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Abstract: This paper works on the claims data generated by individual policies which are randomly
exposed to a period of continuous time. The main aim is to model the occurrence times of individual
claims, as well as their developments given the feature information and exposure periods of individual
policies, and thus project the outstanding liabilities. In this paper, we also propose a method to
compute the moments of outstanding liabilities in an analytic form. It is significant for a general
insurance company to more accurately project outstanding liabilities in risk management. It is
well-known that the features of individual policies have effects on the occurrence of claims and
their developments and thus the projection of outstanding liabilities. Neglecting the information
can unquestionably decrease the prediction accuracy of stochastic reserving, where the accuracy is
measured by the mean square error of prediction (MSEP), whose analytic form is computed according
to the derived moments of outstanding liabilities. The parameters concerned in the proposed
model are estimated based on likelihood and quasi-likelihood and the properties of estimated
parameters are further studied. The asymptotic behavior of stochastic reserving is also investigated.
The asymptotic distribution of parameter estimators is multivariate normal distribution which is
a symmetric distribution and the asymptotic distribution of the deviation of the estimated loss
reserving from theoretical loss reserve also follows a normal distribution. The confidence intervals
for the parameter estimators and the deviation can be easily obtained through the symmetry of the
normal distribution. Some simulations are conducted in order to support the main theoretical results.

Keywords: granular model; individual information; stochastic reserving; mean square error of
prediction; Monte Carlo

1. Introduction

The micro/individual data models for stochastic reserving, also called loss reserving,
originated from the 1980s, for example, references [1–3]. Most remarkably, references [2,3],
by formulating the developments of claims in portfolios as marked Poisson processes,
established a framework of loss reserving with individual data. Individual data models
have attracted a great deal of interests in the past decade. Ref. [4] proposed semiparametric
models for both the occurrence time of the individual claims and the hazard function
of delay variables such that they can more flexibly predict loss reserve for incurred but
not reported (IBNR) claims. Ref. [5] modeled IBNR loss reserving by applying copula
models to investigate the dependence of occurrence times of individual claims with only
reporting delays (time lag between occurrence time of claim and reporting time of the claim
to insurance company). By parameterizing the probabilistic models of references [2,3],
Refs. [6–8] recently analyzed a set of real claim data from an insurance company in Europe
and showed that the individual data model provided a more accurate prediction for
outstanding liabilities than the traditional reserving methods for aggregate data. Ref. [9]
also analyzed the advantage of loss reserving with individual data under a special setting of
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individual claim data sets, where every claim was paid once at its settlement, and showed
that individual loss reserving outperforms aggregate methods such as the classical chain-
ladder algorithm and Bornhuetter–Ferguson method and one can refer to the literature [10]
for more details about these aggregate methods.

A naive philosophy states that the more information exploited in loss reserving,
the greater accuracy of prediction of the outstanding liabilities. Especially, the feature
information (individual information) of policies, e.g., the age, gender, driven experience
of the driver and model of the cars in automobile insurance, and age, gender and other
features characterizing the daily behavior of a policy holder in health insurance, and so on,
can increase the accuracy of loss reserving. For example, older people tend to increase the
risk of claims in health insurance and experienced drivers are less likely to be involved in
traffic accidents. In the spirit of this consideration, a recent work [11] investigated the loss
reserving with individual information under a discrete time setting.

Unfortunately, it is hard to incorporate the individual information when modeling
loss reserving in the continuous time models formulated by, for example, literature [2,3,6],
especially when modeling the occurrence times of claim events. Under a discrete time
setting, ref. [11] proposed a reserving model that considered the impacts of individual
information and showed that loss reserving neglecting the useful individual information
was asymptotically biased. However, they considered a special claim data set where
there was only a one-off payment for every claim at its final settlement. In this paper, we
consider a granular model for reserving by incorporating policy’s features as well as the
consideration of more than once payment at the settlement of every claim in a continuous
time framework. As we all know, it is a great challenge to derive the analytic expressions
of expectation and process variance of outstanding liabilities in continuous time. With the
help of discrete time setting or discretization scheme, some literature including some works
mentioned above solved this problem, see also literature [12,13]. However, in this paper,
we also obtained the moments of outstanding liabilities after some theoretical derivations
without discrete time setting or discretization scheme.

Most recently, there is another branch of reserving literature which explores the
methods outperforming traditional aggregate reserving models by applying the methods,
e.g., neural network in machine learning. Ref. [14] proposed a DeepTriangle model for
reserving which jointly modeled the claim amounts and incurred losses by the deep neural
network. Ref. [15] illustrated the usage of machine learning techniques in individual loss
reserving by an explicit example. Ref. [16] modeled the aggregate run-off triangle of claim
amounts using neural network which help to improve prediction accuracy by diminishing
the bias of the traditional aggregate method. By adding the information of claim counts,
ref. [17] extended the work of literature [16] and the prediction of future claim amounts was
improved. It is also a promising direction to study this issue using the reliability approach of
studying product failure times in degradation experiments, for example, references [18–21].

In this paper, we propose a method to compute the expectation and variance of
outstanding liabilities given historical observations, where the conditional expectation
is conventionally called loss reserve–funds prepared by insurers to protect against risks
brought by the outstanding liabilities. Specifically, the proposed method is analytic mo-
ments computation method for outstanding liabilities (AMPM). AMPM is performed easily
in practice because it is a simple analytic approach with a close-form formula. Some Monte
Carlo simulations are also performed to verify the analytic expression of AMPM as well as
compute the empirical moments.

The rest of this paper is organized as follows. We model the occurrence times of
individual claims and their developments in a continuous time framework and parameters
are estimated by maximizing likelihood and quasi-likelihood in Section 2. The AMPM
method is introduced and the improvement of prediction accuracy by using the proposed
model with respect to that without individual information is also investigated in Section 3,
where the accuracy was measured by the conditional mean square error of prediction.
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Furthermore, the asymptotic behavior of loss reserving is studied. Section 4 reports some
simulation results. Section 5 concludes the paper with a few remarks.

2. Modeling Occurrence of Individual Claims and Their Development

This preliminary section consists of three parts: the first concisely describes claim data
of a granular individual, the second gives its distributional assumptions and the third is for
parameters estimation and its theoretical properties for later use in loss reserving.

2.1. Claims’ Occurrence and Developments

Consider a dynamic risk portfolio that evolves in [0, ∞) and has been observed in
a time interval conventionally denoted by [0, τ], where τ is a representative evaluation
date when the loss reserving is computed. Assume that the risk portfolio consists of n
insurance policies and the ith policy is effective in a period [τs

i , τe
i ] (risk exposure period),

where τs
i is the starting date and τe

i is the expiring date of the ith policy in period [0, τ],
where τe

i = (τs
i + c) ∧ τ with c is a known constant. Figure 1 illustrates the risk exposure of

policy i.

Time horizon
0 τs

i

Starting date

τe
i

Expiring date

Risk exposure period

τ

Evaluation date

Figure 1. Risk exposure of policy i.

Furthermore, we use a d-dimensional vector of covariates Xi to record the individual
information of the ith policy, conventionally with the constant 1 in the first entry. For this
policy, the occurrence times of its claims and their developments are recorded by:

(i) A series of occurrence times Tik, k = 1, 2, . . . taking values between τs
i and τe

i , and;
(ii) {Uik, (Vikj, Yikj)

∞
j=1, Vik, (Ys

ik, δik)}, where Uik is the time lag between the occurrence
of kth claim and its report to the insurance company, the sequence {(Vikj, Yikj)}∞

j=1
records the times when the company pay for this claim and the corresponding pay-
ments between its report and final settlement, Vik is the time lag between the report of
kth claim to and its final settlement by the insurance company, δik indicates whether
there is a payment at the settlement: δik = 1 if yes in which case Ys

ik = Yik the
corresponding severities, 0 otherwise.

Furthermore, we use Ni to indicate the number of incurred claims from policy i. To
summarize, for the ith policy, the random element involved is

Ei := (τs
i , τe

i ; Xi; {Tik, Uik, (Vikj, Yikj)
∞
j=1, Vik, (Ys

ik, δik)}∞
k=1), (1)

where Ys
ik = Yik a random loss severity if δik = 1 and 0 otherwise. All the {Ei, i = 1, 2, · · · , n}

are assumed to be iid copies from a representative policy

E := (τs, τe; X; {Tk, Uk, (Vkj, Ykj)
∞
j=1, Vk, (Ys

k , δk)}∞
k=1), (2)

in which the meanings of the variables are clear. According to the values of its (Tk, Uk, Vk),
the claim k is called settled, RBNS or IBNR if (Tk, Uk, Vk) is in A s = {(t, u, v) : t + u + v ≤
τ} (settled), A rbns = {(t, u, v) : t + u ≤ τ < t + u + v} (RBNS) or A ibnr = {(t, u, v) : t ≤
τ < t + u} (IBNR), respectively.

2.2. Distribution Formulation

This subsection first specifies the joint distribution of the random claims development
E in (2).
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Assumption 1 (Distributional assumption). Given a random exposure period [τs, τe] and vector
X = x which are arbitrarily distributed, the generating process of individual claims data is as follows:

(1) The occurrence time of individual claims follows a homogeneous Poisson process over [τs, τe],
with rate λ = exp(x′β), where β = (β0, β1, · · · , βd−1)

′.
(2) For the kth claim, its reporting delays Uk follows a distribution PU(u; α) where α = x′π with

π being (π0, π1, · · · , πd−1)
′.

(3) After the report of the kth claim, its settlement development is generated by three mutually
independent homogeneous Poisson processes: one generates payments without settlement at
rate hp := exp(x′ρp), one generates settlement with payment at rate hsep := exp(x′ρsep)
and one generates settlement without payment at rate hse := exp(x′ρse), where ρp, ρsep
and ρse are all d-dimensional vectors of parameters. The development process after claim’s
reporting will stop when the first settlement event occurs.

(4) The payments Ykjs, Yk are mutually independent with common mean µ and variance φµ and
independent of the occurrence times of claims, as well as the generating process of payments,
where µ = exp(x′γ) and φ is a dispersion parameter.

Use θ to denote the vector composed of all the unknown parameters, that is,
θ′ = (β′, π′, ρ′p, ρ′sep, ρ′se, γ′).

2.3. Estimates of the Parameters

In this section, we will separately estimate θI := (β′, π′, ρ′p, ρ′sep, ρ′se)
′ and γ. For policy

i, one claim can be observed only when its occurrence time and reporting delays belong to
{(t, u) : t + u ≤ τ}. We use Nr

i to represent the number of reported claims that is

Nr
i =

∞

∑
k=1

I{Tik+Uik≤τ}.

Denote Nop
ik the observed number of payments without settlement for kth reported

claim, that is

Nop
ik =

∞

∑
j=1

I{Tik+Uik+Vikj≤τ}.

The occurrence time of reported claims and their developments excluding payments
are denoted by

{(Tr
ik, Ur

ik, (Vr
ikj)

Nop
ik

j=1 , Vr
ik, δr

ik) : k = 1, 2, . . . , Nr
i }.

To derive the overall likelihood of the reported claims, one needs Theorem 2 in Norberg
(1993) [2] which shows the thinning properties of the marked Poisson process. In view of
the independence among policies, the overall likelihood of the reported claims is

L(θI) =
n

∏
i=1

λ
Nr

i
i


Nr

i

∏
k=1

PU(τ − Tr
ik; αi)

 exp(−λi

∫ τe
i

τs
i

PU(τ − t; αi)dt)

·
n

∏
i=1

Nr
i

∏
k=1

PU(dUr
ik; αi)

PU(τ − Tr
ik; αi)

·
n

∏
i=1


Nr

i

∏
k=1

h
Nop

ik
i,p (h

δr
ik

i,seph
1−δr

ik
i,se )

I{Vr
ik≤τ−Tr

ik−Ur
ik} · exp(−(hi,p + hi,sep + hi,se)τik)

, (3)

where λi = exp(x′iβ), αi = x′iπ, hi,p = exp(x′iρp), hi,sep = exp(x′iρsep), hi,se = exp(x′iρse),
which are the policy-specified quantities of λ, α, hp, hsep and hse, respectively, and
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τik = (τ − Tr
ik −Ur

ik) ∧Vr
ik. One can refer to Theorem 2 in reference [2] for more details in

deriving the likelihood above. Then, the log-likelihood is

l(θI) =
n

∑
i=1

{
Nr

i log λi − λi

∫ τe
i

τs
i

PU(τ − t; αi)dt
}

+
n

∑
i=1

Nr
i

∑
k=1

log PU(dUr
ik; αi)

+
n

∑
i=1

[Nop
i log hi,p + Nsep

i log hi,sep + Nse
i log hi,se − (hi,p + hi,sep + hi,se)τi], (4)

where Nop
i = ∑

Nr
i

k=1 Nop
ik , Nsep

i = ∑
Nr

i
k=1 I{Vr

ik≤τ−Tr
ik−Ur

ik}
δr

ik, Nse
i = ∑

Nr
i

k=1 I{Vr
ik≤τ−Tr

ik−Ur
ik}
(1−

δr
ik), which mean observed number of payments without settlement, settlement with

payment and settlement without payment, respectively, of policy i and τi = ∑
Nr

i
k=1 τik.

To estimate the parameters about payment severities, arrange all observed payments
of the risk portfolio into the set {(Yl , xl), l = 1, 2, . . . , Ntp}, where xl is covariates associated
with payments Yl and Ntp is the total number of payments. Construct quasi-likelihood by
independence among policies and the fourth item in Assumption 1,

Qp(γ) =
1
φ

Ntp

∑
l=1

(Yl log µl − µl), (5)

where µl = exp(x′lγ). Denote by µ = (µ1, . . . , µNtp)′ and Y = (Y1, . . . , YNtp)′. The quasi-
score function–partial derivatives of Qp(γ) with respect to the parameters is

Q̇p(γ) :=
∂Qp(γ)

∂γ
=

1
φ

X′(Y − µ), (6)

where X = (x1, . . . , xNtp)′.
The covariance matrix of Q̇(γ), which is also the negative expected value of ∂Q̇p(γ)/∂γ′

according to reference [22], is

Ip =
1
φ

X′diag(µ)X. (7)

The parameters γ are estimated by the iteratively re-weighted least square (IRLS)
algorithm, which is as follows,

1. Initialize γ̂ = γ0 such that µ̂l = exp(x′l γ̂) and µ̂ = (µ̂1, µ̂2, . . . , µ̂Nts)′, where γ0 is
usually zero vector.

2. Compute adjusted payments zl =
yl−µ̂l

µ̂l
+ x′l γ̂.

3. Update γ̂ by what follows,

γ̂ = (X′diag(µ̂)X)−1X′diag(µ̂)Z,

where Z = (z1, z2, . . . , zNtp), and then µ̂l = exp(x′l γ̂).

To estimate the dispersion parameter φ, we also adopt the conventional method–
moment estimation that is,

φ̂ =
1

Ntp − p

Ntp

∑
l=1

(Yl − µ̂l)
2

µ̂l
,

where µ̂l = exp(x′l γ̂).
Apparently, it is impossible to acquire analytic expressions of parameter estimators

based on the log-likelihood or quasi-likelihood. However, the properties of the estimators
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can also be studied. Under some regular conditions which can be found in any standard
textbook [23] of asymptotic theory, we have the following theorem.

Theorem 1. The estimators θ̂
P→ θ and the

√
n(θ̂− θ)

L→ N(0, [I(θ)]−1) as n (number of insur-

ance policies) tends to infinity, where P→ and L→ mean converging in probability and distribution,
respectively, and

I(θ) =


Iβ,π 0 0 0 0

0 Iρp 0 0 0
0 0 Iρsep 0 0
0 0 0 Iρse 0
0 0 0 0 Iγ

,

where

Iβ,π =

[
I11 I12
I′12 I22

]
,

in which

I11 = E
[

λ
∫ τe

τs
PU(τ − t; α)dtxx′

]
, I12 = E

[
λ

∂

∂α

∫ τe

τs
PU(τ − t; α)dtxx′

]
I22 = E

[
λ

∂2

∂α2

∫ τe

τs
PU(τ − t; α)dtxx′

]
−E

[
λ
∫ τe

τs
PU(τ − t; α)E

[
∂2 log PU(dU; α)

∂α2 |U ≤ τ − t, x
]

dtxx′
]

,

Iρp = E[hpHτ ], Iρsep = E[hsepHτ ], Iρse = E[hseHτ ], in which

Hτ = λ
∫ τe

τs
PU(τ − t; α)dtE[(τ − t−U) ∧V|U ≤ τ − t, x]dtxx′,

and

Iγ =E
[

λµ
∫ τe

τs
Pr(U ≤ τ − t, U + V ≤ τ − t)dt(hpE[V|U ≤ τ − t, U + V ≤ τ − t, x] +

hsep

hsep + hse
)dtxx′

]
+E

[
λµhp

∫ τe

τs
Pr(U ≤ τ − t, U + V > τ − t)dtE[τ − t−U|U ≤ τ − t, U + V > τ − t, x]dtxx′

]
.

Proof. The estimators θ̂ is obtained by maximizing l(θ) := l(θI ; Fτ) + Qp(γ), which is
equivalent to the log-likelihood of observations. Under regular conditions, such as in
Sections 5.2 and 5.3 of the book [23]. It is easily justified that the estimators are consistent
and weakly converge to multivariate normal distribution. The more details can be find
in chapter 5 of the book [23]. According to the law of large number, In(θ)/n a.s.→ I(θ),

where In(θ) := −E[ ∂2l(θ)
∂θ∂θ′ ] is the Fisher information matrix. The Hessian matrix ∂2l(θ)

∂θ∂θ′

is easy to compute and is a block diagonal matrix. However, the computation of its
conditional expectation given the individual information of policies needs to use Corollary

to Theorems 1 and 2 in [3]. We only compute −E[ ∂2l(θ)
∂γ∂γ′ ] and other parts are easy to obtain.

The quasi-likelihood Qp(γ) can be rewrote as

n

∑
i=1

Nr
i

∑
k=1

Nop
ik

∑
l=1

(Yikl log µi − µi) + (Yik log µi − µi)δik I{Vik≤τ−To
ik−Ur

ik}

.

Hence, ∂2l(θ)
∂γ∂γ′ =

∂2Qp(γ)
∂γ∂γ′ , where

∂2Qp(γ)

∂γ∂γ′
= −

n

∑
i=1

Nr
i

∑
k=1

(Nop
ik + δik I{Vik≤τ−Tr

ik−Ur
ik}
)µixixi.
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To compute conditional expectation −E
[

∂2Qp(γ)
∂γ∂γ′

]
, it is enough to compute

E
[

Nr

∑
k=1

(Nop
k + δk I{Vk≤τ−To

k−Uo
k})

]
= E

[
Nr

∑
k=1

((Nop
k + δk)I{Vk≤τ−To

k−Uo
k} + Nop

k I{Vk>τ−To
k−Uo

k})

]
.

The left part in the equation above can further be computed as

λµ
∫ τe

τs
Pr(U ≤ τ − t, U + V ≤ τ − t)dt

(
hpE[V|U ≤ τ − t, U + V ≤ τ − t] +

hsep

hsep + hse

)
dt

+ λµhp

∫ τe

τs
Pr(U ≤ τ − t, U + V > τ − t)dtE[τ − t−U|U ≤ τ − t, U + V > τ − t]dt.

Then, the proof is complete.

By the symmetry of the asymptotic distribution, the confidence interval for each
parameter can be easily obtained.

3. Loss Reserving

In this section, we detail AMPM for computing the expectation and variance of
outstanding liabilities given historical observations. Based on these moments, we will
elaborate the loss reserving and assessment of prediction accuracy.

3.1. AMPM Method

At evaluation date τ, the outstanding liabilities to the insureds are caused by both the
RBNS and IBNR claims of all policies and hence can be represented as

R = Rrbns + Ribnr =
n

∑
i=1

Rrbns
i +

n

∑
i=1

Ribnr
i , (8)

where

Rrbns
i =

Ni

∑
k=1

Np
ik

∑
j=1

Yikj IA rbns(Tik, Uik, Vikj) + Yikδik

IA rbns(Tik, Uik, Vik), and

Ribnr
i =

Ni

∑
k=1

Np
ik

∑
j=1

Yikj + Yikδik

IA ibnr (Tik, Uik, Vik),

are, respectively, the outstanding liabilities of RBNS and IBNR claims from policy i. Write

Nrbns
i =

Ni

∑
k=1

IA rbns(Tik, Uik, Vik) and Nrbnsp
ik =

Np
ik

∑
j=1

IA rbns(Tik, Uik, Vikj),

which mean the number of RBNS claims of policy i and unobserved number of payments
for kth RBNS claim of policy i before its settlement, respectively, and then

Rrbns
i =

Nrbns
i

∑
k=1

Nrbnsp
ik

∑
j=1

Yrbns
ikj + Yrbns

ik δrbns
ik

, (9)

where Yrbns
ikj is amounts of jth payment for kth RBNS claim of policy i, δrbns

ik indicates

whether there is payment for kth RBNS claim at its settlement and if so Yrbns
ik denotes the
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payment amounts. Write Nibnr
i = ∑Ni

k=1 IA ibnr (Tik, Uik, Vik), which means the number of
IBNR claims of policy i, and

Ribnr
i =

Nibnr
i

∑
k=1

Nibnrp
ik

∑
j=1

Yibnr
ikj + Yibnr

ik δibnr
ik

, (10)

where Yibnrp
ikj , j = 1, 2, . . . , Nibnrp

ik , are a series of payments for kth IBNR claim before its

settlement and Yibnr
ik is the loss severities at the settlement if there is payment, i.e., δibnr

ik = 1.
According to literature [3], for each policy, the processes which generate settled, RBNS

and IBNR claims are independent and still marked Poisson processes. It is easily known
that Nibnr

i follows Poisson distribution with mean

Λi := λi

∫ τe
i

τs
i

(1− PU(τ − t; x′iπ))dt.

Hence, we have the following theorem that gives formulas of the conditional ex-
pectation and variance of outstanding liabilities incurred by insurers given the historical
observations Fτ .

Theorem 2. The conditional expectation and variance of outstanding liabilities are

E(R|Fτ) =
n

∑
i=1

E
(

Rrbns
i |Fτ

)
+

n

∑
i=1

E
(

Ribnr
i |Fτ

)
, (11)

Var(R|Fτ) =
n

∑
i=1

Var
(

Rrbns
i |Fτ

)
+

n

∑
i=1

Var
(

Ribnr
i |Fτ

)
, (12)

respectively, where

E
(

Rrbns
i |Fτ

)
=

Nrbns
i (hi,p + hi,sep)µi

hi,se + hi,sep
, E
(

Ribnr
i |Fτ

)
=

Λiµi(hi,p + hi,sep)

hi,se + hi,sep
,

Var
(

Rrbns
i |Fτ

)
= Nrbns

i

{
µ2

i hi,p(hi,p + hi,se + hi,sep)

(hi,se + hi,sep)2 +
φµi(hi,p + hi,sep)

hi,se + hi,sep

}
,

and

Var(Ribnr
i |Fτ) = Λi

{
µ2

i [hi,p(hi,p + hi,se + hi,sep) + (hi,p + hi,sep)
2]

(hi,se + hi,sep)2 +
φµi(hi,p + hi,sep)

hi,se + hi,sep

}
.

Proof. Apparently, the loss reserve is the sum of RBNS and IBNR reserves and the condi-
tional variance of outstanding liabilities is also the sum of two parts thanks to independence
between RBNS and IBNR claims that is

E(R|Fτ) =
n

∑
i=1

E
(

Rrbns
i |Fτ

)
+

n

∑
i=1

E
(

Ribnr
i |Fτ

)
,

Var(R|Fτ) =
n

∑
i=1

Var
(

Rrbns
i |Fτ

)
+

n

∑
i=1

Var
(

Ribnr
i |Fτ

)
.

Firstly, by Assumption 1 and the iteration expectation formula, the RBNS loss reserve
of policy i is
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E
(

Rrbns
i |Fτ

)
=

Nrbns
i

∑
k=1

E

Nrbnsp
ik

∑
j=1

Yikj + Yikδik|Vik > τ − Tik −Uik, xi


=

Nrbns
i

∑
k=1

{
E[(Vik − τ + Tik + Uik)|Vik > τ − Tik −Uik, xi]hi,pµi +

hi,sep

hi,se + hi,sep
µi

}

=
Nrbns

i (hi,p + hi,sep)µi

hi,se + hi,sep
,

where Nrbns
i = ∑Ni

k=1 IA rbns(Tik, Uik, Vik), Nrbnsp
ik = ∑Nik

j=1 IA rbns(Tik, Uik, Vikj), and

Var
(

Rrbns
i |Fτ

)
=

Nrbns
i

∑
k=1

Var

Nrbnsp
ikj

∑
j=1

Yikj + Yikδik|Vik > τ − Tik −Uik, xi


=

Nrbns
i

∑
k=1

{
Var((Vik − τ + Tik + Uik)hi,pµi|Vik > τ − Tik −Uik, xi)

+ E[(µ2
i + φµi)(Vik − τ + Tik + Uik)hi,p|Vik > τ − Tik −Uik, xi] +

hi,sepφµi

hi,se + hi,sep

}

= Nrbns
i

{
µ2

i hi,p(hi,p + hi,se + hi,sep)

(hi,se + hi,sep)2 +
φµi(hi,p + hi,sep)

hi,se + hi,sep

}
.

Second, because the generating process of IBNR claims is independent of the processes
which generate RBNS and settled claims, the IBNR loss reserve can be computed by

E
(

Ribnr
i |Fτ

)
= E

Nibnr
i

∑
k=1

(
Nik

∑
j=1

Yikj + Yikδik

)∣∣∣∣∣xi


= E[Nibnr

i |xi]E
[

Ni1

∑
j=1

Yi1j + Yi1δi1

]

=
λiµi(hi,p + hi,sep)

hi,se + hi,sep

∫ τe
i

τs
i

(1− PU(τ − t; x′iπ))dt,

in which Nibnr
i = ∑Ni

k=1 IA ibnr (Tik, Uik, Vik), and

Var(Ribnr
i |Fτ) = Var

Nibnr
i

∑
k=1

(
Nik

∑
j=1

Yikj + Yikδik

)∣∣∣∣∣xi


=

Var

(
Nik

∑
j=1

Yikj + Yikδik

∣∣∣∣∣xi

)
+

(
E
[

Nik

∑
j=1

Yikj + Yikδik

∣∣∣∣∣xi

])2
E[Nibnr

i |xi]

=

{
µ2

i [hi,p(hi,p + hi,se + hi,sep) + (hi,p + hi,sep)
2]

(hi,se + hi,sep)2 +
φµi(hi,p + hi,sep)

hi,se + hi,sep

}

· λi

∫ τe
i

τs
i

(1− PU(τ − t; x′iπ))dt

The proof is then complete.

The loss reserve can be expressed as E[R|Fτ ], which can be denoted by Rτ(θ) since it
is a function of unknown parameters and related with evaluation date τ. Hence, Rτ needs
to be estimated thanks to the unknown parameters. Loss reserving provides a procedure to
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estimate the loss reserve that is we simply insert the estimated parameters in Section 2.3
into Rτ(θ) and obtain R̂τ = Rτ(θ̂).

3.2. Accuracy and Asymptotic Behavior of Loss Reserving

It is important to assess the accuracy of loss reserving. A natural idea is to measure
the accuracy of loss reserving by the conditional mean square error of prediction (MSEP)
that is for any loss reserving R̂ which is Fτ measurable, its accuracy is measured by

MSEP(R̂) = E[(R− R̂)2|Fτ ]

= Var(R|Fτ) + (E[R|Fτ ]− R̂)2. (13)

We can see that the conditional MSEP of predictor R̂ is the sum of process variance,
which remains fixed for any loss reserving method, and the square error of prediction, which
depends on specific loss reserving method. Some reserving methods such as the chain-
ladder algorithm in the study [24] suffer from information loss in the sense that it aggregates
micro-level data such as occurrence times, reporting and settlement dates, payment times
and loss severities of individual claims. Although the authors in [6] have shown that the
micro-level data model has higher accuracy than aggregate models by empirical analysis
and [9] have shown this in theoretical aspects, micro/individual data models also neglect
some important information such as the policy’s features. It is significant for actuaries to
reduce the square error by considering more related information in loss reserving. By the
simulations in Section 4, we will show that considering useful individual information
in stochastic reserving is helpful to improve the accuracy of loss reserving. Apparently,
the conditional MSEP of loss reserving R̂τ is MSEP(R̂τ).

In the individual data model formulated by the literature [6,9], where they did not
consider the individual information, it is assumed that there is no effects of individual
information on the occurrence of claims and their developments that is the coefficients of
x1, x2, . . . , xd−1 are considered to be zero. For example, β1 = β2 = · · · = βd−1 = 0 and
π1 = π2 = · · · = πd−1 = 0. Hence, the model parameters in the individual data model only
involves β0, π0, ρp0, ρse0, ρsep0, γ0, which can be estimated by maximizing loglikelihood (4)
and (5) with respect to these parameters. Denote the estimated parameters in the individual
data model by β̂ID

0 , π̂ ID
0 , ρ̂ID

p0 , ρ̂ID
se0, ρ̂ID

sep0, γ̂ID
0 and obtain R̂ID

τ by inserting these estimated
parameters into the formula of E[R|Fτ ] in Theorem 2 with other parameters replaced by
zero. The conditional MSEP in the individual data model is MSEP(R̂ID

τ ).
We want to explore the improvement of predicting accuracy by using the proposed

model with respect to the individual data model. To do so, we just need to compare
MSEP(R̂τ) and MSEP(R̂ID

τ ). Then, define the relative predicting accuracy as

RPA(R̂τ , R̂ID
τ ) =

MSEP(R̂τ)

MSEP(R̂ID
τ )

=
Var(R|Fτ) + (E[R|Fτ ]− R̂τ)2

Var(R|Fτ) + (E[R|Fτ ]− R̂ID
τ )2

, (14)

which is studied in Section 4 by simulations.
Next, we study the asymptotic behavior of R̂τ − Rτ , which is the deviance of loss

reserving R̂τ from theoretical loss reserve.

Theorem 3. The asymptotic distribution of the deviation of Rτ from R̂τ is

1√
n
(R̂τ − Rτ)

L→ N(0, σ2) with σ2 = ξ ′1 I−1
β,πξ1 + ξ ′2 I−1

ρp ξ2 + ξ ′3 I−1
ρsep ξ3 + ξ ′4 I−1

ρse ξ4 + ξ ′5 I−1
γ ξ5,

where Iβ,π , Iρp , Iρsep , Iρse and Iγ were defined as in Theorem 1 and



Symmetry 2022, 14, 1582 11 of 16

ξ1 = E
[

λµ(hp + hsep)

hse + hsep

( ∫ τe

τs (1− PU(τ − t; α))dt
− ∂

∂α

∫ τe

τs PU(τ − t; α)dt

)
⊗ x

]
,

ξ2 = E
[

λhpµ

hse + hsep

∫ τe

τs
[Pr(U ≤ τ − t, U + V > τ − t|x) + 1− PU(τ − t; α)]dt · x

]
,

ξ3 = E
[

λ(hse − hp)hsepµ

(hse + hsep)2

∫ τe

τs
[Pr(U ≤ τ − t, U + V > τ − t|x) + 1− PU(τ − t; α)]dt · x

]
,

ξ4 = E
[
−

λ(hp + hsep)hseµ

(hse + hsep)2

∫ τe

τs
[Pr(U ≤ τ − t, U + V > τ − t|x) + 1− PU(τ − t; α)]dt · x

]
,

ξ5 = E
[

λ(hp + hsep)µ

hse + hsep

∫ τe

τs
[Pr(U ≤ τ − t, U + V > τ − t|x) + 1− PU(τ − t; α)]dt · x

]
. (15)

So, the asymptotic distribution of the deviation is symmetric.

Proof. This theorem can be proved by Delta method. By Taylor expansion, we have

1√
n
(R̂τ − Rτ) =

1
n

∂Rτ

∂θ

√
n(θ̂− θ) + op(||θ̂− θ||).

The conclusion holds if 1
n

∂Rτ
∂θ converges in probability. We first compute the par-

tial derivatives.

∂Rτ

∂β
=

n

∑
i=1

λiµi(hi,p + hi,sep)

hi,se + hi,sep

∫ τe
i

τs
i

(1− PU(τ − t; αi))dt · xi,

∂Rτ

∂π
= −

n

∑
i=1

λiµi(hi,p + hi,sep)

hi,se + hi,sep

∂

∂αi

∫ τe
i

τs
i

PU(τ − t; αi)dt · xi,

∂Rτ

∂ρp
=

n

∑
i=1

hi,pµi(Nrbns
i + Λi)

hi,se + hi,sep
· xi,

∂Rτ

∂ρsep
=

n

∑
i=1

(hi,se − hi,p)hi,sepµi(Nrbns
i + Λi)

(hi,se + hi,sep)2 · xi,

∂Rτ

∂ρse
= −

n

∑
i=1

(hi,p + hi,sep)hi,seµi(Nrbns
i + Λi)

(hi,se + hi,sep)2 · xi,

∂Rτ

∂γ
=

n

∑
i=1

(hi,p + hi,sep)µi(Nrbns
i + Λi)

hi,se + hi,sep
· xi.

Given xi and τs
i , Nrbns

i follows Poisson distribution with mean λi
∫ τe

i
τs

i
Pr(U ≤ τ −

t, U + V > τ − t|xi)dt. Then, by the law of large number, one can obtain that

1
n

∂Rτ

∂θ

P→ (ξ1, ξ2, ξ3, ξ4, ξ5)
′.

Therefore, combining Theorem 1, the proof is complete.

4. Simulation Study

Reported in this section are the results from a few small simulations conducted to
show the behaviors of estimators of the unknown parameters in the underlying distribu-
tion, to demonstrate how prediction accuracy can be affected by neglecting individual
information and to justify the results in Theorem 2.
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4.1. Simulating Claim Data

In the simulations, we generate loss severities from Poisson distribution, since there
is no distribution assumption about the loss severities in our model. Sample n starting
times of exposure periods from uniform distribution in [0, τ] and the constant c is set to be
1. The covariates associated with each policy are independently sampled from multivariate
normal distribution with mean 0 and identity covariance matrix with dimension d− 1.
Given the starting dates, expiring dates and evaluation date τ, as well as the associated
individual information of policies, the simulated reported claims data for each policy can be
generated by the procedure detailed in the following procedure for each value of specified
parameters included in Assumption 1:

step 1 For a policy with exposure period [τs, τe] and covariates x, the reported claims
data is generated by the two-stage procedure detailed in Theorem 1 of [3] . First,
generate the Nr reported claims incurred in this period from the Poisson distribution
with mean

λ
∫ τe

τs
PU(τ − t; x′π)dt,

then, the occurrence times of the Nr reported claims are generated from uniform
distribution in [τs, τe] and correspondingly, sample Nr reporting delays from the
conditional distribution

Pr(U ≤ u|U ≤ τ − T) =
PU(u ∧ τ − T; α)

PU(τ − T; α)
,

given the simulated occurrence time T of a reported claim.
step 2 Given a reported claim with the simulated occurrence time T and reporting delay

U, first sample the settlement delays V from exponential distribution with rate
hse + hsep, then

• If V ≤ τ − T − U, generate Ns payments from Poisson(Vhp) and ordered
payment times that are generated by ordering Ns samples sampled from
uniform distribution in (T + U, T + U + V), loss severities are generated by
assuming that Y

φ follows Poisson(µ) and at last generate settlement type δ by

Bernoulli distribution with success probability hsep
hse+hsep

, where δ = 1 represents
settlement with payment and δ = 0 for settlement without payment, and if
δ = 1, generate the loss severities in the same way as above;

• Otherwise, generate Nop payments from Poisson((τ − T−U)hp) and ordered
payment times that are generated by ordering Nop samples sampled from uni-
form distribution in (T +U, τ), and corresponding loss severities are generated
by assuming that Y

φ follows Poisson(µ).

step 3 Order the reported claim data generated according to the above two steps by
occurrence time of reported claims.

step 4 For each policy, do Steps 1 to 3 to generate reported claims and their development.

The basic settings of simulations are τ = 5, d = 3, PU(u; α) = 1− exp(− u
eα ) and φ = 8.

Furthermore, the constant c = 1. It is remarkable that the distribution of reporting delays is
arbitrary. Here in this simulation, we used exponential distribution. There are two cases of
parameters listed below.

(I) β = (1.3, 0.1,−0.3)′, π = (−0.5, 0.3,−0.2)′, ρp = (−2, 1,−0.8)′, ρsep = (−1, 0.2,−0.1)′,
ρse = (−0.5, 0.1,−0.1)′ and γ = (4, 0.6,−0.8)′.

(II) β = (1.5, 0.3,−0.6)′, π = (0.3,−0.4, 0.3)′, ρp = (−0.1, 0.7,−0.5)′,
ρsep = (−0.5, 0.8,−0.3)′, ρse = (−0.8, 0.3,−0.3)′ and γ = (5, 0.6, 0.9)′.

For each case of parameters set above, simulations are conducted under two portfolio
sizes n1 = 2000, n2 = 5000, n3 = 10000, n4 = 20000. Hence, there are eight scenarios that is
(I, n1), (I, n2),(I, n3),(I, n4), (II, n1), (II, n2), (II, n3), (II, n4).
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4.2. Evaluation #1

We duplicated a total of 200 runs of simulations for each scenario. The performance of
the estimates of the parameters is summarized in Table 1 in the form of mean ± standard
deviation that were computed over the 200 runs. Comparing true values of parameters with
Table 1 (their estimates), it is apparent that the estimates look quite good. In real practice, it
would usually be the case because a portfolio contains a huge number of policies.

To show the improvement of prediction accuracy of our model with respect to the
individual data model, we computed PRA defined in (14) in each run of the simulations
and we plotted the simulated values of PRA in Figure 2. It can be easily seen from the
figures that adding useful individual information into stochastic loss reserving greatly
improve the prediction accuracy since almost all values of PRA are less than 1 and when
the sample size becomes larger, most of them are near 0.

Table 1. Simulated means ± standard deviations.

Parameters

β π ρp ρsep ρse γ

I

n1

1.3± 0.0119 −0.5± 0.0177 −2± 0.0479 −1± 0.0262 −0.5± 0.0204 4± 0.0084
0.1± 0.0144 0.3± 0.0164 1± 0.0314 0.2± 0.0256 0.1± 0.0205 0.6± 0.0046
−0.3± 0.0146 −0.2± 0.0157 −0.8± 0.0287 −0.1± 0.0242 −0.1± 0.0204 −0.8± 0.0037

n2

1.3± 0.0084 −0.5± 0.0112 −2± 0.0295 −1± 0.0157 −0.5± 0.0121 4± 0.0046
0.1± 0.0089 0.3± 0.0103 1± 0.0180 0.2± 0.0146 0.1± 0.0120 0.6± 0.0022
−0.3± 0.0083 −0.2± 0.0111 −0.8± 0.0175 −0.1± 0.0171 −0.1± 0.0121 −0.8± 0.0027

n3

1.3± 0.0061 −0.5± 0.0064 −2± 0.0207 −1± 0.0126 −0.5± 0.0092 4± 0.0035
0.1± 0.0062 0.3± 0.0075 1± 0.0118 0.2± 0.0106 0.1± 0.0086 0.6± 0.0015
−0.3± 0.0060 −0.2± 0.0071 −0.8± 0.0129 −0.1± 0.0119 −0.1± 0.0094 −0.8± 0.0015

n4

1.3± 0.0039 −0.5± 0.0050 −2± 0.0134 −1± 0.0078 −0.5± 0.0061 4± 0.0023
0.1± 0.0040 0.3± 0.0048 1± 0.0081 0.2± 0.0079 0.1± 0.0064 0.6± 0.0010
−0.3± 0.0038 −0.2± 0.0053 −0.8± 0.0084 −0.1± 0.0082 −0.1± 0.0057 −0.8± 0.0009

II

n1

1.5± 0.0181 0.3± 0.0251 −0.1± 0.0183 −0.5± 0.0231 −0.8± 0.0256 5± 0.0037
0.3± 0.0368 −0.4± 0.0172 0.7± 0.0130 0.8± 0.0182 0.3± 0.0238 0.6± 0.0025
−0.6± 0.0137 0.3± 0.0165 −0.5± 0.0135 −0.3± 0.0207 −0.3± 0.0100 0.9± 0.0021

n2

1.5± 0.0106 0.3± 0.0166 −0.1± 0.0117 −0.5± 0.0083 −0.8± 0.0171 5± 0.0022
0.3± 0.0078 −0.4± 0.0109 0.7± 0.0083 0.8± 0.0106 0.3± 0.0139 0.6± 0.0016
−0.6± 0.0088 0.3± 0.0127 −0.5± 0.0083 −0.3± 0.0109 −0.3± 0.0147 0.9± 0.0014

n3

1.5± 0.0076 0.3± 0.0118 −0.1± 0.0089 −0.5± 0.0104 −0.8± 0.0116 5± 0.0015
0.3± 0.0057 −0.4± 0.0068 0.7± 0.0062 0.8± 0.0070 0.3± 0.0091 0.6± 0.0010
−0.6± 0.0060 0.3± 0.0078 −0.5± 0.0056 −0.3± 0.0071 −0.3± 0.0100 0.9± 0.0009

n4

1.5± 0.0051 0.3± 0.0076 −0.1± 0.0058 −0.5± 0.0073 −0.8± 0.0082 5± 0.0011
0.3± 0.0039 −0.4± 0.0050 0.7± 0.0041 0.8± 0.0054 0.3± 0.0066 0.6± 0.0006
−0.6± 0.0040 0.3± 0.0057 −0.5± 0.0039 −0.3± 0.0056 −0.3± 0.0069 0.9± 0.0006

4.3. Evaluation #2

With an aim to verify the analytic expression of AMPM, a simulation-based empirical
moments calculation algorithm was further developed. We can conduct the following
Monte Carlo simulation, given the observations Fτ with reported claim data generated by
the procedure in the subsection above.

Simulate the IBNR claims and their developments and RBNS claims’ developments
for each policy exposure in [0, τ]

step 1 For a policy with exposure period [τs, τe] and covariates x. First generate the Nibnr

claims incurred in this period from the Poisson distribution with mean

Λ := λ
∫ τe

τs
(1− PU(τ − t; x′π))dt,
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then, the occurrence times of the Nibnr IBNR claims are generated from uniform
distribution in [τs, τe] and correspondingly, sample Nibnr reporting delays from the
conditional distribution

Pr(U ≤ u|U > τ − T) =
PU(u; α)− PU(τ − T; α)

1− PU(τ − T; α)
,

given the simulated occurrence time T of an IBNR claim.
step 2 Given an IBNR claim with the simulated occurrence time T and reporting delay

U, first sample the settlement delays V from exponential distribution with rate
hse + hsep, then generate Nibnrp payments from Poisson(Vhp) and ordered payment
times that are generated by ordering Nibnrp samples sampled from uniform dis-
tribution in (T + U, T + U + V), loss severities are generated by assuming that Y

φ

follows Poisson(µ) and at last generate settlement type δ by Bernoulli distribution
with success probability hsep

hse+hsep
, where δ = 1 represents settlement with payment

and δ = 0 for settlement without payment, and if δ = 1, generate the loss severities
in the same way as above.

step 3 Order the IBNR claim data generated according to the above two steps by occurrence
time of IBNR claims.

step 4 Given the occurrence time T and reporting delay U of a RBNS claim, first sample
the settlement delays V > τ − T −U from the conditional distribution

Pr(V ≤ v|V > τ − T −U) = 1− e−(hse+hsep)(v+T+U−τ),

then, generate Nrbnsp payments from Poisson((T +U +V− τ)hp) and ordered pay-
ment times that are generated by ordering Nrbnsp samples sampled from uniform
distribution in (τ, T + U + V), loss severities and settlement type are generated
according to step 2.

step 5 For each policy, do Steps 1 to 4 to generate their IBNR claims and their development
and RBNS claims’ developments.
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Figure 2. Simulated values of PRA in (14) under eight cases: (a) I, n1; (b) I, n2; (c) I, n3; (d) I, n4; (e) II,
n1; (f) II, n2; (g) II, n3; (h) II, n4.

We repeated step 1 to 5 in the procedure above for 10,000 times under both scenario
(I, n3) and (II, n3), computed outstanding liabilities R by (8) in each run and finally com-
puted the empirical moments of outstanding liabilities by means of sample mean and



Symmetry 2022, 14, 1582 15 of 16

variance. The results are given in Table 2. Therefore, we obtained 10,000 Rs under both
scenarios. To see the distribution of R under each of the two scenarios, we used the
10,000 samples to estimate the distributions of R by kernel density estimation. We plotted
the estimated results in Figure 3. One can see that the sample mean is close to the expecta-
tion of R under both scenarios. We also computed the sample standard deviations 116,815
for (I, n3) and 82,498 for (II, n3), while computed

√
Var(R|Fτ) were 110,890 and 71,852,

respectively. We can see that the simulated values of
√

Var(R|Fτ) are very close to their
true values.

Table 2. The conditional moments of outstanding liabilities and their empirical version.

Scenario E[R|Fτ ] Var[R|Fτ ]

(I, n3) Actual value 2,402,449 109,522
Empirical value 2,399,602 109,952

(II, n3) Actual value 5,189,782 72,441
Empirical value 5,188,816 75,666
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Figure 3. Estimated density of R
106 , where the vertical solid represents sample mean and the vertical

dashed represents E[R|Fτ ]
106 . (a) I, n3. (b) II, n3.

5. Conclusions

This paper proposed a continuous granular model of loss reserving, which can incor-
porate the feature information of policies, when modeling loss reserving in the continuous
time models. However, for example, studies [2,3,6] are difficult to include in the information
on loss reserving. We also show that adding useful individual information into stochastic
loss reserving greatly improves the prediction accuracy by numerical simulations.

In our proposed model, we assumed that the occurrence times of claims and their
developments of each policy were generated by a Position Independent Marked Poisson
Process, which is influenced by the feature information. Furthermore, we considered the
situation where there may exist more than one payment for every claim. Based on the
model assumption, one method of AMPM was proposed to analytically compute moments
of outstanding liabilities. The AMPM method was also verified by Monte Carlo simulation.
The parameters concerned in our model were estimated by MLE, as well as maximizing
quasi-likelihood, and their asymptotic behaviors were shown. The simulation studies show
that the estimates of parameters are quite accurate and stable. Furthermore, asymptotic
behavior of the loss reserving was studied. To measure the prediction accuracy of the loss
reserving, we computed the mean square error of prediction. In the simulation studies, we
showed that neglecting individual information greatly increases the MSEP and hence fails
to accurately predict the outstanding liabilities.

The work can be extended to consider the dependence between the processes of
settlement and payments. Furthermore, it is more meaningful to further explore how the
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occurrence times of individual claims and their developments depend on the individual
information by, e.g., nonparametric method or neural network.
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