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Abstract: In our paper, we present a sparse quasi-Newton method, called the sparse direct Broyden
method, for solving sparse nonlinear equations. The method can be seen as a Broyden-like method
and is a least change update satisfying the sparsity condition and direct tangent condition simulta-
neously. The local and q-superlinear convergence is presented based on the bounded deterioration
property and Dennis–Moré condition. By adopting a nonmonotone line search, we establish the
global and superlinear convergence. Moreover, the unit step length is essentially accepted. Numerical
results demonstrate that the sparse direct Broyden method is effective and competitive for large-scale
nonlinear equations.
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1. Introduction

We consider the nonlinear equation

F(x) = 0, x ∈ Rn, (1)

where F : Rn → Rn is a continuously differentiable mapping. We denote F′(x) as the
Jacobian matrix of F(x) at x and pay attention to the case F′(x) having sparse or special
structures. Specifically, one has

F(x) = (F1(x), F2(x), · · · , Fn(x))T ,

and
F′(x) = (∇F1(x),∇F2(x), · · · ,∇Fn(x))T .

Nonlinear equations arise from many scientific and engineering problems and have various
applications in the fields such as physics, biology, and many other fields [1].

The linearization of nonlinear Equation (1) at an iterative point xk is

F(x) ≈ F(xk) + F′(xk)(x− xk) = 0;

when F′(xk) is nonsingular, we obtain the Newton–Raphson method

xk+1 = xk − F′(xk)
−1F(xk).

Newton’s method is theoretically efficient because it is locally quadratically convergent
when the Jacobian matrix is nonsigular and Lipschitz continuous at the solution of F(x) [2].
However, at each iteration, Newton’s method must compute the exact Jacobian matrix to
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keep the quadratic convergence rate. The idea of quasi-Newton methods is to approximate
the Jacobian matrix F′(xk) by a quasi-Newtonian matrix Bk with an acceptable reduction of
convergence rate. However, at each iteration, Newton’s method must compute the exact
Jacobian matrix. To avoid computing the derivatives directly, quasi-Newton methods have
been proposed, where F′(xk) is approximated by a quasi-Newton matrix Bk ∈ Rn×n. Thus,
quasi-Newton methods generate an iteration as follows:

xk+1 = xk + αkdk,

where the step length αk > 0 is determined by some line search strategies, and dk is the
quasi-Newton direction obtained by solving the subproblem

F(xk) + Bkdk = 0.

Usually, as an approximation to the Jacobian matrix F′(xk), matrix Bk usually satisfies the
so-called quasi-Newton condition

Bk+1sk = yk,

where

sk = sk+1 − sk = αkdk,

yk = F(xk+1)− F(xk).

The quasi-Newton matrix Bk can be updated by kinds of quasi-Newton update formulae,
such as Broyden’s method, Powell’s symmetric Broyden method, BFGS method, and DFP
methods [3,4].

Quasi-Newton methods are popular among small and medium-scale problems, since
they possess local and superlinear convergence without computing the Jacobian [5–7].
However, when the dimension of nonlinear equations is large, the matrix Bk will be dense.
Then, the computation and time complexity will be high. There are two considerations
to motivate us to consider the sparse quasi-Newton methods for solving sparse nonlinear
equations in this paper. One is the fact that there are lots of nonlinear equations with
sparse or special Jacobian. Moreover, quasi-Newton methods for solving (1) have a good
property that they can maintain the sparse structure of Jacobian matrices. Thus, in this
paper, we are interested in constructing a sparse quasi-Newton method for solving sparse
nonlinear equations, where the Jacobian matrix F′(xk) has sparse or special structure. Ear-
lier work on sparse quasi-Newton methods was carried out by Schubert [8] and Toint [9],
where Schubert modified Broyden’s method by updating Bk row by row so that the spar-
sity can be maintained and Toint studied sparse and symmetric quasi-Newton methods.
There also have been many kinds of methods for solving large-scale nonlinear systems,
such as limited-memory quasi-Newton methods [10,11], partitioned quasi-Newton meth-
ods [12–14], diagonal quasi-Newton method [15,16], and column updating method [17].

However, the global convergence of quasi-Newton methods for nonlinear equations is
a relatively difficult topic, not to mention the dense case. This mainly results from the fact
that the quasi-Newton direction may not be a descent direction of the merit function

θ(x) =
1
2
‖F(x)‖2.

Griewank [18] and Li and Fukushima [19] have proposed some line search techniques to
establish the global convergence of the quasi-Newton method.

The purpose of our paper is to develop a sparse quasi-Newton method and study its
local and global convergence. We consider Broyden’s method

Bk+1 = Bk +
(yk − Bksk)sT

k
sT

k sk
.



Symmetry 2022, 14, 1552 3 of 27

If we replace yk with F′(xk+1)sk, we can obtain the following update

Bk+1 = Bk +
(F′(xk+1)− Bk)sksT

k
sT

k sk
,

which fulfills the direct tangent condition [20,21]

Bk+1sk = F′(xk+1)sk.

We call the corresponding method the direct Broyden method. Then, we will develop a
sparse direct Broyden method, which enjoys the following nice properties: (a) the new
sparse quasi-Newton method is a least change update satisfying the direct tangent condi-
tion; (b) the proposed method can preserve the sparsity property of the original Jacobian
matrix F′(x) exactly; and (c) the sparse direct Broyden method is globally and superlinearly
convergent. Presented limited numerical results demonstrate that our algorithm has better
performance than Schubert’s method and the direct Broyden method in iteration counts,
function evaluation counts, and Broyden’s mean convergence rate.

The paper is organized as follows: in Section 2, we propose a sparse direct Broyden
method and list its nice property. For the full step sparse direct Broyden method, local and
superlinear convergence is also given. By adopting a nonmonotone line search, we prove
the global and superlinear convergence of the method proposed in Section 2. Moreover,
after finitely many iterations, the unit step length will always be accepted. In Section 4, we
do some preliminary numerical experiments to test the efficiency of the proposed method.
In the last section, we give the conclusion.

2. A New Sparse Quasi-Newton Update and Local Convergence

We pay attention to nonlinear Equation (1), whose Jacobian matrix is sparse or has a
special structure. Firstly, we introduce some notations to describe the sparsity structure of
the Jacobian as that in [22]. Define the sparsity features of the ith row of F′(x)

Vi = {v ∈ Rn : eT
j v = 0 for all j such that (F′(x))ij = eT

i F′(x)ej = 0 for all x ∈ Rn},

where ej is the jth column of identity matrix. Then, we can obtain the set of matrices V that
preserve the sparsity pattern of F′(x):

V = {A ∈ Rn×n : ATei ∈ Vi, i = 1, 2, · · · , n}.

Define a projection operator Si, i = 1, 2, . . . , n, which maps Rn onto Vi:(
Si(sk)

)
j
= (s(i)k)j =

{
(sk)j, if vj 6= 0,
0, if vj = 0.

Similar to the derivation of Schubert’s method [8], we consider the sparse extension of
direct Broyden update [2]

Bk+1 = Bk +
(F′(xk+1)− Bk)sksT

k
sT

k sk
,

which fulfills the direct tangent condition

Bk+1sk = F′(xk+1)sk. (2)

Then, we can obtain a compact representation of the new sparse quasi-Newton update as

Bk+1 = Bk +
n

∑
i=1

(s(i)T
k s(i)k)

+eT
i (F′(xk+1)− Bk)skeis(i)T

k , (3)
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where the pseudo-inverse of α ∈ R is defined by

α+ =

{
α−1, if α 6= 0,
0, if α = 0.

The new sparse quasi-Newton method (3) updates the quasi-Newton matrix row by row to
preserve the zero and nonzero structure of the Jacobian.

Then, we can obtain a quasi-Newton method as

xk+1 = xk + αkdk,

where dk can be obtained by solving the following subproblem

F(xk) + Bkdk = 0,

and Bk is updated by sparse direct Broyden update

Bk+1 = Bk +
n

∑
i=1

(s(i)T
k s(i)k)

+eT
i (F′(xk+1)− Bk)skeis(i)T

k .

We call the corresponding method the sparse direct Broyden method. When αk ≡ 1, we
refer to it as a full step sparse direct Broyden method.

Lemma 1. The Bk+1 defined by (3) is the unique solution to the following minimization problem:

min{‖B− Bk‖F : B ∈ V ∩Q(F′(xk+1), sk)}, (4)

where Q(F′(xk+1), sk) = {B ∈ Rn×n |Bsk = F′(xk+1)sk}.

Proof. Firstly, we will prove that Bk+1 ∈ V ∩Q(F′(xk+1), sk)}. For i = 1, 2, · · · , n, multiply
both sides of (3) by eT

i , to obtain

eT
i Bk+1 = eT

i Bk + (s(i)T
k s(i)k)

+eT
i (F′(xk+1)− Bk)sks(i)T

k .

Since BT
k ei ∈ Vi and sk ∈ Vi, then we have BT

k+1ei ∈ Vi, which implies Bk+1 ∈ V.
If s(i)k 6= 0, one has

eT
i Bk+1sk = eT

i Bksk + (s(i)T
k s(i)k)

+eT
i (F′(xk+1)− Bk)sks(i)T

k sk. (5)

According to the definition of the operator Si, we have

s(i)T
k s(i)k = s(i)T

k skand(s(i)T
k s(i)k)

+ = (s(i)T
k s(i)k)

−1.

Then, (5) can be written as

eT
i Bk+1sk = eT

i Bksk + eT
i (F′(xk+1)− Bk)sk = eT

i F′(xk+1)sk.

If s(i)k = 0, we have

eT
i F′(xk+1)sk = eT

i F′(xk+1)s(i)k = 0,

thus eT
i Bk+1sk = eT

i F′(xk+1)sk, which implies Bk+1sk = F′(xk+1)sk. Therefore, Bk+1 ∈
Q(F′(xk+1), sk)}.

Then, we will prove the uniqueness. Suppose that B̄k+1 ∈ Q(F′(xk+1), sk)}. Since
B̄k+1sk = F′(xk+1)sk and (B̄k+1 − Bk)sk = (B̄k+1 − Bk)s(i)k, one has

Bk+1 = Bk +
n

∑
i=1

(s(i)T
k s(i)k)

+eT
i (B̄k+1 − Bk)skeis(i)T

k .
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Taking the Frobenius norm,

‖Bk+1 − Bk‖F =

(
n

∑
i=1
‖eT

i (Bk+1 − Bk)‖2

)1/2

=

(
n

∑
i=1
‖(s(i)T

k s(i)k)
+eT

i (B̄k+1 − Bk)sks(i)T
k ‖

2

)1/2

=

(
n

∑
i=1
|(s(i)T

k s(i)k)
+eT

i (B̄k+1 − Bk)s(i)k|2 · ‖s(i)k‖2

)1/2

≤
(

n

∑
i=1,s(i)k 6=0

‖eT
i (B̄k+1 − Bk)‖2

)1/2

≤
(

n

∑
i=1
‖eT

i (B̄k+1 − Bk)‖2

)1/2

= ‖B̄k+1 − Bk‖F,

where the first inequality follows from the triangle inequality. Since the function f (B) =
‖B− Bk‖F is strictly convex and the constraint condition (4) is convex, we can obtain the
uniqueness.

To analyze the local convergence of the full step sparse direct Broyden method, first
we show that the bounded deterioration property

‖Bk+1 − F′(x∗)‖F ≤ (1 + α1σk)‖Bk − F′(x∗)‖F + α2γk, (6)

is satisfied with some constants α1, α2 ≥ 0, where γk = max{‖xk − x∗‖2, ‖xk+1 − x∗‖2}2.

Lemma 2. Suppose that F : Rn → Rn is continuously differentiable in D0, which is an open and
convex set. Let x∗ ∈ D0 be a solution of (1) at which F′(x∗) is nonsingular. Suppose that there
exists K = (k1, k2, · · · , kn) ∈ Rn with ki ≥ 0, for i = 1, 2, . . . , n, such that

‖eT
i (F′(x)− F′(y))‖ ≤ ki‖x− y‖, ∀x, y ∈ D0.

Then, one has the estimation

‖Bk+1 − F′(x∗)‖2
F ≤ ‖Bk − F′(x∗)‖2

F −
‖(Bk − F′(x∗))sk‖2

‖sk‖2 + L2γk,

where L = ‖K‖2.

Proof. For the case sk = 0, then it is obvious that F(xk) = 0 and xk = x∗. For the case
sk 6= 0, subtracting F′(x∗) from both sides of the update formula

Bk+1 = Bk +
n

∑
i=1

(s(i)T
k s(i)k)

+eT
i (F′(xk+1)− Bk)skeis(i)T

k ,

and multiplying by eT
i , i = 1, 2, · · · , n, one has

eT
i (Bk+1 − F′(x∗))

= eT
i (Bk − F′(x∗)) + (s(i)T

k s(i)k)
+eT

i (F′(xk+1)− Bk)sks(i)T
k

= eT
i (Bk − F′(x∗))(I − (s(i)T

k s(i)k)
+s(i)ks(i)T

k )

+(s(i)T
k s(i)k)

+eT
i (F′(xk+1)− F′(x∗))sks(i)T

k .



Symmetry 2022, 14, 1552 6 of 27

Taking norms yields

‖eT
i (Bk+1 − F′(x∗))‖2

F

= ‖eT
i (Bk − F′(x∗))(I − (s(i)T

k s(i)k)
+s(i)ks(i)T

k )‖
2

+(s(i)T
k s(i)k)

+|eT
i (F′(xk+1)− F′(x∗))sk|2

= ‖eT
i (Bk − F′(x∗))‖2

2 − (s(i)T
k s(i)k)

+|eT
i Eks(i)k|2

+(s(i)T
k s(i)k)

+|eT
i (F′(xk+1)− F′(x∗))sk|2

≤ ‖eT
i Ek‖2

2 −
|eT

i Eksk|2

‖sk‖2 + (s(i)T
k s(i)k)

+|eT
i (F′(xk+1)− F′(x∗))sk|2. (7)

If s(i)k = 0, then we have (s(i)T
k s(i)k)

+ = 0. It is obvious that

0 = (s(i)T
k s(i)k)

+|eT
i (F′(xk+1)− F′(x∗))sk|2 ≤ k2

i σk.

If s(i)k 6= 0, it follows that

(s(i)T
k s(i)k)

+|eT
i (F′(xk+1)− F′(x∗))sk|2

= (s(i)T
k s(i)k)

+|eT
i (F′(xk+1)− F′(x∗))s(i)k|2

≤ ‖eT
i (F′(xk+1)− F′(x∗))‖2

≤ k2
i ‖xk+1 − x∗‖2

≤ k2
i σ2

k .

Thus, (7) reduces to

‖eT
i (Bk+1 − F′(x∗))‖2

F ≤ ‖eT
i (Bk − F′(x∗))‖2 −

|eT
i (Bk − F′(x∗))sk|2

‖sk‖2 + k2
i γk,

Make a summation to obtain

‖(Bk+1 − F′(x∗))‖2
F ≤ ‖(Bk − F′(x∗))‖2

F −
‖(Bk − F′(x∗))sk‖2

‖sk‖2 + L2γk. (8)

Based on the classical framework of Dennis and Moré, we give the following local
convergence, which can be proved similar to the case of Broyden’s method [6,7].

Theorem 1. Let the conditions in Lemma 2 hold. Then, there exist constants ε, δ > 0 such that, if
‖x0 − x∗‖2 < ε and ‖B0 − F′(x∗)‖F < δ, the sequence {xk} is well defined and converges to x∗.
Furthermore, the convergence rate is superlinear.

Proof. According to Lemma 2, one has

‖(Bk+1 − F′(x∗))‖F ≤ ‖(Bk − F′(x∗)‖F + Lγk,

which means that the estimation (6) is satisfied with α1 = 0 and α2 = L. Then, we obtain
the local and linear convergence of {xk}.

Next, we will show the Dennis–Moré condition [7]

lim
k→∞

‖(Bk − F′(x∗))sk‖
‖sk‖

= 0 (9)
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is satisfied. According to (8), one has

‖(Bk+1 − F′(x∗))‖F ≤
(
‖(Bk − F′(x∗))‖2

F −
‖(Bk − F′(x∗))sk‖2

‖sk‖2

)1/2

+ Lγk;

then, the result can be proved similar to that in [7].

3. Algorithm and Global Convergence

In this section, by the use of LF condition [19], we propose a global sparse Broyden
method, whose specific steps are listed in the following Algorithm 1.

Algorithm 1 (Sparse direct Broyden Method for solving sparse nonlinear equations)

Step 0. Given constant σ1, σ2 > 0 and ρ, r ∈ (0, 1). Given a positive sequence {ηk}
satisfying

∞

∑
k=0

ηk ≤ η < ∞. (10)

Given x0 ∈ Rn, stop tolerance ε > 0, and a nonsingular matrix B0 ∈ Rn×n. Set k := 0.
Step 1. Stop if ‖F(xk)‖ ≤ ε.
Step 2. Solve the subproblem

F(xk) + Bkdk = 0 (11)

to obtain the quasi-Newton direction dk.
Step 3. If

‖F(xk + dk)‖ ≤ ρ‖F(xk)‖ − σ1‖dk‖2, (12)

then let αk := 1 and go to Step 5. Else, go to Step 4.
Step 4. Set αk = rik , where ik is the smallest nonnegative integer i satisfying

‖F(xk + ridk)‖ ≤ ‖F(xk)‖ − σ2‖ridk‖2 + ηk‖F(xk)‖, (13)

where ηk is defined as in (10).
Step 5. Set xk+1 := xk + αkdk.
Step 6. Update Bk to obtain Bk+1 by sparse direct Broyden update

Bk+1 = Bk +
n

∑
i=1

(s(i)T
k s(i)k)

+eT
i (F′(xk+1)− Bk)skeis(i)T

k , (14)

Set k := k + 1. Go to Step 1.

Remark 1. It is noticed that the update formula (14) may be singular when Bk is nonsingular.
In this case, we use a similar technique in [22,23] and give the following discussion about the
nonsingular sparse direct Broyden update.

Set H0 = Bk, and for i = 1, 2, . . . , n, let

Hi = H0 +
i

∑
j=1

θ
j
k(s(j)T

k s(j)k)
+eT

j (F′(xk+1)− Bk)skejs(j)T
k

= Hi−1 + θi
k(s(i)

T
k s(i)k)

+eT
i (F′(xk+1)− Bk)skeis(i)T

k .

Since eT
i H0 = eT

i H1 = · · · = eT
i Hi−1, then

Hi = Hi−1 + θi
k(s(i)

T
k s(i)k)

+eT
i (F′(xk+1)− Hi−1)skeis(i)T

k .
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For a scalar α ∈ (0, 1), θi
k can be chosen such that

| det Hi |≥| n
√

α | det Hi−1 |, θi
k ∈

[
1− n
√

α

1 + n
√

α
, 1

]
.

Thus, | detBk+1 |≥ α | detBk | and θi
k can be chosen so that

Bk+1 is nonsigular, and | θi
k − 1 |≤ θ̂ < 1.

Thus, we can define the sparse direct Broyden-like update formula as

Bk+1 = Bk +
n

∑
i=1

θi
k(s(i)

T
k s(i)k)

+eT
i (F′(xk+1)− Bk)skeis(i)T

k .

Remark 2. It can be seen that the update formula (14) includes F′(xk+1), but it does not need
to compute F′(xk+1) in practice. Automatic differentiation is a chain-rule-based technique for
evaluating the derivatives with respect to the input variables of functions defined by a high-level
computer program. Automatic Differentiation has two basic modes of operations, the forward
mode and the reverse mode. In the forward mode, the derivatives are propagated throughout the
computation using the chain rule, while in the reverse mode the adjoint derivatives are propagated
backwards. The forward mode and reverse mode of automatic differentiation provide the possibility
to compute F′(x)s and σT F′(x) exactly within machine accuracy for given vectors x, s and σ.

To establish the global convergence, we need the following conditions.

Assumption 1. (1) F is continuously differentiable on Ω, which is a bounded level set defined
by

Ω = {x ∈ Rn | ‖F(x)‖ ≤ eη‖F(x0)‖}.

(2) F′(x) is Lipschitz continuous on Ω with Lipschitz constant L > 0

‖F′(x)− F′(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Ω.

(3) F′(x) is nonsingular for any x ∈ Ω.

First, we give the following important lemmas.

Lemma 3. The sequence {xk} generated by Algorithm 1 is contained in Ω. Moreover, it holds that

∞

∑
k=0
‖sk‖2 < ∞, (15)

and the sequence {‖F(xk)‖} converges.
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Proof. According to the line search (12) and (13), one has for any k

‖F(xk+1)‖ ≤ (1 + ηk)‖F(xk)‖
...

≤ ‖F(x0)‖
[
Πk

j=0(1 + ηj)
]

≤ ‖F(x0)‖
[

1
k + 1

k

∑
j=0

(1 + ηj)

]k+1

= ‖F(x0)‖
[

1 +
1

k + 1

k

∑
j=0

ηj

]k+1

≤ ‖F(x0)‖
[(

1 +
η

k + 1

) k+1
η
]η

≤ eη‖F(x0)‖.

Thus, {xk} is contained in level set Ω. Moreover, the sequence {‖F(xk)‖} is bounded.
On the basis of (12) and (13), we have for each k that

σ0‖sk‖2 = σ0‖xk+1 − xk‖2 ≤ ‖F(xk)‖ − ‖F(xk+1)‖+ ηk‖Fk‖,

where σ0 = min{σ1, σ2}. We can obtain (15) by taking summation on both sides for k from
0 to ∞.

Finally, since {‖F(xk)‖} satisfies

‖F(xk + αkdk)‖ ≤ (1 + ηk)‖F(xk)‖,

and {ηk} satisfies
∞

∑
k=0

ηk ≤ η < ∞,

we then obtain the convergence of {‖F(xk)‖}.

Denote

δk =
‖(F′(xk+1)− Bk)sk‖

‖sk‖
=
‖F′(xk+1)sk + F(xk)‖

‖sk‖
.

Lemma 4. Suppose that the sequence {xk} is generated by Algorithm 1, and F′(x) is Lipschitz
continuous with a common Lipschitz constant L > 0. If

∞

∑
k=0
‖sk‖2 < ∞,

then we have

lim
t→∞

1
t

t−1

∑
k=0

δ2
k = 0. (16)

In addition, there exists a subsequence of {δk} tending to zero. If

∞

∑
k=0
‖sk‖ < ∞,

then we have
∞

∑
k=0

δ2
k < ∞. (17)
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In addition, the whole sequence {δk} converges to zero.

Proof. According to the update (14), we have

eT
i Bk+1 = eT

i Bk + (s(i)T
k s(i)k)

+eT
i (F′(xk+1)− Bk)sks(i)T

k .

Subtracting eT
i F′(xk+1), we obtain

eT
i (Bk+1 − F′(xk+1))

= eT
i (Bk − F′(xk+1)) + (s(i)T

k s(i)k)
+eT

i (F′(xk+1)− Bk)sks(i)T
k

= eT
i (Bk − F′(xk+1))

(
I − (s(i)T

k s(i)k)
+sks(i)T

k

)
= eT

i (Bk − F′(xk+1))
(

I − (s(i)T
k s(i)k)

+s(i)ks(i)T
k

)
.

Taking norms yields

‖eT
i (Bk+1 − F′(xk+1))‖2

= ‖eT
i (Bk − F′(xk+1))(I − (s(i)T

k s(i)k)
+s(i)ks(i)T

k )‖
2

= ‖eT
i (Bk − F′(xk+1))‖2 − (s(i)T

k s(i)k)
+(eT

i (Bk − F′(xk+1))sk)
2

≤ ‖eT
i (Bk − F′(xk+1))‖2 −

‖eT
i (Bk − F′(xk+1))sk‖2

‖sk‖2 .

Since ‖Bk+1 − F′(xk+1)‖2
F = ∑n

i=1 ‖eT
i (Bk+1 − F′(xk+1))‖2, making summation from i = 1

to n yields

‖Bk+1 − F′(xk+1)‖2
F

≤
n

∑
i=1

(
‖eT

i (Bk − F′(xk+1))‖2 −
‖eT

i (Bk − F′(xk+1))sk‖2

‖sk‖2

)

= ‖(Bk − F′(xk+1))‖2
F −
‖(Bk − F′(xk+1))sk‖2

‖sk‖2

= ‖(Bk − F′(xk+1))‖2
F − δ2

k .

Denote
Dk = Bk − F′(xk) and Ek = F′(xk+1)− F′(xk).

Then, one has that, for k ≥ 1,

‖Dk‖F ≤ ‖Bk−1 − F′(xk)‖F ≤ ‖Dk−1‖F + ‖Ek−1‖F

≤ · · · ≤ ‖D0‖F +
k−1

∑
j=0
‖Ej‖F,

and

δ2
k ≤ ‖Bk − F′(k+1)‖2

F − ‖Bk+1 − F′(xk+1)‖2
F

= ‖Dk − Ek‖F − ‖Dk+1‖2
F

≤ ‖Dk‖2
F − ‖Dk+1‖2

F + ‖Ek‖2
F + 2‖Ek‖F‖Dk‖F

≤ ‖Dk‖2
F − ‖Dk+1‖2

F + ‖Ek‖2
F + 2‖Ek‖F ·

(
‖D0‖F +

k−1

∑
j=0
‖Ej‖F

)
.
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Making summation on both sides from k = 0 to t− 1, we have for 1 ≤ p < t

t−1

∑
k=1

δ2
k ≤ ‖D0‖2

F +
t−1

∑
k=0
‖Ek‖2

F + 2
t−1

∑
k=1
‖Ek‖F

(
‖D0‖F +

k−1

∑
j=0
‖Ej‖F

)

≤ ‖D0‖2
F +

t−1

∑
k=0
‖Ek‖2

F + 2‖D0‖F

t−1

∑
k=1
‖Ek‖F + 2

t−1

∑
k=1
‖Ek‖F

k−1

∑
j=0
‖Ej‖F

= ‖D0‖2
F + 2‖D0‖2

F

t−1

∑
k=1
‖Ek‖F + 2

(
t−1

∑
k=1
‖Ek‖F

)2

=

(
‖D0‖F +

t−1

∑
k=0
‖Ek‖F

)2

(18)

≤
(
‖D0‖F +

p−1

∑
k=0
‖Ek‖F +

t−1

∑
k=p
‖Ek‖F

)2

≤ 2

(
‖D0‖F +

p−1

∑
k=0
‖Ek‖F

)2

+ 2

(
t−1

∑
k=p
‖Ek‖F

)2

≤ 2

(
‖D0‖F +

p−1

∑
k=0
‖Ek‖F

)2

+ 2(t− p)
t−1

∑
k=p
‖Ek‖2

F.

Dividing both sides by t and letting t→ ∞, we have

lim
t→∞

1
t

t−1

∑
k=1

δ2
k ≤ 2 lim

t→∞

t− p
t

t−1

∑
k=p
‖Ek‖2

F ≤ 2
∞

∑
k=p
‖Ek‖2

F.

If ∑∞
k=0 ‖sk‖2 < ∞, then the Lipschitz continuity of F′(x) together with the last inequality

implies

lim
t→∞

1
t

t−1

∑
k=0

δ2
k = 0.

Then, there is a subsequence of {δk} tending to zero. If ∑∞
k=0 ‖sk‖ < ∞, then (17) comes

from (18). Moreover, the whole sequence {δk} converges to zero. This completes the
proof.

Theorem 2. Let the conditions in Assumption 1 hold. Then, the sequence {xk} generated by
Algorithm 1 converges to the unique solution x∗ of (1).

Proof. We first verify
lim
k→∞

inf ‖F(xk)‖ = 0. (19)

According to Lemma 3, the sequence {‖F(xk)‖} converges. Thus, we only need to prove
that there is an accumulation point of {xk}, which is the unique solution of (1). If there are
infinitely many αk, which is obtained by the line search condition (12), then

‖F(xk+1)‖ ≤ ρ‖F(xk)‖

holds for infinitely many k. This indicates lim infk→∞ ‖F(xk)‖ = 0.
There are only finite many αk, which is obtained by the line search condition (12).

By (15) and Lemma 4, there is a subsequence {δk}k∈K converging to zero. Since {xk}K is
bounded, we may assume that {xk}K → x∗ without loss of generality. Hence, {F′(xk+1)}
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tends to F′(x∗), and there exists a constant C1 such that ‖F′(xk+1)‖ ≤ C1 for all sufficiently
large k ∈ K. According to the subproblem (11) and the definition of δk, one has

‖dk‖ = ‖F′(xk+1)
−1((F′(xk+1)− Bk)dk − F(xk))‖

≤ ‖F′(xk+1)
−1‖

(
‖(F′(xk+1)− Bk)dk‖+ ‖F(xk)‖

)
≤ C1(δk‖dk‖+ ‖F(xk)‖),

which indicates that there exists a constant M1 such that

‖dk‖ ≤ M1‖F(xk)‖

holds for all sufficiently large k ∈ K. Thus, the subsequence {dk}K is bounded, and we can
assume that {dk}K → d∗. Since ‖(F′(xk+1)− Bk)dk‖ = δk‖dk‖, then we have

Bkdk → F′(x∗)d∗, k→ ∞, k ∈ K.

Taking limit in the subproblem (11) as k→ ∞, k ∈ K, one has

F′(x∗)d∗ + F(x∗) = 0. (20)

Denote α∗ = lim supk→∞,k∈K αk. It is clear that α∗ ≥ 0 and α∗d∗ = 0. If ᾱ > 0, then d∗ = 0;
hence, it follows from (20) that F(x∗) = 0. If α∗ = 0, or equivalently limk→∞ αk = 0.
According to the line search rule, when k ∈ K is sufficiently large, αk < 1 and hence

‖F(xk + ρ−1αkdk)‖ − ‖F(xk)‖ > −σ2‖ρ−1αkdk‖2. (21)

Multiplying both sides of (21) by (‖F(xk + ρ−1αkdk))‖+ ‖F(xk)‖)/(ρ−1αk) and taking limit
as k→ ∞, k ∈ K, we obtain

F(x∗)T F′(x∗)d∗ ≥ 0.

Combined with (20), we have F(x∗) = 0. Then, we complete the proof.

In what follows, we will show that, when k is sufficiently large, the αk ≡ 1 will
be accepted.

Theorem 3. Suppose Assumption 1 holds and {xk} is generated by Algorithm 1. Then, there exist
a constant δ > 0 and an index k̄ such that αk = 1 whenever δk ≤ δ and k ≥ k̄. Furthermore,
the inequality (12) holds for all k ≥ k̄ satisfying δk ≤ δ.

Proof. According to Theorem 2, {xk} converges to the solution x∗ of (1). Then, there exists
a constant M2 > 0 such that ‖F′(xk+1)

−1‖ ≤ M2 for all k sufficiently large. Moreover, it
can be deduced similarly that there exists constant M3 > 0 such that, when δk ≤ δ and k is
large enough,

‖ dk ‖≤ M3 ‖ F(xk) ‖ . (22)

By the subproblem (11), one has

F′(xk+1)(xk + dk − x∗) = F′(xk+1)(xk − x∗) + (F′(xk+1)− Bk)dk − F(xk)

= (F′(xk+1)− F′(x∗))(xk − x∗) + (F′(xk+1)− Bk)dk

−F(xk) + F(x∗) + F′(x∗)(xk − x∗).
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This implies

‖xk + dk − x∗‖ ≤ ‖F′(xk+1)
−1‖

(
‖F′(xk+1)− F′(x∗)‖ ‖xk − x∗‖+ ‖(F′(xk+1)− Bk)dk‖

+ ‖F(xk)− F(x∗)− F′(x∗)(xk − x∗)‖
)

≤ M2(o(‖xk − x∗‖) + δk‖dk‖)
≤ M2(o(‖xk − x∗‖) + δk M3‖F(xk)− F(x∗)‖)
≤ M2(o(‖xk − x∗‖) + δk M3M4‖xk − x∗‖),

where M4 an upper bound of ‖F′(x)‖ on the level set Ω. Then, by the last inequality, we
have

‖F(xk + dk)‖ = ‖F(xk + dk)− F(x∗)‖
≤ M4‖xk + dk − x∗‖
≤ M2M4(o(‖xk − x∗‖) + δk M3M4‖xk − x∗‖),

On the other hand, by the nonsingularity of F′(x∗) and the convergence of {xk}, there is a
constant m > 0 such that the inequality

‖F(xk)‖ = ‖F(xk)− F(x∗)‖ ≥ m‖xk − x∗‖ (23)

holds for all k sufficiently large. Thus, we deduce from (22) and (23) that, when δk ≤ δ,

‖F(xk+1)‖ − ρ‖F(xk)‖+ σ1‖dk‖2

≤ M2M4(o(‖xk − x∗‖) + δk M3M4‖xk − x∗‖ − ρm‖xk − x∗‖+ σ1M2
3‖F(xk)‖2

≤ (M2M3M2
4δk − ρm)‖xk − x∗‖+ o(‖xk − x∗‖) + σ1M2

2 M2
3‖xk − x∗‖2

≤ −(ρm−M2M3M2
4δk)‖xk − x∗‖+ o(‖xk − x∗‖).

Let δ = min{δ, 1
2 ρm(M2M3M2

4)
−1}; then, we complete the proof.

The following theorem presents that Algorithm 1 is superlinearly convergent.

Theorem 4. Let the Assumption 1 hold. Then, the sequence {xk} generated by Algorithm 1
converges to the unique solution x∗ of (1) superlinearly.

Proof. Let δ and k̄ be as defined by Theorem 3. Then, according to Lemma 4, we have that

1
k

k−1

∑
j=0

δ2
j ≤

1
2

δ2

holds for all k ≥ k̃, which implies that, in this case, there are at least d k
2emany indices j ≤ k

satisfying δj ≤ δ. Let k
′
= max{k̄, k̃}. Moreover, on the basis of Theorem 3, for any k ≥ 2k

′
,

there are at least d k
2e − k

′
many indices j ≤ k, which make αj = 1 and

‖F(xj+1)‖ = ‖F(xj + dk)‖ ≤ ρ‖F(xj)‖. (24)

Define Jk = {j | (24) holds } and |Jk| as the number of the elements in Jk. Then, |Jk| ≥
k
2 − k

′ − 1. On the other side, for each j 6∈ Jk, we have

‖F(xj+1)‖ ≤ (1 + ηk)‖F(xj)‖. (25)

Multiplying inequalities (24) with j ∈ Jk and (25) with j 6∈ Jk from j = k′ to k yields

‖F(xk+1)‖ ≤ λjk‖F(xk′ )‖[Π
k
j=k′

(1 + ηj)] ≤ ‖F(xk′ )‖λ
k
2−k

′−1eη .
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Thus, we obtain
∞
∑

k=0
‖F(xk)‖ < ∞. This together with (23) implies

∞
∑

k=0
‖xk − x∗‖ < ∞,

and hence
∞

∑
k=0
‖sk‖ < ∞.

Then, following from Lemma 4, one has

δk = 0.

Consequently, according to (23), the sequence {xk} converges to x∗ superlinearly.

4. Numerical Experiments

In this section, we compare the SDBroyden method with Schubert’s method [8]. We
also compare the SDBroyden method with a direct Broyden method and Newton’s method.
All the methods are written in MATLAB R2018a and run in an iMac with 16G. The product
F′(x)s is computed by the automatic differentiation tool TOLMAB [24].

The testing problems are listed in Appendix A. The Jacobian matrices of the tested
problems have different structures such as: diagonal (Problem 1, 2), tridiagonal (Problems
3, 4, 5, 6, 7, 8), block-diagonal (Problems 9, 10, 11), and special structure (Problem 12).
The parameters in Algorithm 1 are specified as [19]

ε = 10−5, ρ = 0.9, σ1 = σ2 = 0.001, β = 0.45, ηk =
1

(k + 1)2 .

For all the methods, we also stop the iteration if the number of iterations exceeds 200. We re-
port the numerical performance of the above four methods in Tables 1–7 and Figures 1 and 2,
where the meaning of each column is as follows:

Schubert: Schubert’s method;
SDBroyden: sparse direct Broyden method with LF condition;
Pro the number of the test problem;
Dim: the dimension of the problem;
Ite the total number of iterations;
Nfun: the total number of function evaluations;
R: Broyden’s mean convergence rate;
Time(s): CPU time in second;
Fail: the stopping criterion was not satisfied.

(1) In the first set of our numerical experiments, we test the performance of the
SDBroyden method and Schubert’s method. When B0 is chosen as unit matrix I, the results
are listed in Tables 1 and 2, respectively. For SDBroyden method and Schubert’s method,
we compute the problems with dimensions (n = 10, 20, 50, 100, 200, 500, 1000, 2000, 5000,
10,000, 20,000, 50,000), but we select a subset of the dimensions ( n = 10, 100, 1000, 2000,
10,000, 20,000, 50,000) to improve the readability of the corresponding tables. The two
methods fail on two problems (3, 8). Considering the iteration counts, the SDBroyden
method is more efficient than Schubert’s method on seven problems (1, 2, 4, 5, 10, 11,
12), equivalent to Schubert’s method on three problems (6, 7, 9). For the total number of
function evaluations, the SDBroyden method has better performance on seven problems
(1, 2, 4, 9, 10, 11, 12), while Schubert’s method needs less function evaluations on one
problem (5), and both methods are equivalent on two problems (6, 7). As for the Broyden’s
mean convergence rate, SDBroyden works well on seven problems (1, 2, 4, 6, 10, 11, 12),
equal to Schubert’s method on three problems (5, 7, 9). It can be seen that the SDBroyden
method outperforms Schubert’s method in iteration counts, function evaluation counts,
and Broyden’s mean convergence rate.
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Table 1. Results of Schubert’s method with B0 = I.

Pro(Dim) 10 100 1000 2000 10,000 20,000 50,000

(1)Ite 6 6 6 6 6 6 6
(1)Nfun 7 7 7 7 7 7 7
(1)R 0.8915 1.1098 1.1326 1.1338 1.1349 1.1350 1.1351
(1)Time(s) 0.0600 0.0000 0.0200 0.0000 0.0400 0.0400 0.0800

(2)Ite 7 7 7 7 7 7 7
(2)Nfun 8 8 8 8 8 8 8
(2)R 1.0407 1.0831 1.0919 1.0924 1.0929 1.0929 1.0929
(2)Time(s) 0.0100 0.0000 0.0100 0.0000 0.0200 0.0400 0.0900

(4)Ite 12 12 12 13 16 14 14
(4)Nfun 20 20 21 23 26 21 22
(4)R 0.3429 0.3440 0.3496 0.3441 0.3215 0.4183 0.4178
(4)Time(s) 0.0100 0.0000 0.0000 0.0100 0.1300 0.2400 0.4100

(5)Ite 20 17 25 22 22 16 21
(5)Nfun 63 32 64 73 40 36 48
(5)R 0.1051 0.2288 0.1106 0.1052 0.1902 0.2461 0.1664
(5)Time(s) 0.0400 0.0000 0.0000 0.0000 0.1400 0.1600 0.3400

(6)Ite 4 3 2 2 2 2 1
(6)Nfun 5 4 3 3 3 3 2
(6)R 1.5553 2.5624 3.0388 3.4398 4.3713 4.7641 3.8427
(6)Time(s) 0.0600 0.0000 0.0100 0.0000 0.0200 0.0300 0.0300

(7)Ite 10 8 6 6 4 4 3
(7)Nfun 11 11 8 8 6 6 5
(7)R 0.4980 0.3935 0.5299 0.5489 0.5362 0.5613 0.5820
(7)Time(s) 0.0300 0.0000 0.0000 0.0000 0.0300 0.0700 0.1100

(9)Ite 4 4 4 4 4 4 4
(9)Nfun 7 7 7 7 7 7 7
(9)R Inf Inf Inf Inf Inf Inf Inf
(9)Time(s) 0.0400 0.0000 0.0000 0.0000 0.5100 0.9400 1.5100

Dim 12 102 1002 2001 10,002 20,001 50,001
(10)Ite 4 4 5 5 5 5 5
(10)Nfun 6 6 7 7 7 7 7
(10)R 1.0563 1.0563 1.5586 1.5586 1.5586 1.5586 1.5586
(10)Time(s) 0.0100 0.0000 0.1100 0.1300 0.2600 0.4500 0.8000

Dim 12 102 1002 2001 10,002 20,001 50,001
(11)Ite 6 6 7 7 7 7 7
(11)Nfun 8 8 9 9 9 9 9
(11)R 0.9175 0.9175 1.4972 1.4972 1.4972 1.4972 1.4972
(11)Time(s) 0.0300 0.0100 0.3000 0.1000 0.5200 0.7900 1.7100

(12)Ite 5 5 5 5 5 6 6
(12)Nfun 6 6 6 6 6 7 7
(12)R 1.1312 1.1156 1.1142 1.1142 1.1141 1.5918 1.5985
(12)Time(s) 0.0400 0.0000 0.0000 0.0000 0.0200 0.0500 0.1200
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Table 2. Results of the SDBroyden method with B0 = I.

Pro(Dim) 10 100 1000 2000 10,000 20,000 50,000

(1)Ite 5 4 5 5 5 5 5
(1)Nfun 6 5 6 6 6 6 6
(1)R 1.6865 1.2113 2.1390 2.1415 2.1435 2.1437 2.1439
(1)Time(s) 0.0700 0.3600 1.4700 2.5200 13.2600 27.9500 88.0700

(2)Ite 5 5 5 5 5 6 6
(2)Nfun 6 6 6 6 6 7 7
(2)R 1.1023 1.1587 1.1705 1.1712 1.1718 1.9449 1.9450
(2)Time(s) 0.0300 0.2200 0.7800 1.7400 7.8200 20.2500 59.1100

(4)Ite 12 12 12 12 13 13 13
(4)Nfun 17 18 18 20 19 19 20
(4)R 0.4108 0.4253 0.4335 0.4085 0.4443 0.4747 0.4364
(4)Time(s) 0.2850 1.2600 11.2800 22.5000 139.3500 299.0400 834.3150

(5)Ite 16 16 20 18 19 20
(5)Nfun 29 35 57 48 52 48 56
(5)R 0.2179 0.2396 0.1505 0.1674 0.1738 0.1664 0.1675
(5)Time(s) 0.1400 0.5100 4.6200 17.5600 80.7900 182.6200 375.0000

(6)Ite 3 2 2 2 2 2 1
(6)Nfun 4 3 3 3 3 3 2
(6)R 1.4566 2.4834 4.4685 5.0549 5.6778 5.1461 3.8427
(6)Time(s) 0.0500 0.0800 0.6200 1.1100 6.5800 13.2100 20.2600

(7)Ite 10 8 6 6 4 4 3
(7)Nfun 11 11 8 8 6 6 5
(7)R 0.4980 0.3935 0.5299 0.5489 0.5362 0.5613 0.5820
(7)Time(s) 0.1700 0.3800 2.0700 4.1000 14.1400 29.3900 69.4400

(9)Ite 4 4 4 4 4 4 4
(9)Nfun 6 6 6 6 6 6 6
(9)R Inf Inf Inf Inf Inf Inf Inf
(9)Time(s) 0.0500 0.1450 0.5600 1.3000 13.6700 28.0700 84.4600

Dim 12 102 1002 2001 10,002 20,001 50,001
(10)Ite 3 3 3 3 4 4 4
(10)Nfun 5 5 5 5 6 6 6
(10)R 1.3420 1.3420 1.3420 1.3420 2.3852 2.3852 2.3852
(10)Time(s) 0.0600 0.1700 0.9000 1.8100 10.8000 21.5800 64.8000

Dim 12 102 1002 2001 10,002 20,001 50,001
(11)Ite 5 6 6 6 6 6 6
(11)Nfun 7 8 8 8 8 8 8
(11)R 1.0013 1.8209 1.8209 1.8209 1.8209 1.8209 1.8209
(11)Time(s) 0.0900 0.3000 2.1500 3.5300 18.8500 40.5600 109.5900

(12)Ite 4 4 4 4 4 4 4
(12)Nfun 5 5 5 5 5 5 5
(12)R 1.7679 1.7551 1.7540 1.7539 1.7538 1.7538 1.7538
(12)Time(s) 0.0500 0.1500 0.6700 1.2700 6.4500 13.7700 43.1500

When B0 is chosen as the exact Jacobian matrix F′(x0), the results are given in Tables 3 and 4,
respectively. The two methods solve the 12 problems successfully. The SDBroyden method
needs fewer iterations than Schubert’s method on seven problems (1, 2, 4, 5, 8, 10, 11), equal
iterations with Schubert’s method on five problems (3, 6, 7, 9, 12). For the total number of
function evaluations, the SDBroyden method is more efficient than Schubert’s method on six
problems (1, 2, 4, 5, 8, 11) and equivalent to Schubert’s method on six problems (3, 6, 7, 9,
10, 12). As for the Broyden’s mean convergence rate, SDBroyden has better performance on
nine problems (1, 2, 3, 4, 5, 8, 10, 11, 12) and equals Schubert’s method on two problems (7, 9).
The two methods are competitive on one problem (6). It also can be seen that the SDBroyden
method outperforms Schubert’s method in terms of number of iterations, number of function
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evaluations, and Broyden’s mean convergence rate. Meanwhile, the CPU time of SDBroyden
method is mostly more than that of Schubert’s method.

Table 3. Results of Schubert’s method with B0 = F′(x0).

Pro(Dim) 10 100 1000 2000 10,000 20,000 50,000

(1)Ite 6 6 6 6 6 6 6
(1)Nfun 8 7 7 7 8 8 8
(1)R 0.8661 0.9523 0.9693 0.9703 0.9077 0.9077 0.9077
(1)Time(s) 0.0000 0.0000 0.0100 0.0000 0.0300 0.0400 0.0900

(2)Ite 6 6 6 6 6 6 6
(2)Nfun 7 7 7 7 7 7 7
(2)R 1.1690 1.1982 1.2024 1.2026 1.2028 1.2028 1.2028
(2)Time(s) 0.0500 0.0000 0.0000 0.0000 0.0400 0.0400 0.0800

(3)Ite 10 11 11 11 11 11 11
(3)Nfun 11 12 12 12 12 12 12
(3)R 0.6216 0.5988 0.6391 0.6515 0.6806 0.6931 0.7097
(3)Time(s) 0.0400 0.0000 0.0200 0.0000 0.0900 0.1400 0.2000

(4)Ite 13 23 23 29 21 30 27
(4)Nfun 25 44 45 58 44 81 72
(4)R 0.2705 0.1743 0.1820 0.1455 0.2054 0.1256 0.2367
(4)Time(s) 0.0500 0.0000 0.0100 0.0000 0.0600 0.1100 0.1800

(5)Ite 18 24 26 24 23 23 23
(5)Nfun 26 44 68 54 42 42 42
(5)R 0.2543 0.1425 0.1190 0.1420 0.1864 0.1900 0.1947
(5)Time(s) 0.0600 0.0000 0.0000 0.0000 0.2100 0.2400 0.5100

(6)Ite 5 3 2 2 2 2 2
(6)Nfun 6 4 3 3 3 3 3
(6)R 1.1562 1.8540 2.4963 2.8469 3.6620 4.0131 4.4773
(6)Time(s) 0.0400 0.0000 0.0100 0.0000 0.0100 0.0400 0.0700

(7)Ite 12 12 7 4 1 1 1
(7)Nfun 18 21 11 6 2 2 2
(7)R 0.2585 0.2158 0.3382 0.6401 1.7302 1.8807 2.0797
(7)Time(s) 0.0100 0.0000 0.0100 0.0100 0.0100 0.0400 0.0500

(8)Ite 8 8 8 7 7 7 7
(8)Nfun 10 11 10 9 10 10 19
(8)R 0.5898 0.5317 0.5779 0.5637 0.5789 0.5881 0.6023
(8)Time(s) 0.0300 0.0000 0.0000 0.0000 0.4200 1.3500 3.8000

(9)Ite 3 3 3 3 3 3 3
(9)Nfun 4 4 4 4 4 4 4
(9)R 4.0327 4.0327 4.0327 4.0327 4.0327 4.0327 4.0327
(9)Time(s) 0.0000 0.0100 0.0000 0.0100 0.0400 0.0700 0.2300

Dim 12 102 1002 2001 10,002 20,001 50,001
(10)Ite 9 10 10 10 11 11 11
(10)Nfun 10 11 11 11 12 12 12
(10)R 0.5520 0.5886 0.5886 0.5886 0.6701 0.6701 0.6701
(10)Time(s) 0.0200 0.0200 0.2800 0.2600 0.7400 1.1800 2.4700

Dim 12 102 1002 2001 10,002 20,001 50,001
(11)Ite 5 6 6 6 6 6 6
(11)Nfun 6 7 7 7 7 7 7
(11)R 1.1416 1.7664 1.7664 1.7664 1.7664 1.7664 1.7664
(11)Time(s) 0.0300 0.0300 0.2000 0.2200 0.4300 0.6500 1.3500

(12)Ite 8 8 8 8 8 8 8
(12)Nfun 9 9 9 9 9 9 10
(12)R 0.5909 0.6449 0.7003 0.7170 0.7558 0.7725 0.7210
(12)Time(s) 0.0200 0.0000 0.0000 0.0100 0.0600 0.1100 0.1800
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Table 4. Results of the SDBroyden method with B0 = F′(x0).

Pro(Dim) 10 100 1000 2000 10,000 20,000 50,000

(1)Ite 4 5 5 5 5 5 5
(1)Nfun 6 6 6 6 7 7 7
(1)R 0.9211 1.6975 1.7287 1.7304 1.6431 1.6431 1.6431
(1)Time(s) 0.0300 0.2200 1.6600 2.6400 14.2100 29.4400 88.3100

(2)Ite 4 4 4 5 5 5 5
(2)Nfun 5 5 5 6 6 6 6
(2)R 1.2544 1.2872 1.2916 2.1183 2.1187 2.1187 2.1187
(2)Time(s) 0.0400 0.1300 0.6600 1.6900 7.7100 16.1100 48.0500

(3)Ite 11 11 11 11 11 11 11
(3)Nfun 12 12 12 12 12 12 12
(3)R 0.5609 0.5642 0.6045 0.6170 0.6460 0.6586 0.6751
(3)Time(s) 0.1900 0.6100 5.5200 10.8000 55.6500 112.3100 307.9200

(4)Ite 13 17 17 18 20 23 18
(4)Nfun 24 28 28 35 38 59 56
(4)R 0.2867 0.2688 0.2707 0.2218 0.6251 0.5620 0.6294
(4)Time(s) 0.1500 0.8900 5.8100 12.4900 66.7200 142.7600 402.8600

(5)Ite 23 21 22 20 20 20 20
(5)Nfun 46 40 35 34 34 34 34
(5)R 0.1996 0.1651 0.1957 0.2207 0.2309 0.2354 0.2412
(5)Time(s) 0.3500 1.7100 13.8200 26.4100 143.4000 293.5900 341.0000

(6)Ite 4 3 2 2 2 2 2
(6)Nfun 5 4 3 3 3 3 3
(6)R 1.1204 2.0735 2.4895 2.8401 3.6550 4.0062 4.4704
(6)Time(s) 0.1000 0.1800 1.1100 1.6500 8.7100 20.2800 53.0700

(7)Ite 12 12 7 4 1 1 1
(7)Nfun 18 21 11 6 2 2 2
(7)R 0.2585 0.2158 0.3382 0.6401 1.7302 1.8807 2.0797
(7)Time(s) 0.2100 0.8900 3.9500 4.4100 5.9700 12.5000 32.9300

(8)Ite 11 7 6 6 6 6 6
(8)Nfun 14 9 8 8 9 9 9
(8)R 0.4237 0.5767 0.6337 0.8068 0.7790 0.7811 0.7995
(8)Time(s) 0.1900 0.4100 2.8100 6.1500 13.3900 24.0600 48.4500

(9)Ite 3 3 3 3 3 3 3
(9)Nfun 4 4 4 4 4 4 4
(9)R Inf Inf Inf Inf Inf Inf Inf
(9)Time(s) 0.0300 0.1400 0.5400 1.3100 5.7400 13.2200 37.1600

Dim 12 102 1002 2001 10,002 20,001 50,001
(10)Ite 8 9 9 9 9 9 9
(10)Nfun 10 11 11 11 11 11 11
(10)R 0.5616 0.6068 0.6068 0.6068 0.6309 0.6374 0.6438
(10)Time(s) 0.1300 0.4600 3.5500 6.6100 39.4200 82.5100 242.4400

Dim 12 102 1002 2001 10,002 20,001 50,001
(11)Ite 4 5 5 5 5 5 5
(11)Nfun 5 6 6 6 6 6 6
(11)R 1.3736 2.3204 2.3204 2.3204 2.3204 2.3204 2.3204
(11)Time(s) 0.0600 0.2300 1.8600 2.9500 15.8600 33.6900 92.8300

(12)Ite 8 8 8 8 8 8 7
(12)Nfun 9 9 9 9 9 9 9
(12)R 0.6704 0.7239 0.7793 0.7960 0.8348 0.8515 0.7721
(12)Time(s) 0.1100 0.2900 2.1600 3.7500 19.3700 41.5900 106.5800

Performance ration [25] is used to compare the numerical performance. For given
solvers set S and problems set P, let tp,s be the number of iterations, the number of function
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evaluations or others, required to solve problem p by solver s. Then, define the performance
ration as

rp,s =
tp,s

min{tp,q : q ∈ S} ,

whose distribution function is defined as

ρs(t) =
1

Np
size{p ∈ P : rp,s ≤ t},

where Np is the number of problems in the set P. Thus, ρs : R→ [0, 1] was the probability
for solver s ∈ S that a performance ratio rp,s was within a factor t ∈ R of the best possible
ratio. According to the definition of performance profiles, we can see that the top curve
corresponds to the best solver.

In Figure 1, the performance of the two methods: the SDBroyden method and Schu-
bert’s method, relative to the number of iterations, and the number of function evaluations
are evaluated. Figure 1 indicates that SDBroyden has better performance than Schubert’s
method on the number of iterations and number of function evaluations.

Figure 1. Performance profiles for SDBroyden and Schubert: (a) results comparison on the number of
iterations with B0 = I; (b) results comparison on the number of function evaluations with B0 = I;
(c) results comparison on the number of iterations with B0 = F′(x0); (d) results comparison on the
number of function evaluations with B0 = F′(x0).

(2) In the second set of numerical experiments, we compare the SDBroyden method
with the direct Broyden quasi-Newton method (DBQN). We give the results of the DBQN
method with B0 = I in Table 5. The DBQN method fails on four problems (3, 5, 8, 9). For the
number of iterations and number of function evaluations, the SDBroyden method needs
less iterations on five problems (2, 4, 6, 7, 11) and equals DBQN on three problems (1, 10,
12). For the Broyden’s mean convergence rate, the SDBroyden method performs better on
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five problems (2, 4, 6, 7, 11), equals DBQN on two problems (1, 10), and works badly on
one problem (12).

Table 5. Results of the DBQN method with B0 = I.

Pro(Dim) 10 20 50 100 200 500 1000

(1)Ite 5 4 4 4 4 5 5
(1)Nfun 6 5 5 5 5 6 6
(1)R 1.6865 1.0998 1.1828 1.2113 1.2258 2.1341 2.1390
(1)Time(s) 0.2900 0.1900 0.1500 0.5400 0.5600 3.1000 19.3500

(2)Ite 5 5 5 5 5 6 6
(2)Nfun 6 6 6 6 6 7 7
(2)R 0.9943 1.0107 1.0229 1.0274 1.0297 1.2624 1.2631
(2)Time(s) 0.1000 0.1300 0.1600 0.2100 0.4500 3.1700 21.8400

(4)Ite 24 33 53 59 58 73 95
(4)Nfun 42 68 117 118 120 187 318
(4)R 0.1630 0.0963 0.0606 0.0585 0.0587 0.0383 0.0233
(4)Time(s) 1.0800 1.9000 6.3600 12.6900 24.1200 97.9500 510.2200

(6)Ite 6 5 3 3 2 2 2
(6)Nfun 7 6 4 4 3 3 3
(6)R 0.8516 1.1498 1.6230 2.0975 2.4436 3.0384 3.4893
(6)Time(s) 0.2000 0.2700 0.1500 0.7800 0.4200 1.5500 8.1900

(7)Ite 15 23 20 24 14 12 11
(7)Nfun 22 32 30 27 29 22 20
(7)R 0.2285 0.1356 0.1421 0.1510 0.1401 0.1741 0.1863
(7)Time(s) 0.5700 0.6900 1.3200 3.0500 3.9500 10.9700 47.1200

Dim 12 21 51 102 201 501 1002
(10)Ite 3 3 3 3 3 3 3
(10)Nfun 5 5 5 5 5 5 5
(10)R 1.3420 1.3420 1.3420 1.3420 1.3420 1.3420 1.3420
(10)Time(s) 0.1500 0.1800 0.1300 0.2600 0.6400 2.0000 10.9100

Dim 12 21 51 102 201 501 1002
(11)Ite 7 7 7 7 8 8 8
(11)Nfun 13 13 13 13 14 14 14
(11)R 0.5532 0.5532 0.5532 0.5532 0.6535 0.6224 0.5851
(11)Time(s) 0.2200 0.3400 0.2800 0.5700 1.3100 4.8700 33.8700

(12)Ite 4 4 4 4 4 4 4
(12)Nfun 5 5 5 5 5 5 5
(12)R 1.9415 1.8389 1.7860 1.7696 1.7617 1.7569 1.7554
(12)Time(s) 0.1400 0.1700 0.1500 0.2500 0.5000 2.1700 13.6100

The results of the DBQN method with B0 = F′(x0) are listed in Table 6. The DBQN
method fails on one problem (5). For the number of iterations, SDBroyden is better than the
DBQN method on seven problems (2, 4, 6, 8, 10, 11, 12), equivalent to the DBQN method
on three problems (1, 3, 9). At the same time, DBQN performs well on one problem (7).
For the number of function evaluations and Broyden’s mean convergence rate, SDBroyden
is excellent on six problems (2, 4, 6, 8, 11, 12), while the DBQN method works well on one
problem (10). The two methods coincide with each other on three problems (3, 9, 10).
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Table 6. Results of the DBQN method with B0 = F′(x0).

Pro(Dim) 10 20 50 100 200 500 1000

(1)Ite 4 5 5 5 5 5 5
(1)Nfun 6 6 6 6 6 6 6
(1)R 0.9211 1.5530 1.6623 1.6975 1.7149 1.7252 1.7287
(1)Time(s) 0.0900 0.2200 0.4800 0.5100 0.6700 3.1600 20.2400

(2)Ite 11 11 12 12 12 13 13
(2)Nfun 12 12 13 13 13 14 14
(2)R 0.4726 0.4677 0.4819 0.4822 0.4827 0.4807 0.4808
(2)Time(s) 0.2000 0.3300 0.3200 0.5100 1.1300 6.7900 47.0600

(3)Ite 10 11 11 11 11 11 11
(3)Nfun 11 12 12 12 12 12 12
(3)R 0.5629 0.5496 0.5542 0.5641 0.5754 0.5912 0.6035
(3)Time(s) 0.4800 0.6900 0.7200 1.1800 2.2700 9.2200 45.4800

(4)Ite 16 25 32 29 35 34 33
(4)Nfun 23 40 56 58 64 83 67
(4)R 0.3164 0.1641 0.1241 0.1219 0.1142 0.0897 0.1128
(4)Time(s) 0.7800 1.2400 4.0200 6.7600 15.7000 49.1800 180.5200

(6)Ite 5 5 4 4 3 3 3
(6)Nfun 6 6 5 5 4 4 4
(6)R 1.0196 1.1784 1.5102 1.9224 1.8193 2.2563 2.5914
(5)Time(s) 0.1000 0.1700 0.3200 0.4400 0.6200 2.2700 12.2300

(7)Ite 3 3 3 3 3 1 1
(7)Nfun 4 4 4 4 4 2 2
(7)R 1.5674 1.8740 2.2760 2.5987 2.9294 2.0320 2.2588
(7)Time(s) 0.1100 0.1000 0.3100 0.3900 0.7100 0.8600 4.2900

(8)Ite 14 14 18 23 20 23 24
(8)Nfun 20 23 38 59 44 76 80
(8)R 0.2827 0.2437 0.1454 0.0953 0.1199 0.0731 0.0670
(8)Time(s) 0.6300 1.0300 1.6100 2.7100 5.0500 20.8500 102.1800

Dim 12 21 51 102 201 501 1002
(9)Ite 3 3 3 3 3 3 3
(9)Nfun 4 4 4 4 4 4 4
(9)R 3.8134 3.7605 3.7383 3.5184 3.4381 3.6076 3.5910
(9)Time(s) 0.0300 0.0600 0.2200 0.2200 0.3700 1.4300 9.5300

Dim 12 21 51 102 201 501 1002
(10)Ite 9 9 9 9 9 9 9
(10)Nfun 10 10 10 10 10 10 10
(10)R 0.7420 0.7420 0.7420 0.7420 0.7420 0.7420 0.7420
(10)Time(s) 0.3200 0.2500 0.4300 1.4000 1.6200 6.0500 32.8000

Dim 12 21 51 102 201 501 1002
(11)Ite 5 5 5 5 5 5 5
(11)Nfun 6 6 6 6 6 6 6
(11)R 1.3488 1.3488 1.3488 1.3488 1.3488 1.3488 1.3488
(11)Time(s) 0.1300 0.1300 0.1900 0.4200 0.7500 3.0700 20.7800

(12)Ite 11 13 15 15 15 15 15
(12)Nfun 12 14 16 16 16 16 16
(12)R 0.4607 0.3912 0.3475 0.3534 0.3610 0.3720 0.3808
(12)Time(s) 0.1500 0.3900 0.5600 0.9900 1.9300 8.0200 55.5800
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In Figure 2, we also give the comparison of the SDBroyden method and DBQN method
relative to the number of iterations and number of function evaluations. It can be seen
that the top curve corresponds to the SDBroyden method. This means that the SDBroyden
method has satisfactory performance in terms of number of iterations and number of
function evaluations when compared with its dense version.

Figure 2. Performance profiles of SDBroyden and DBQN (a) results comparison on the number of
iterations with B0 = I; (b) results comparison on the number of function evaluations with B0 = I;
(c) results comparison on the number of iterations with B0 = F′(x0); (d) results comparison on the
number of function evaluations with B0 = F′(x0).

(3) In the third set of our numerical experiments, we compare the SDBroyden method
with Newton’s method, where the results are listed in Table 7. Newton’s method fails on
three problems (5, 8, 10). One can see that the SDBroyden method requires slightly more
iterations than Newton’s method in most tests and has no significant advantages in the
number of iterations, number of function evaluations, and Broyden’s mean convergence
rate. However, the CPU time for Newton’s method is much higher than that of the
SDBroyden method. Moreover, the CPU time of Newton’s method increases significantly
faster than that of the quasi-Newton methods. Thus, the SDBroyden method can be applied
to solve large-scale nonlinear equations.
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Table 7. Results of the Newton’s method.

Pro(Dim) 10 20 50 100 200 500 1000

(1)Ite 4 5 5 5 5 5 5
(1)Nfun 6 6 6 6 6 6 6
(1)R 0.9211 1.5530 1.6623 1.6975 1.7149 1.7252 1.7287
(1)Time(s) 0.0000 0.0000 0.0100 0.0700 0.1900 1.9100 16.8700

(2)Ite 4 4 4 4 4 4 4
(2)Nfun 5 5 5 5 5 5 5
(2)R 1.2544 1.2704 1.2826 1.2872 1.2896 1.2911 1.2916
(2)Time(s) 0.0100 0.0000 0.0100 0.0100 0.1500 2.2600 13.3200

(3)Ite 4 4 4 4 4 4 5
(3)Nfun 5 5 5 5 5 5 6
(3)R 1.2884 1.3061 1.3333 1.3542 1.3729 1.3913 2.2609
(3)Time(s) 0.0000 0.0000 0.0100 0.0100 0.1900 2.1300 17.8300

(4)Ite 16 17 18 18 19 19 20
(4)Nfun 17 18 19 19 20 20 21
(4)R 0.3721 0.3649 0.3625 0.3617 0.3620 0.3618 0.3623
(4)Time(s) 0.0200 0.0100 0.0100 0.1100 0.8500 7.8600 67.7600

(6)Ite 15 12 8 6 5 4 3
(6)Nfun 16 13 9 7 6 5 4
(6)R 0.3600 0.4488 0.6793 0.9078 1.1567 1.4961 1.7423
(6)Time(s) 0.0300 0.0000 0.0100 0.0600 0.2000 1.4900 9.9400

(7)Ite 22 18 12 8 4 1 1
(7)Nfun 23 19 13 9 5 2 2
(7)R 0.1919 0.2323 0.3217 0.4503 0.7825 2.0320 2.2588
(7)Time(s) 0.0300 0.0000 0.0200 0.0600 0.1200 0.3800 3.3100

(9)Ite 2 2 2 2 2 2 2
(9)Nfun 3 3 3 3 3 3 3
(9)R Inf Inf Inf Inf Inf Inf Inf
(9)Time(s) 0.0000 0.0000 0.0100 0.0100 0.1000 0.7000 5.8800

Dim 12 21 51 102 201 501 1002
(11)Ite 3 3 3 3 3 3 3
(11)Nfun 4 4 4 4 4 4 4
(11)R 2.0137 2.0137 2.0137 2.0137 2.0137 2.0137 2.0137
(11)Time(s) 0.0100 0.0000 0.0100 0.0200 0.1100 1.0600 11.1200

(12)Ite 4 4 4 4 4 4 4
(12)Nfun 5 5 5 5 5 5 5
(12)R 1.4972 1.4718 1.4581 1.4541 1.4523 1.4511 1.4508
(12)Time(s) 0.0100 0.0000 0.0100 0.0300 0.1600 1.2900 12.0100

5. Conclusions

We have developed a sparse direct Broyden quasi-Newton method for solving large-
scale nonlinear equations, which is the sparse case of the direct Broyden method and is an
extension of Broyden’s method. The method approximates the Jacobian matrix by least
change updating and satisfies the sparsity condition and direct tangent condition simul-
taneously. We show that the method is locally and superlinearly convergent. Combined
with a nonmonotone line search, we also establish the global and superlinear convergence.
In particular, the unit step length is essentially accepted. Our numerical results show that
the proposed method is effective and competitive for sparse nonlinear equations.
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Appendix A

In this section, we list the test problems with initial guess x0

F(x) = ( f1(x), f2(x) . . . , fn(x))T ,

where references [26–35] are cited in the Appendix A.
Problem 1. Logarithmic function [26]

Fi(x) = ln(xi + 1)− xi
n

, i = 1, 2, . . . , n.

x0 = (1, 1, . . . , 1)T .

Problem 2. Strictly convex function [27]
F(x) is the gradient of h(x) = ∑n

i=1(e
xi − xi).

Fi(x) = exi − 1, i = 1, 2, . . . , n.

x0 =

(
1
n

,
2
n

, . . . , 1

)T

.

Problem 3. Broyden Tridiagonal function [28]

F1(x) = (3− 0.5x1)x1 − 2x2 + 1,

Fi(x) = (3− 0.5xi)xi − xi−1 − 2xi+1 + 1, i = 2, . . . , n− 1,

Fn(x) = (3− 0.5xn)xn − xn−1 + 1.

x0 = (−3,−3, . . . ,−3)T .

Problem 4. Trigexp function [28]

F1(x) = 3x3
1 + 2x2 − 5 + sin(x1 − x2) sin(x1 + x2),

Fi(x) = −xi−1e(xi−1−xi) + xi(4 + 3x2
i ) + 2xi+1

+ sin(xi − xi+1) sin(xi + xi+1)− 8, i = 2, . . . , n− 1,

Fn(x) = −xn−1e(xn−1−xn) + 4xn − 3.

x0 = (0, 0, . . . , 0)T .
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Problem 5. Tridiagonal system [29]

F1(x) = 4(x1 − x2
2),

Fi(x) = 8xi(x2
i − xi−1)− 2(1− xi) + 4(xi − x2

i+1), i = 2, . . . , n− 1

Fn(x) = 8xn(x2
n − xn−1)− 2(1− xn).

x0 = (12, . . . , 12)T .

Problem 6. Tridiagonal exponential problem [30]

F1(x) = x1 − exp(cos(h(x1 + x2))),

Fi(x) = xi − exp(cos(h(xi−1 + xi + xi+1))), i = 2, . . . , n− 1,

Fn(x) = xn − exp(cos(h(xn−1 + xn))),

h = 1/(n + 1).

x0 = (1.5, 1.5, . . . , 1.5)T .

Problem 7. Discrete boundary value problem [31]

F1(x) = 2x1 + 0.5h2(x1 + h)3 − x2,

Fi(x) = 2xi + 0.5h2(xi + hi)3 − xi−1 + xi+1, i = 2, . . . , n− 1,

Fn(x) = 2xn + 0.5h2(xn + hn)3 − xn−1,

h = 1/(n + 1).

x0 = (h(h− 1), h(2h− 1), . . . , h(nh− 1))T .

Problem 8. Troesch problem [32]

F1(x) = 2x1 + ρh2 sinh(ρx1)− x2,

Fi(x) = 2xi + ρh2 sinh(ρxi)− xi−1 − xi+1, i = 2, . . . , n− 1,

Fn(x) = 2xn + ρh2 sinh(ρxn)− xn−1,

ρ = 10, h = 1/(n + 1).

x0 = (0, 0, . . . , 0)T .

Problem 9. Extended Rosenbrock function (n is even) [33]

F2i−1(x) = 10(x2i − x2
2i−1),

F2i(x) = 1− x2i−1, i = 1, 2, . . . , n/2.

x0 = (5, 1, . . . , 5, 1)T .

Problem 10. Problem 21 in [26] (n is multiple of 3)

F3i−2(x) = x3i−2x3i−1 − x2
3i − 1,

F3i−1(x) = x3i−2x3i−1x3i − x2
3i−2 + x2

3i−1 − 2,

F3i(x) = e−x3i−2 − e−x3i−1 , i = 1, 2, . . . , n/3.

x0 = (1, 1, · · · , 1)T .
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Problem 11. Tridimensional valley function (n is multiple of 3) [34]

F3i−2(x) = (c2x3
3i−2 + c1x3i−2) exp

(
−x2

3i−2
100

)
− 1,

F3i−1(x) = 10(sin(x3i−2)− x3i−1),

F3i(x) = 10(cos(x3i−2)− x3i), i = 1, 2, . . . , n/3,

c1 = 1.003344481605351,

c2 = −3.344481605351171× 10−3.

x0 = (2, 1, 2, . . . , 2, 1, 2)T .

Problem 12. [35]

F1(x) = x1,

Fi(x) = cos(xk−1) + xk − 1, i = 2, . . . , n.

x0 = (0.5, 0.5, . . . , 0.5)T .
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