i −m1β23 = Λ+

j −m4β15

χ+
b = {m2,−m15,23, m13, m4, m5}, Λ+

ε = Λ+
β −m3β14

χ+
c = {m13,−m15,23, m2, m34, m3,5}, Λ+

λ = Λ+
d −m1β23

χ+
a = {m12,−m15,23, m23, m4, m5}, Λ+

κ = Λ+
b −m1β23 = Λ+

c −m3β14

χ+
0 = {m1,−m15,3, m3, m4, m5}, Λ+

0 = Λ+
a −m2β13

We shall label the signature of the ERs of G also as follows:

χ = [ n ; c ; n1 , n2 , n3] , n ∈ IN, c = − 1
2 m15,23, nj = mj+2 ∈ Z+ , (28)

where the first entry n = m1 labels the finite-dimensional irreps of su(2), the second entry
labels the characters of A , the last three entries of χ are labels of the finite-dimensional
(nonunitary) irreps of M = su(3, 1) when all nj > 0 or limits of the latter when some
nj = 0. Note that m15,23 = m1 + 2m2 + 2m3 + m4 + m5 is the Harish-Chandra parameter
for the highest root β12.

These labeling signatures may be given in the following pair-wise manner:



Symmetry 2022, 14, 1592 7 of 19

χ±0 = [m1; m3, m4, m5 ; ± 1
2 m15,23]

χ±a = [m12; m23, m4, m5 ; ± 1
2 m15,3]

χ±b = [m2; m13, m4, m5 ; ± 1
2 m25,3]

χ±c = [m13; m2, m34, m3,5 ; ± 1
2 m15]

χ±d = [m23; m12, m34, m3,5 ; ± 1
2 m25]

χ±e = [m14; m2, m3, m35 ; ± 1
2 m13,5]

χ±f = [m13,5; m2, m35, m3 ; ± 1
2 m14]

χ±g = [m3; m1, m24, m23,5 ; ± 1
2 m35]

χ±h = [m24; m12, m3, m35 ; ± 1
2 m23,5]

χ±i = [m23,5; m12, m35, m3 ; ± 1
2 m24]

χ±j = [m15; m2, m3,5, m34 ; ± 1
2 m13]

χ±k = [m34; m1, m23, m25 ; ± 1
2 m3,5]

χ±l = [m3,5; m1, m25, m23 ; ± 1
2 m34]

χ±m = [m25; m12, m3,5, m34 ; ± 1
2 m23]

χ±n = [m15,3; m23, m5, m4 ; ± 1
2 m12]

χ±p = [m4; m1, m2, m25,3 ; ± 1
2 m5]

χ±q = [m35; m1, m23,5, m24 ; ± 1
2 m3]

χ±r = [m5; m1, m25,3, m2 ; ± 1
2 m4]

χ±s = [m25,3; m13, m5, m4 ; ± 1
2 m2]

χ±t = [m15,23; m3, m5, m4 ; ± 1
2 m1]

The ERs in the multiplet are related also by intertwining integral operators introduced
in [15,16]. These operators are defined for any ER, the general action being:

GKS : Cχ −→ Cχ′ ,

χ = { n ; n1, n2, n3 ; c } , χ′ = { n ; n1, n2, n3 ; −c }. (29)

The main multiplets are given explicitly in Figure 1. The pairs χ± are symmetric w.r.t.
to the dashed line in the middle of the figure—this represents the Weyl symmetry realized
by the Knapp-Stein operators (29): GKS : Cχ∓ ←→ Cχ± .

Some comments are in order.
Matters are arranged so that in every multiplet only the ER with signature χ−0 contains

a finite-dimensional nonunitary subrepresentation in a finite-dimensional subspace E . The
latter corresponds to the finite-dimensional irrep of so∗(10) with signature {m1 , . . . , m5}.
The subspace E is annihilated by the operator G+ , and is the image of the operator G− .
The subspace E is annihilated also by the intertwining differential operator acting from
χ−0 to χ−a . When all mi = 1 then dim E = 1, and in that case E is also the trivial one-
dimensional UIR of the whole algebra G. Furthermore in that case the conformal weight is
zero: d = 7

2 + c = 7
2 −

1
2 (m1 + 2m2 + 2m3 + m4 + m5)|mi=1

= 0.

In the conjugate ER χ+
0 there is a unitary discrete series subrepresentation in an infinite-

dimensional subspace D. It is annihilated by the operator G−, and is the image of the
operator G+.
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Thus, for so∗(10) the ER with signature χ+
0 contains both a holomorphic discrete

series representation and a conjugate anti-holomorphic discrete series representation. The
direct sum of the holomorphic and the antiholomorphic representation spaces form the
invariant subspace D mentioned above. Note that the corresponding lowest weight GVM
is infinitesimally equivalent only to the holomorphic discrete series, while the conjugate
highest weight GVM is infinitesimally equivalent to the anti-holomorphic discrete series.

In Figure 1 we use the notation: Λ± = Λ(χ±). Each intertwining differential operator
is represented by an arrow accompanied either by a symbol ijk encoding the root γjk and
the number mγjk which is involved in the BGG criterion, or a symbol i ĵk encoding the root
β jk and the number mβ jk from BGG.

Finally, we remind that according to [3] the above considerations for the intertwin-
ing differential operators are applicable also for the algebras so(p, q) (with p + q = 10,
p ≥ q ≥ 2) with maximal Heisenberg parabolic subalgebras: P ′ =M′ ⊕A′ ⊕N ′,M′ =
so(p− 2, q− 2)⊕ sl(2, IR).
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5. Reduced Multiplets
5.1. Main Reduced Multiplets

Intertwining differential operators occur not only in the main multiplets, but also in
their reductions. There are five main reduced multiplets Mk, k = 1, 2, 3, 4, 5, which may be
obtained by setting the parameter mk = 0.

The main reduced multiplet M1 contains 27 GVMs (ERs), see Figure 2. Their signatures
are given as follows:

χ±0 = {0; m3, m4, m5 ; ± 1
2 m25,23}

χ±b = {m2; m23, m4, m5 ; ± 1
2 m25,3} = χ±a

χ±d = {m23; m2, m34, m3,5 ; ± 1
2 m25} = χ±c

χ±g = {m3; 0, m24, m23,5 ; ± 1
2 m35}

χ±h = {m24; m2, m3, m35 ; ± 1
2 m23,5} = χ±e

χ±i = {m23,5; m2, m35, m3 ; ± 1
2 m24} = χ±f

χ±k = {m34; 0, m23, m25 ; ± 1
2 m3,5}

χ±l = {m3,5; 0, m25, m23 ; ± 1
2 m34}

χ±m = {m25; m2, m3,5, m34 ; ± 1
2 m23} = χ±j

χ±p = {m4; 0, m2, m25,3 ; ± 1
2 m5}

χ±q = {m35; 0, m23,5, m24 ; ± 1
2 m3}

χ±r = {m5; 0, m25,3, m2 ; ± 1
2 m4}

χ±s = {m25,3; m23, m5, m4 ; ± 1
2 m2} = χ±n

χt = {m25,23; m3, m5, m4 ; 0}

Note that some of the inducing representations, namely, χ±0 , χ±g , χ±k , χ±l , χ±p , χ±q , χ±r ,
are limits ofM representations, while the rest are finite-dimensional IRs (as in the main
multiplets).

The main reduced multiplet M2 contains 27 GVMs (ERs), see Figure 3, with signatures
given as follows:

χ±0 = {m1; m3, m4, m5 ; ± 1
2 m1,35,3} = χ±a

χ±b = {0; m1,3, m4, m5 ; ± 1
2 m35,3}

χ±c = {m1,3; 0, m34, m3,5 ; ± 1
2 m1,35}

χ±e = {m1,34; 0, m3, m35 ; ± 1
2 m1,3,5}

χ±f = {m1,3,5; 0, m35, m3 ; ± 1
2 m1,34}

χ±g = {m3; m1, m34, m3,5 ; ± 1
2 m35} = χ±d

χ±j = {m1,35; 0, m3,5, m34 ; ± 1
2 m1,3} (30)

χ±k = {m34; m1, m3, m35 ; ± 1
2 m3,5} = χ±h

χ±l = {m3,5; m1, m35, m3 ; ± 1
2 m34} = χ±i

χ±p = {m4; m1, 0, m35,3 ; ± 1
2 m5}

χ±q = {m35; m1, m3,5, m34 ; ± 1
2 m3} = χ±m

χ±r = {m5; m1, m35,3, 0 ; ± 1
2 m4}

χs = {m35,3; m1,3, m5, m4 ; 0}
χ±t = {m1,35,3; m3, m5, m4 ; ± 1

2 m1} = χ±n
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The main reduced multiplet M3 contains 27 GVMs (ERs), see Figure 4:

χ±0 = {m1; 0, m4, m5 ; ± 1
2 m12,45,2}

χ±c = {m12; m2, m4, m5 ; ± 1
2 m12,45} = χ±a

χ±d = {m2; m12, m4, m5 ; ± 1
2 m2,45} = χ±b

χ±e = {m12,4; m2, 0, m45 ; ± 1
2 m12,5}

χ±f = {m12,5; m2, m45, 0 ; ± 1
2 m12,4}

χ±g = {0; m1, m2,4, m2,5 ; ± 1
2 m45}

χ±h = {m2,4; m12, 0, m45 ; ± 1
2 m2,5}

χ±i = {m2,5; m12, m45, 0 ; ± 1
2 m2,4}

χ±j = {m12,45; m2, m5, m4 ; ± 1
2 m12} = χ±n

χ±k = {m4; m1, m2, m2,45 ; ± 1
2 m5} = χ±p

χ±l = {m5; m1, m2,45, m2 ; ± 1
2 m4} = χ±r

χ±m = {m2,45; m12, m5, m4 ; ± 1
2 m2} = χ±s

χq = {m45; m1, m2,5, m2,4 ; 0}
χ±t = {m12,45,2; 0, m5, m4 ; ± 1

2 m1}
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The main reduced multiplet M4 contains 27 GVMs (ERs), see Figure 5:

χ±0 = {m1; m3, 0, m5 ; ± 1
2 m13,5,23} (31)

χ±a = {m12; m23, 0, m5 ; ± 1
2 m13,5,3}

χ±b = {m2; m13, 0, m5 ; ± 1
2 m23,5,3}

χ±e = {m13; m2, m3, m3,5 ; ± 1
2 m13,5} = χ±c

χ±h = {m23; m12, m3, m3,5 ; ± 1
2 m23,5} = χ±d

χ±j = {m13,5; m2, m3,5, m3 ; ± 1
2 m13} = χ±f

χ±k = {m3; m1, m23, m23,5 ; ± 1
2 m3,5} = χ±g

χ±m = {m23,5; m12, m3,5, m3 ; ± 1
2 m23} = χ±i

χ±n = {m13,5,3; m23, m5, 0 ; ± 1
2 m12}

χ±p = {0; m1, m2, m23,5,3 ; ± 1
2 m5}

χ±q = {m3,5; m1, m23,5, m23 ; ± 1
2 m3} = χ±l

χr = {m5; m1, m23,5,3, m2 ; 0}
χ±s = {m23,5,3; m13, m5, 0 ; ± 1

2 m2}
χ±t = {m13,5,23; m3, m5, 0 ; ± 1

2 m1}
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The main reduced multiplet M5 contains 27 GVMs (ERs), see Figure 6:

χ±0 = {m1; m3, m4, 0 ; ± 1
2 m14,23} (32)

χ±a = {m12; m23, m4, 0 ; ± 1
2 m14,3}

χ±b = {m2; m13, m4, 0 ; ± 1
2 m24,3}

χ±f = {m13; m2, m34, m3 ; ± 1
2 m14} = χ±c

χ±i = {m23; m12, m34, m3 ; ± 1
2 m24} = χ±d

χ±j = {m14; m2, m3, m34 ; ± 1
2 m13} = χ±e

χ±l = {m3; m1, m24, m23 ; ± 1
2 m34} = χ±g

χ±m = {m24; m12, m3, m34 ; ± 1
2 m23} = χ±h

χ±n = {m14,3; m23, 0, m4 ; ± 1
2 m12}

χp = {m4; m1, m2, m24,3 ; 0}
χ±q = {m34; m1, m23, m24 ; ± 1

2 m3} = χ±k

χ±r = {0; m1, m24,3, m2 ; ± 1
2 m4}

χ±s = {m24,3; m13, 0, m4 ; ± 1
2 m2}

χ±t = {m14,23; m3, 0, m4 ; ± 1
2 m1}

Λ−
0

❄

22

Λ−
a

323112

323
112

✟✟✟✟✟✙

❍❍❍❍❍❥Λ−
b
❍❍❍❍❍❥

Λ−
f

✟✟✟✟✟✙ ❄

213

213

31̂5

Λ−
i

✟✟✟✟✟✙ ❄
424

Λ−
j✟✟✟✟✟✙

❍❍❍❍❍❥

424

112

112
22̂3

❍❍❍❍❥

314

32̂5

Λp

Λ−
l
❍❍❍❍❍❥❄

424

Λ−
m

❍❍❍❍❍❥

✟✟✟✟✟✙

32̂4

32̂4
Λ−
n✟✟✟✟✟✙ ❄

Λ+
a

Λ−
q

❄

✟✟✟✟✙ 31̂2

Λ+
q

❄

❍❍❍❍❍❥
41̂5

Λ+
l

22̂4

❍❍❍❍❍❥22̂4

Λ+
b
❍❍❍❍❍❥

12̂3

31̂4
31̂4

❄
Λ+
0

21̂3

Λ−
r

❄

41̂2

Λ+
r

✟✟✟✟✟✙
324 Λ+

m
❍❍❍❍❍❥❄

Λ+
i
41̂5
❍❍❍❍❍❥

✟✟✟✟✟✙

12̂3

Λ−
s

❄

21̂2

Λ+
s✟✟✟✟✟✙ 313

❍❍❍❍❍❥12̂3

Λ+
j

12̂3

❄

41̂5
Λ+
f✟✟✟✟✟✙

Λ−
t

❄

11̂2

Λ+
t

212
❄Λ+

n✟✟✟✟✟✙

313

Fig. 2e. Main reduced multiplets for SO∗(10)
of type M5

Figure 6. Main reduced multiplets for SO∗(10) of type M5.



Symmetry 2022, 14, 1592 14 of 19

5.2. Next Reduced Multiplets

There are intertwining differential operators also in the next reduced multiplets. We
start with cases Mij (i < j) when mi = mj = 0.

The reduced multiplet M12 contains 15 GVMs (ERs) with signatures given as follows:

χ±b = {0; m3, m4, m5 ; ± 1
2 m35,3} = χ±a = χ±0

χ±g = {m3; 0, m34, m3,5 ; ± 1
2 m35} = χ±c = χ±d

χ±k = {m34; 0, m3, m35 ; ± 1
2 m3,5} = χ±e = χ±h

χ±l = {m3,5; 0, m35, m3 ; ± 1
2 m34} = χ±i = χ±f

χ±p = {m4; 0, 0, m35,3 ; ± 1
2 m5}

χ±q = {m35; 0, m3,5, m34 ; ± 1
2 m3} = χ±j = χ±m

χ±r = {m5; 0, m35,3, 0 ; ± 1
2 m4}

χs = {m35,3; m3, m5, m4 ; 0} = χ±n = χt

Here we note only the ER χs which is induced from finite-dimensionalM-irrep, and
where the subrepresentation is a singlet.

The reduced multiplet M13 contains 18 GVMs (ERs):

χ±0 = {0; 0, m4, m5 ; ± 1
2 m2,45,2}

χ±d = {m2; m2, m4, m5 ; ± 1
2 m2,45} = χ±b

χ±g = {0; 0, m2,4, m2,5 ; ± 1
2 m45}

χ±h = {m2,4; m2, 0, m45 ; ± 1
2 m2,5} = χ±e

χ±i = {m2,5; m2, m45, 0 ; ± 1
2 m2,4} = χ±f

χ±k = {m4; 0, m2, m2,45 ; ± 1
2 m5} = χ±p

χ±l = {m5; 0, m2,45, m2 ; ± 1
2 m4} = χ±r

χ±m = {m2,45; m2, m5, m4 ; ± 1
2 m2} = χ±s

χq = {m45; 0, m2,5, m2,4 ; 0}
χt = {m2,45,2; 0, m5, m4 ; 0}

Here we note the ERs χ±h , χ±m induced from finite-dimensional M-irreps, which
doublets are related by KS operators, yet for the pair Λ±m the KS operator G+ is actually the
differential operator Dm3α1̂2

.
The reduced multiplet M14 contains 18 GVMs (ERs):

χ±0 = {0; m3, 0, m5 ; ± 1
2 m23,5,23}

χ±b = {m2; m23, 0, m5 ; ± 1
2 m23,5,3} = χ±a

χ±h = {m23; m2, m3, m3,5 ; ± 1
2 m23,5} = χ±e = χ±c = χ±d

χ±k = {m3; 0, m23, m23,5 ; ± 1
2 m3,5} = χ±g

χ±m = {m23,5; m2, m3,5, m3 ; ± 1
2 m23} = χ±j = χ±i = χ±f

χ±p = {0; 0, m2, m23,5,3 ; ± 1
2 m5}

χ±q = {m3,5; 0, m23,5, m23 ; ± 1
2 m3} = χ±l

χr = {m5; 0, m23,5,3, m2 ; 0}
χ±s = {m23,5,3; m23, m5, 0 ; ± 1

2 m2} = χ±n
χt = {m23,5,23; m3, m5, 0 ; 0}
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Here we note the ERs χ±h , χ±m induced from finite-dimensionalM-irreps, and forming
a sub-multiplet as follows:

χ−h
Dm5

2̂5−→ χ−m

l l

χ+
h

Dm5
2̂5←− χ+

m

(33)

where the up-down arrows designate the KS operators.
The reduced multiplet M15 contains 18 GVMs (ERs):

χ±0 = {0; m3, m4, 0 ; ± 1
2 m24,23}

χ±b = {m2; m23, m4, 0 ; ± 1
2 m24,3} = χ±a

χ±i = {m23; m2, m34, m3 ; ± 1
2 m24} = χ±f = χ±d = χ±c

χ±l = {m3; 0, m24, m23 ; ± 1
2 m34} = χ±g

χ±m = {m24; m2, m3, m34 ; ± 1
2 m23} = χ±j = χ±h = χ±e

χp = {m4; 0, m2, m24,3 ; 0}
χ±q = {m34; 0, m23, m24 ; ± 1

2 m3} = χ±k

χ±r = {0; 0, m24,3, m2 ; ± 1
2 m4}

χ±s = {m24,3; m23, 0, m4 ; ± 1
2 m2} = χ±n

χt = {m24,23; m3, 0, m4 ; 0}

Here we note the ERs χ±i , χ±m induced from finite-dimensionalM-irreps, and forming
a sub-multiplet as follows:

χ−i
Dm4

2̂4−→ χ−m

l l

χ+
i

Dm4
2̂4←− χ+

m

(34)

The reduced multiplet M23 contains 15 GVMs (ERs):

χ±c = {m1; 0, m4, m5 ; ± 1
2 m1,45} = χ±a = χ±0

χ±e = {m14; 0, 0, m45 ; ± 1
2 m1,5}

χ±f = {m1,5; 0, m45, 0 ; ± 1
2 m14}

χ±g = {0; m1, m4, m5 ; ± 1
2 m45} = χ±b = χ±d

χ±j = {m1,45; 0, m5, m4 ; ± 1
2 m1} = χ±t = χ±n

χ±k = {m4; m1, 0, m45 ; ± 1
2 m5} = χ±p = χ±h

χ±l = {m5; m1, m45, 0 ; ± 1
2 m4} = χ±r = χ±i

χq = {m45; m1, m5, m4 ; 0} = χs = χ±m

Here we note only the ER χq which is induced from finite-dimensionalM-irrep, and
where the subrepresentation is a singlet.

The reduced multiplet M24 contains 18 GVMs (ERs):
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χ±0 = {m1; m3, 0, m5 ; ± 1
2 m1,3,5,3} = χ±a

χ±b = {0; m1,3, 0, m5 ; ± 1
2 m3,5,3}

χ±e = {m1,3; 0, m3, m3,5 ; ± 1
2 m1,3,5} = χ±c

χ±j = {m1,3,5; 0, m3,5, m3 ; ± 1
2 m1,3} = χ±f

χ±h = {m3; m1, m3, m3,5 ; ± 1
2 m3,5} = χ±g = χ±k = χ±d

χ±p = {0; m1, 0, m3,5,3 ; ± 1
2 m5}

χ±m = {m3,5; m1, m3,5, m3 ; ± 1
2 m3} = χ±l = χ±q = χ±i

χr = {m5; m1, m3,5,3, 0 ; 0}
χs = {m3,5,3; m1,3, m5, 0 ; 0}

χ±t = {m1,3,5,3; m3, m5, 0 ; ± 1
2 m1} = χ±n

Here we note the ERs χ±h , χ±m induced from finite-dimensionalM-irreps, and forming
a sub-multiplet as follows:

χ−h
Dm5

2̂5−→ χ−m

l ↑ ↓ Dm3
1̂2

χ+
h

Dm5
2̂5←− χ+

m

(35)

where on the right a KS operator G+
KS is degenerated in the intertwining differential operator

Dm3
1̂2

.
The reduced multiplet M25 contains 18 GVMs (ERs) with signatures:

χ±0 = {m1; m3, m4, 0 ; ± 1
2 m1,34,3} = χ±a

χ±b = {0; m1,3, m4, 0 ; ± 1
2 m34,3}

χ±f = {m1,3; 0, m34, m3 ; ± 1
2 m1,34} = χ±c

χ±j = {m1,34; 0, m3, m34 ; ± 1
2 m1,3} = χ±e

χ±l = {m3; m1, m34, m3 ; ± 1
2 m34} = χ±g = χ±i = χ±d

χp = {m4; m1, 0, m34,3 ; 0}
χ±m = {m34; m1, m3, m34 ; ± 1

2 m3} = χ±k = χ±q = χ±h

χ±r = {0; m1, m34,3, 0 ; ± 1
2 m4}

χs = {m34,3; m1,3, 0, m4 ; 0}
χ±t = {m1,34,3; m3, 0, m4 ; ± 1

2 m1} = χ±n

Here we note the ERs χ±l , χ±m induced from finite-dimensionalM-irreps, and forming
a sub-multiplet as follows:

χ−l
Dm4

2̂4−→ χ−m

l ↑ ↓ Dm3
1̂2

χ+
i

Dm5
2̂5←− χ+

m

(36)

The reduced multiplet M34 contains 15 GVMs (ERs):
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χ±0 = {m1; 0, 0, m5 ; ± 1
2 m12,5,2}

χ±c = {m12; m2, 0, m5 ; ± 1
2 m12,5} = χ±e = χ±a

χ±d = {m2; m12, 0, m5 ; ± 1
2 m2,5} = χ±h = χ±b

χ±j = {m12,5; m2, m5, 0 ; ± 1
2 m12} = χ±f = χ±n

χ±k = {0; m1, m2, m2,5 ; ± 1
2 m5} = χ±g = χ±p

χl = {m5; m1, m2,5, m2 ; 0} = χq = χ±r

χ±m = {m2,5; m12, m5, 0 ; ± 1
2 m2} = χ±i = χ±s

χ±t = {m12,5,2; 0, m5, 0 ; ± 1
2 m1}

Here we note only the ER χl which is induced from finite-dimensionalM-irrep, and
where the subrepresentation is a singlet.

The reduced multiplet M35 contains 15 GVMs (ERs):

χ±0 = {m1; 0, m4, 0 ; ± 1
2 m12,4,2}

χ±c = {m12; m2, m4, 0 ; ± 1
2 m12,4} = χ±f = χ±a

χ±d = {m2; m12, m4, 0 ; ± 1
2 m2,4} = χ±i = χ±b

χ±j = {m12,4; m2, 0, m4 ; ± 1
2 m12} = χ±e = χ±n

χk = {m4; m1, m2, m2,4 ; 0} = χq = χ±p

χ±l = {0; m1, m2,4, m2 ; ± 1
2 m4} = χ±g = χ±r

χ±m = {m2,4; m12, 0, m4 ; ± 1
2 m2} = χ±h = χ±s

χ±t = {m12,4,2; 0, 0, m4 ; ± 1
2 m1}

Here we note only the ER χk which is induced from finite-dimensionalM-irrep, and
where the subrepresentation is a singlet.

The reduced multiplet M45 contains 20 GVMs (ERs):

χ±0 = {m1; m3, 0, 0 ; ± 1
2 m13,23}

χ±a = {m12; m23, 0, 0 ; ± 1
2 m13,3}

χ±b = {m2; m13, 0, 0 ; ± 1
2 m23,3}

χ±j = {m13; m2, m3, m3 ; ± 1
2 m13} = χ±e = χ±f = χ±c

χ±m = {m23; m12, m3, m3 ; ± 1
2 m23} = χ±h = χ±i = χ±d

χ±n = {m13,3; m23, 0, 0 ; ± 1
2 m12}

χp = {0; m1, m2, m23,3 ; 0}
χ±q = {m3; m1, m23, m23 ; ± 1

2 m3} = χ±k = χ±l = χ±g
χr = {0; m1, m23,3, m2 ; 0}

χ±s = {m23,3; m13, 0, 0 ; ± 1
2 m2}

χ±t = {m13,23; m3, 0, 0 ; ± 1
2 m1}

Here we note the ERs χ±j , χ±m , χ±q , induced from finite-dimensionalM-irreps, and
forming a sub-multiplet as follows:

χ−j
Dm1

12−→ χ−m
Dm2

13−→ χ−q

l l ↑ ↓ Dm3
1̂2

χ+
j

Dm1
1̂3←− χ+

m
Dm2

2̂4←− χ+
m

(37)
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5.3. Third Level Reduction of Multiplets

In the next levels of reductions, there are only two multiplets containing ERs induced
from finite-dimensionalM-irreps, actually, each contains a doublet related by KS operators:

The reduced multiplet M145 contains 13 GVMs (ERs):

χ±0 = {0; m3, 0, 0 ; ± 1
2 m23,23}

χ±b = {m2; m23, 0, 0 ; ± 1
2 m23,3} = χ±a

χ±m = {m23; m2, m3, m3 ; ± 1
2 m23} = χ±h = χ±j = χ±i = χ±f = χ±e = χ±c = χ±d

χp = {0; 0, m2, m23,3 ; 0}
χ±q = {m3; 0, m23, m23 ; ± 1

2 m3} = χ±k = χ±l = χ±g
χr = {0; 0, m23,3, m2 ; 0}

χ±s = {m23,3; m23, 0, 0 ; ± 1
2 m2} = χ±n

χt = {m23,23; m3, 0, 0 ; 0}

The relevant doublet is χ±m .

The reduced multiplet M245 contains 13 GVMs (ERs):

χ±0 = {m1; m3, 0, 0 ; ± 1
2 m1,3,3} = χ±a

χ±b = {0; m1,3, 0, 0 ; ± 1
2 m3,3}

χ±j = {m1,3; 0, m3, m3 ; ± 1
2 m1,3} = χ±e = χ±f = χ±c

χp = {0; m1, 0, m3,3 ; 0}
χ±q = {m3; m1, m3, m3 ; ± 1

2 m3} = χ±k = χ±l = χ±m = χ±i = χ±g = χ±h = χ±d
χr = {0; m1, m3,3, 0 ; 0}
χs = {m3,3; m1,3, 0, 0 ; 0}

χ±t = {m1,3,3; m3, 0, 0 ; ± 1
2 m1} = χ±n

The relevant doublet is χ±q where the KS operator G+
KS degenerates to the intertwining

differential operator Dm3
1̂2

.
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