

 symmetry-14-01552

symmetry-14-01552

Symmetry 2022, 14(8), 1552; doi:10.3390/sym14081552

Article

A Class of Sparse Direct Broyden Method for Solving Sparse Nonlinear Equations

Huiping Cao 1,*[image: Orcid] and Jing Han 2[image: Orcid]

1

School of Science, Xi’an Polytechnic University, Xi’an 710048, China

2

College of Science, Central South University of Forestry and Technology, Changsha 410004, China

*

Correspondence: huiping_cao@hnu.edu.cn

Academic Editors: Calogero Vetro and Dorian Popa

Received: 11 June 2022 / Accepted: 25 July 2022 / Published: 28 July 2022

Abstract

:

In our paper, we present a sparse quasi-Newton method, called the sparse direct Broyden method, for solving sparse nonlinear equations. The method can be seen as a Broyden-like method and is a least change update satisfying the sparsity condition and direct tangent condition simultaneously. The local and q-superlinear convergence is presented based on the bounded deterioration property and Dennis–Moré condition. By adopting a nonmonotone line search, we establish the global and superlinear convergence. Moreover, the unit step length is essentially accepted. Numerical results demonstrate that the sparse direct Broyden method is effective and competitive for large-scale nonlinear equations.

Keywords:

sparse nonlinear equations; quasi-Newton method; direct tangent condition; an approximation to the Jacobian matrix; global and superlinear convergence

MSC:

65K05; 65H10; 90C53

1. Introduction

We consider the nonlinear equation

 F (x) = 0 , x ∈ R n ,

(1)

where F : R n → R n is a continuously differentiable mapping. We denote F ′ (x) as the Jacobian matrix of F (x) at x and pay attention to the case F ′ (x) having sparse or special structures. Specifically, one has

 F (x) = (F 1 (x) , F 2 (x) , ⋯ , F n (x)) T ,

and

 F ′ (x) = (∇ F 1 (x) , ∇ F 2 (x) , ⋯ , ∇ F n (x)) T .

Nonlinear equations arise from many scientific and engineering problems and have various applications in the fields such as physics, biology, and many other fields [1].

The linearization of nonlinear Equation (1) at an iterative point x k is

 F (x) ≈ F (x k) + F ′ (x k) (x − x k) = 0 ;

when F ′ (x k) is nonsingular, we obtain the Newton–Raphson method

 x k + 1 = x k − F ′ (x k) − 1 F (x k) .

Newton’s method is theoretically efficient because it is locally quadratically convergent when the Jacobian matrix is nonsigular and Lipschitz continuous at the solution of F (x) [2]. However, at each iteration, Newton’s method must compute the exact Jacobian matrix to keep the quadratic convergence rate. The idea of quasi-Newton methods is to approximate the Jacobian matrix F ′ (x k) by a quasi-Newtonian matrix B k with an acceptable reduction of convergence rate. However, at each iteration, Newton’s method must compute the exact Jacobian matrix. To avoid computing the derivatives directly, quasi-Newton methods have been proposed, where F ′ (x k) is approximated by a quasi-Newton matrix B k ∈ R n × n . Thus, quasi-Newton methods generate an iteration as follows:

 x k + 1 = x k + α k d k ,

where the step length α k > 0 is determined by some line search strategies, and d k is the quasi-Newton direction obtained by solving the subproblem

 F (x k) + B k d k = 0 .

Usually, as an approximation to the Jacobian matrix F ′ (x k) , matrix B k usually satisfies the so-called quasi-Newton condition

 B k + 1 s k = y k ,

where

 s k = s k + 1 − s k = α k d k , y k = F (x k + 1) − F (x k) .

The quasi-Newton matrix B k can be updated by kinds of quasi-Newton update formulae, such as Broyden’s method, Powell’s symmetric Broyden method, BFGS method, and DFP methods [3,4].

Quasi-Newton methods are popular among small and medium-scale problems, since they possess local and superlinear convergence without computing the Jacobian [5,6,7]. However, when the dimension of nonlinear equations is large, the matrix B k will be dense. Then, the computation and time complexity will be high. There are two considerations to motivate us to consider the sparse quasi-Newton methods for solving sparse nonlinear equations in this paper. One is the fact that there are lots of nonlinear equations with sparse or special Jacobian. Moreover, quasi-Newton methods for solving (1) have a good property that they can maintain the sparse structure of Jacobian matrices. Thus, in this paper, we are interested in constructing a sparse quasi-Newton method for solving sparse nonlinear equations, where the Jacobian matrix F ′ (x k) has sparse or special structure. Earlier work on sparse quasi-Newton methods was carried out by Schubert [8] and Toint [9], where Schubert modified Broyden’s method by updating B k row by row so that the sparsity can be maintained and Toint studied sparse and symmetric quasi-Newton methods. There also have been many kinds of methods for solving large-scale nonlinear systems, such as limited-memory quasi-Newton methods [10,11], partitioned quasi-Newton methods [12,13,14], diagonal quasi-Newton method [15,16], and column updating method [17].

However, the global convergence of quasi-Newton methods for nonlinear equations is a relatively difficult topic, not to mention the dense case. This mainly results from the fact that the quasi-Newton direction may not be a descent direction of the merit function

 θ (x) = 1 2 ∥ F (x) ∥ 2 .

Griewank [18] and Li and Fukushima [19] have proposed some line search techniques to establish the global convergence of the quasi-Newton method.

The purpose of our paper is to develop a sparse quasi-Newton method and study its local and global convergence. We consider Broyden’s method

 B k + 1 = B k + (y k − B k s k) s k T s k T s k .

If we replace y k with F ′ (x k + 1) s k , we can obtain the following update

 B k + 1 = B k + (F ′ (x k + 1) − B k) s k s k T s k T s k ,

which fulfills the direct tangent condition [20,21]

 B k + 1 s k = F ′ (x k + 1) s k .

We call the corresponding method the direct Broyden method. Then, we will develop a sparse direct Broyden method, which enjoys the following nice properties: (a) the new sparse quasi-Newton method is a least change update satisfying the direct tangent condition; (b) the proposed method can preserve the sparsity property of the original Jacobian matrix F ′ (x) exactly; and (c) the sparse direct Broyden method is globally and superlinearly convergent. Presented limited numerical results demonstrate that our algorithm has better performance than Schubert’s method and the direct Broyden method in iteration counts, function evaluation counts, and Broyden’s mean convergence rate.

The paper is organized as follows: in Section 2, we propose a sparse direct Broyden method and list its nice property. For the full step sparse direct Broyden method, local and superlinear convergence is also given. By adopting a nonmonotone line search, we prove the global and superlinear convergence of the method proposed in Section 2. Moreover, after finitely many iterations, the unit step length will always be accepted. In Section 4, we do some preliminary numerical experiments to test the efficiency of the proposed method. In the last section, we give the conclusion.

2. A New Sparse Quasi-Newton Update and Local Convergence

We pay attention to nonlinear Equation (1), whose Jacobian matrix is sparse or has a special structure. Firstly, we introduce some notations to describe the sparsity structure of the Jacobian as that in [22]. Define the sparsity features of the ith row of F ′ (x)

 V i = { v ∈ R n : e j T v = 0 for all j such that (F ′ (x)) i j = e i T F ′ (x) e j = 0 for all x ∈ R n } ,

where e j is the jth column of identity matrix. Then, we can obtain the set of matrices V that preserve the sparsity pattern of F ′ (x) :

 V = { A ∈ R n × n : A T e i ∈ V i , i = 1 , 2 , ⋯ , n } .

Define a projection operator S i , i = 1 , 2 , … , n , which maps R n onto V i :

 S i (s k) j = (s (i) k) j = (s k) j , if v j ≠ 0 , 0 , if v j = 0 .

Similar to the derivation of Schubert’s method [8], we consider the sparse extension of direct Broyden update [2]

 B k + 1 = B k + (F ′ (x k + 1) − B k) s k s k T s k T s k ,

which fulfills the direct tangent condition

 B k + 1 s k = F ′ (x k + 1) s k .

(2)

Then, we can obtain a compact representation of the new sparse quasi-Newton update as

 B k + 1 = B k + ∑ i = 1 n (s (i) k T s (i) k) + e i T (F ′ (x k + 1) − B k) s k e i s (i) k T ,

(3)

where the pseudo-inverse of α ∈ R is defined by

 α + = α − 1 , if α ≠ 0 , 0 , if α = 0 .

The new sparse quasi-Newton method (3) updates the quasi-Newton matrix row by row to preserve the zero and nonzero structure of the Jacobian.

Then, we can obtain a quasi-Newton method as

 x k + 1 = x k + α k d k ,

where d k can be obtained by solving the following subproblem

 F (x k) + B k d k = 0 ,

and B k is updated by sparse direct Broyden update

 B k + 1 = B k + ∑ i = 1 n (s (i) k T s (i) k) + e i T (F ′ (x k + 1) − B k) s k e i s (i) k T .

We call the corresponding method the sparse direct Broyden method. When α k ≡ 1 , we refer to it as a full step sparse direct Broyden method.

Lemma 1.

The B k + 1 defined by (3) is the unique solution to the following minimization problem:

 min { ∥ B − B k ∥ F : B ∈ V ∩ Q (F ′ (x k + 1) , s k) } ,

(4)

where Q (F ′ (x k + 1) , s k) = { B ∈ R n × n | B s k = F ′ (x k + 1) s k } .

Proof.

Firstly, we will prove that B k + 1 ∈ V ∩ Q (F ′ (x k + 1) , s k) } . For i = 1 , 2 , ⋯ , n , multiply both sides of (3) by e i T , to obtain

 e i T B k + 1 = e i T B k + (s (i) k T s (i) k) + e i T (F ′ (x k + 1) − B k) s k s (i) k T .

Since B k T e i ∈ V i and s k ∈ V i , then we have B k + 1 T e i ∈ V i , which implies B k + 1 ∈ V .

If s (i) k ≠ 0 , one has

 e i T B k + 1 s k = e i T B k s k + (s (i) k T s (i) k) + e i T (F ′ (x k + 1) − B k) s k s (i) k T s k .

(5)

According to the definition of the operator S i , we have

 s (i) k T s (i) k = s (i) k T s k and (s (i) k T s (i) k) + = (s (i) k T s (i) k) − 1 .

Then, (5) can be written as

 e i T B k + 1 s k = e i T B k s k + e i T (F ′ (x k + 1) − B k) s k = e i T F ′ (x k + 1) s k .

If s (i) k = 0 , we have

 e i T F ′ (x k + 1) s k = e i T F ′ (x k + 1) s (i) k = 0 ,

thus e i T B k + 1 s k = e i T F ′ (x k + 1) s k , which implies B k + 1 s k = F ′ (x k + 1) s k . Therefore, B k + 1 ∈ Q (F ′ (x k + 1) , s k) } .

Then, we will prove the uniqueness. Suppose that B ¯ k + 1 ∈ Q (F ′ (x k + 1) , s k) } . Since B ¯ k + 1 s k = F ′ (x k + 1) s k and (B ¯ k + 1 − B k) s k = (B ¯ k + 1 − B k) s (i) k , one has

 B k + 1 = B k + ∑ i = 1 n (s (i) k T s (i) k) + e i T (B ¯ k + 1 − B k) s k e i s (i) k T .

Taking the Frobenius norm,

 ∥ B k + 1 − B k ∥ F = ∑ i = 1 n ∥ e i T (B k + 1 − B k) ∥ 2 1 / 2 = ∑ i = 1 n ∥ (s (i) k T s (i) k) + e i T (B ¯ k + 1 − B k) s k s (i) k T ∥ 2 1 / 2 = ∑ i = 1 n | (s (i) k T s (i) k) + e i T (B ¯ k + 1 − B k) s (i) k | 2 · ∥ s (i) k ∥ 2 1 / 2 ≤ ∑ i = 1 , s (i) k ≠ 0 n ∥ e i T (B ¯ k + 1 − B k) ∥ 2 1 / 2 ≤ ∑ i = 1 n ∥ e i T (B ¯ k + 1 − B k) ∥ 2 1 / 2 = ∥ B ¯ k + 1 − B k ∥ F ,

where the first inequality follows from the triangle inequality. Since the function f (B) = ∥ B − B k ∥ F is strictly convex and the constraint condition (4) is convex, we can obtain the uniqueness. □

To analyze the local convergence of the full step sparse direct Broyden method, first we show that the bounded deterioration property

 ∥ B k + 1 − F ′ (x *) ∥ F ≤ (1 + α 1 σ k) ∥ B k − F ′ (x *) ∥ F + α 2 γ k ,

(6)

is satisfied with some constants α 1 , α 2 ≥ 0 , where γ k = max { ∥ x k − x * ∥ 2 , ∥ x k + 1 − x * ∥ 2 } 2 .

Lemma 2.

Suppose that F : R n → R n is continuously differentiable in D 0 , which is an open and convex set. Let x * ∈ D 0 be a solution of (1) at which F ′ (x *) is nonsingular. Suppose that there exists K = (k 1 , k 2 , ⋯ , k n) ∈ R n with k i ≥ 0 , for i = 1 , 2 , … , n , such that

 ∥ e i T (F ′ (x) − F ′ (y)) ∥ ≤ k i ∥ x − y ∥ , ∀ x , y ∈ D 0 .

Then, one has the estimation

 ∥ B k + 1 − F ′ (x *) ∥ F 2 ≤ ∥ B k − F ′ (x *) ∥ F 2 − ∥ (B k − F ′ (x *)) s k ∥ 2 ∥ s k ∥ 2 + L 2 γ k ,

where L = ∥ K ∥ 2 .

Proof.

For the case s k = 0 , then it is obvious that F (x k) = 0 and x k = x * . For the case s k ≠ 0 , subtracting F ′ (x *) from both sides of the update formula

 B k + 1 = B k + ∑ i = 1 n (s (i) k T s (i) k) + e i T (F ′ (x k + 1) − B k) s k e i s (i) k T ,

and multiplying by e i T , i = 1 , 2 , ⋯ , n , one has

 e i T (B k + 1 − F ′ (x *)) = e i T (B k − F ′ (x *)) + (s (i) k T s (i) k) + e i T (F ′ (x k + 1) − B k) s k s (i) k T = e i T (B k − F ′ (x *)) (I − (s (i) k T s (i) k) + s (i) k s (i) k T) + (s (i) k T s (i) k) + e i T (F ′ (x k + 1) − F ′ (x *)) s k s (i) k T .

Taking norms yields

 ∥ e i T (B k + 1 − F ′ (x *)) ∥ F 2 = ∥ e i T (B k − F ′ (x *)) (I − (s (i) k T s (i) k) + s (i) k s (i) k T) ∥ 2 + (s (i) k T s (i) k) + | e i T (F ′ (x k + 1) − F ′ (x *)) s k | 2 = ∥ e i T (B k − F ′ (x *)) ∥ 2 2 − (s (i) k T s (i) k) + | e i T E k s (i) k | 2 + (s (i) k T s (i) k) + | e i T (F ′ (x k + 1) − F ′ (x *)) s k | 2 ≤ ∥ e i T E k ∥ 2 2 − | e i T E k s k | 2 ∥ s k ∥ 2 + (s (i) k T s (i) k) + | e i T (F ′ (x k + 1) − F ′ (x *)) s k | 2 .

(7)

If s (i) k = 0 , then we have (s (i) k T s (i) k) + = 0 . It is obvious that

 0 = (s (i) k T s (i) k) + | e i T (F ′ (x k + 1) − F ′ (x *)) s k | 2 ≤ k i 2 σ k .

If s (i) k ≠ 0 , it follows that

 (s (i) k T s (i) k) + | e i T (F ′ (x k + 1) − F ′ (x *)) s k | 2 =   (s (i) k T s (i) k) + | e i T (F ′ (x k + 1) − F ′ (x *)) s (i) k | 2 ≤   ∥ e i T (F ′ (x k + 1) − F ′ (x *)) ∥ 2 ≤   k i 2 ∥ x k + 1 − x * ∥ 2 ≤   k i 2 σ k 2 .

Thus, (7) reduces to

 ∥ e i T (B k + 1 − F ′ (x *)) ∥ F 2 ≤ ∥ e i T (B k − F ′ (x *)) ∥ 2 − | e i T (B k − F ′ (x *)) s k | 2 ∥ s k ∥ 2 + k i 2 γ k ,

Make a summation to obtain

 ∥ (B k + 1 − F ′ (x *)) ∥ F 2 ≤ ∥ (B k − F ′ (x *)) ∥ F 2 − ∥ (B k − F ′ (x *)) s k ∥ 2 ∥ s k ∥ 2 + L 2 γ k .

(8)

 □

Based on the classical framework of Dennis and Moré, we give the following local convergence, which can be proved similar to the case of Broyden’s method [6,7].

Theorem 1.

Let the conditions in Lemma 2 hold. Then, there exist constants ϵ , δ > 0 such that, if ∥ x 0 − x * ∥ 2 < ϵ and ∥ B 0 − F ′ (x *) ∥ F < δ , the sequence { x k } is well defined and converges to x * . Furthermore, the convergence rate is superlinear.

Proof.

According to Lemma 2, one has

 ∥ (B k + 1 − F ′ (x *)) ∥ F ≤ ∥ (B k − F ′ (x *) ∥ F + L γ k ,

which means that the estimation (6) is satisfied with α 1 = 0 and α 2 = L . Then, we obtain the local and linear convergence of { x k } .

Next, we will show the Dennis–Moré condition [7]

 lim k → ∞ ∥ (B k − F ′ (x *)) s k ∥ ∥ s k ∥ = 0

(9)

is satisfied. According to (8), one has

 ∥ (B k + 1 − F ′ (x *)) ∥ F ≤ ∥ (B k − F ′ (x *)) ∥ F 2 − ∥ (B k − F ′ (x *)) s k ∥ 2 ∥ s k ∥ 2 1 / 2 + L γ k ;

then, the result can be proved similar to that in [7]. □

3. Algorithm and Global Convergence

In this section, by the use of LF condition [19], we propose a global sparse Broyden method, whose specific steps are listed in the following Algorithm 1.

	Algorithm 1 (Sparse direct Broyden Method for solving sparse nonlinear equations)

	
	
Step 0. Given constant σ 1 , σ 2 > 0 and ρ , r ∈ (0 , 1) . Given a positive sequence { η k } satisfying

 ∑ k = 0 ∞ η k ≤ η < ∞ .

(10)

Given x 0 ∈ R n , stop tolerance ϵ > 0 , and a nonsingular matrix B 0 ∈ R n × n . Set k : = 0 .

	
Step 1. Stop if ∥ F (x k) ∥ ≤ ϵ .

	
Step 2. Solve the subproblem

 F (x k) + B k d k = 0

(11)

to obtain the quasi-Newton direction d k .

	
Step 3. If

 ∥ F (x k + d k) ∥ ≤ ρ ∥ F (x k) ∥ − σ 1 ∥ d k ∥ 2 ,

(12)

then let α k : = 1 and go to Step 5. Else, go to Step 4.

	
Step 4. Set α k = r i k , where i k is the smallest nonnegative integer i satisfying

 ∥ F (x k + r i d k) ∥ ≤ ∥ F (x k) ∥ − σ 2 ∥ r i d k ∥ 2 + η k ∥ F (x k) ∥ ,

(13)

where η k is defined as in (10).

	
Step 5. Set x k + 1 : = x k + α k d k .

	
Step 6. Update B k to obtain B k + 1 by sparse direct Broyden update

 B k + 1 = B k + ∑ i = 1 n (s (i) k T s (i) k) + e i T (F ′ (x k + 1) − B k) s k e i s (i) k T ,

(14)

Set k : = k + 1 . Go to Step 1.

Remark 1.

It is noticed that the update formula (14) may be singular when B k is nonsingular. In this case, we use a similar technique in [22,23] and give the following discussion about the nonsingular sparse direct Broyden update.

Set H 0 = B k , and for i = 1 , 2 , … , n , let

 H i = H 0 + ∑ j = 1 i θ k j (s (j) k T s (j) k) + e j T (F ′ (x k + 1) − B k) s k e j s (j) k T = H i − 1 + θ k i (s (i) k T s (i) k) + e i T (F ′ (x k + 1) − B k) s k e i s (i) k T .

Since e i T H 0 = e i T H 1 = ⋯ = e i T H i − 1 , then

 H i = H i − 1 + θ k i (s (i) k T s (i) k) + e i T (F ′ (x k + 1) − H i − 1) s k e i s (i) k T .

For a scalar α ∈ (0 , 1) , θ k i can be chosen such that

 ∣ d e t H i ∣ ≥ ∣ α n ∣ d e t H i − 1 ∣ , θ k i ∈ 1 − α n 1 + α n , 1 .

Thus, ∣ d e t B k + 1 ∣ ≥ α ∣ d e t B k ∣ and θ k i can be chosen so that

 B k + 1 i s n o n s i g u l a r , a n d ∣ θ k i − 1 ∣ ≤ θ ^ < 1 .

Thus, we can define the sparse direct Broyden-like update formula as

 B k + 1 = B k + ∑ i = 1 n θ k i (s (i) k T s (i) k) + e i T (F ′ (x k + 1) − B k) s k e i s (i) k T .

Remark 2.

It can be seen that the update formula (14) includes F ′ (x k + 1) , but it does not need to compute F ′ (x k + 1) in practice. Automatic differentiation is a chain-rule-based technique for evaluating the derivatives with respect to the input variables of functions defined by a high-level computer program. Automatic Differentiation has two basic modes of operations, the forward mode and the reverse mode. In the forward mode, the derivatives are propagated throughout the computation using the chain rule, while in the reverse mode the adjoint derivatives are propagated backwards. The forward mode and reverse mode of automatic differentiation provide the possibility to compute F ′ (x) s and σ T F ′ (x) exactly within machine accuracy for given vectors x , s and σ.

  To establish the global convergence, we need the following conditions.

Assumption 1.

	(1)

	
F is continuously differentiable on Ω, which is a bounded level set defined by

 Ω = { x ∈ R n ∣ ∥ F (x) ∥ ≤ e η ∥ F (x 0) ∥ } .

	(2)

	
 F ′ (x) is Lipschitz continuous on Ω with Lipschitz constant L > 0

 ∥ F ′ (x) − F ′ (y) ∥ ≤ L ∥ x − y ∥ , ∀ x , y ∈ Ω .

	(3)

	
 F ′ (x) is nonsingular for any x ∈ Ω .

 First, we give the following important lemmas.

Lemma 3.

The sequence { x k } generated by Algorithm 1 is contained in Ω. Moreover, it holds that

 ∑ k = 0 ∞ ∥ s k ∥ 2 < ∞ ,

(15)

and the sequence { ∥ F (x k) ∥ } converges.

Proof.

According to the line search (12) and (13), one has for any k

 ∥ F (x k + 1) ∥ ≤ (1 + η k) ∥ F (x k) ∥ ⋮ ≤ ∥ F (x 0) ∥ Π j = 0 k (1 + η j) ≤ ∥ F (x 0) ∥ 1 k + 1 ∑ j = 0 k (1 + η j) k + 1 = ∥ F (x 0) ∥ 1 + 1 k + 1 ∑ j = 0 k η j k + 1 ≤ ∥ F (x 0) ∥ 1 + η k + 1 k + 1 η η ≤ e η ∥ F (x 0) ∥ .

Thus, { x k } is contained in level set Ω . Moreover, the sequence { ∥ F (x k) ∥ } is bounded.

On the basis of (12) and (13), we have for each k that

 σ 0 ∥ s k ∥ 2 = σ 0 ∥ x k + 1 − x k ∥ 2 ≤ ∥ F (x k) ∥ − ∥ F (x k + 1) ∥ + η k ∥ F k ∥ ,

where σ 0 = min { σ 1 , σ 2 } . We can obtain (15) by taking summation on both sides for k from 0 to ∞.

Finally, since { ∥ F (x k) ∥ } satisfies

 ∥ F (x k + α k d k) ∥ ≤ (1 + η k) ∥ F (x k) ∥ ,

and { η k } satisfies

 ∑ k = 0 ∞ η k ≤ η < ∞ ,

we then obtain the convergence of { ∥ F (x k) ∥ } . □

  Denote

 δ k = ∥ (F ′ (x k + 1) − B k) s k ∥ ∥ s k ∥ = ∥ F ′ (x k + 1) s k + F (x k) ∥ ∥ s k ∥ .

Lemma 4.

Suppose that the sequence { x k } is generated by Algorithm 1, and F ′ (x) is Lipschitz continuous with a common Lipschitz constant L > 0 . If

 ∑ k = 0 ∞ ∥ s k ∥ 2 < ∞ ,

then we have

 lim t → ∞ 1 t ∑ k = 0 t − 1 δ k 2 = 0 .

(16)

In addition, there exists a subsequence of { δ k } tending to zero. If

 ∑ k = 0 ∞ ∥ s k ∥ < ∞ ,

then we have

 ∑ k = 0 ∞ δ k 2 < ∞ .

(17)

In addition, the whole sequence { δ k } converges to zero.

Proof.

According to the update (14), we have

 e i T B k + 1 = e i T B k + (s (i) k T s (i) k) + e i T (F ′ (x k + 1) − B k) s k s (i) k T .

Subtracting e i T F ′ (x k + 1) , we obtain

 e i T (B k + 1 − F ′ (x k + 1)) = e i T (B k − F ′ (x k + 1)) + (s (i) k T s (i) k) + e i T (F ′ (x k + 1) − B k) s k s (i) k T = e i T (B k − F ′ (x k + 1)) I − (s (i) k T s (i) k) + s k s (i) k T = e i T (B k − F ′ (x k + 1)) I − (s (i) k T s (i) k) + s (i) k s (i) k T .

Taking norms yields

 ∥ e i T (B k + 1 − F ′ (x k + 1)) ∥ 2 = ∥ e i T (B k − F ′ (x k + 1)) (I − (s (i) k T s (i) k) + s (i) k s (i) k T) ∥ 2 = ∥ e i T (B k − F ′ (x k + 1)) ∥ 2 − (s (i) k T s (i) k) + (e i T (B k − F ′ (x k + 1)) s k) 2 ≤ ∥ e i T (B k − F ′ (x k + 1)) ∥ 2 − ∥ e i T (B k − F ′ (x k + 1)) s k ∥ 2 ∥ s k ∥ 2 .

Since ∥ B k + 1 − F ′ (x k + 1) ∥ F 2 = ∑ i = 1 n ∥ e i T (B k + 1 − F ′ (x k + 1)) ∥ 2 , making summation from i = 1 to n yields

 ∥ B k + 1 − F ′ (x k + 1) ∥ F 2 ≤ ∑ i = 1 n ∥ e i T (B k − F ′ (x k + 1)) ∥ 2 − ∥ e i T (B k − F ′ (x k + 1)) s k ∥ 2 ∥ s k ∥ 2 = ∥ (B k − F ′ (x k + 1)) ∥ F 2 − ∥ (B k − F ′ (x k + 1)) s k ∥ 2 ∥ s k ∥ 2 = ∥ (B k − F ′ (x k + 1)) ∥ F 2 − δ k 2 .

Denote

 D k = B k − F ′ (x k) and E k = F ′ (x k + 1) − F ′ (x k) .

Then, one has that, for k ≥ 1 ,

 ∥ D k ∥ F ≤ ∥ B k − 1 − F ′ (x k) ∥ F ≤ ∥ D k − 1 ∥ F + ∥ E k − 1 ∥ F ≤ ⋯ ≤ ∥ D 0 ∥ F + ∑ j = 0 k − 1 ∥ E j ∥ F ,

and

 δ k 2 ≤ ∥ B k − F ′ (k + 1) ∥ F 2 − ∥ B k + 1 − F ′ (x k + 1) ∥ F 2 = ∥ D k − E k ∥ F − ∥ D k + 1 ∥ F 2 ≤ ∥ D k ∥ F 2 − ∥ D k + 1 ∥ F 2 + ∥ E k ∥ F 2 + 2 ∥ E k ∥ F ∥ D k ∥ F ≤ ∥ D k ∥ F 2 − ∥ D k + 1 ∥ F 2 + ∥ E k ∥ F 2 + 2 ∥ E k ∥ F · ∥ D 0 ∥ F + ∑ j = 0 k − 1 ∥ E j ∥ F .

Making summation on both sides from k = 0 to t − 1 , we have for 1 ≤ p < t

 ∑ k = 1 t − 1 δ k 2 ≤ ∥ D 0 ∥ F 2 + ∑ k = 0 t − 1 ∥ E k ∥ F 2 + 2 ∑ k = 1 t − 1 ∥ E k ∥ F ∥ D 0 ∥ F + ∑ j = 0 k − 1 ∥ E j ∥ F ≤ ∥ D 0 ∥ F 2 + ∑ k = 0 t − 1 ∥ E k ∥ F 2 + 2 ∥ D 0 ∥ F ∑ k = 1 t − 1 ∥ E k ∥ F + 2 ∑ k = 1 t − 1 ∥ E k ∥ F ∑ j = 0 k − 1 ∥ E j ∥ F = ∥ D 0 ∥ F 2 + 2 ∥ D 0 ∥ F 2 ∑ k = 1 t − 1 ∥ E k ∥ F + 2 ∑ k = 1 t − 1 ∥ E k ∥ F 2 = ∥ D 0 ∥ F + ∑ k = 0 t − 1 ∥ E k ∥ F 2 ≤ ∥ D 0 ∥ F + ∑ k = 0 p − 1 ∥ E k ∥ F + ∑ k = p t − 1 ∥ E k ∥ F 2 ≤ 2 ∥ D 0 ∥ F + ∑ k = 0 p − 1 ∥ E k ∥ F 2 + 2 ∑ k = p t − 1 ∥ E k ∥ F 2 ≤ 2 ∥ D 0 ∥ F + ∑ k = 0 p − 1 ∥ E k ∥ F 2 + 2 (t − p) ∑ k = p t − 1 ∥ E k ∥ F 2 .

(18)

Dividing both sides by t and letting t → ∞ , we have

 lim t → ∞ 1 t ∑ k = 1 t − 1 δ k 2 ≤ 2 lim t → ∞ t − p t ∑ k = p t − 1 ∥ E k ∥ F 2 ≤ 2 ∑ k = p ∞ ∥ E k ∥ F 2 .

If ∑ k = 0 ∞ ∥ s k ∥ 2 < ∞ , then the Lipschitz continuity of F ′ (x) together with the last inequality implies

 lim t → ∞ 1 t ∑ k = 0 t − 1 δ k 2 = 0 .

Then, there is a subsequence of { δ k } tending to zero. If ∑ k = 0 ∞ ∥ s k ∥ < ∞ , then (17) comes from (18). Moreover, the whole sequence { δ k } converges to zero. This completes the proof. □

Theorem 2.

Let the conditions in Assumption 1 hold. Then, the sequence { x k } generated by Algorithm 1 converges to the unique solution x * of (1).

Proof.

We first verify

 lim k → ∞ inf ∥ F (x k) ∥ = 0 .

(19)

According to Lemma 3, the sequence { ∥ F (x k) ∥ } converges. Thus, we only need to prove that there is an accumulation point of { x k } , which is the unique solution of (1). If there are infinitely many α k , which is obtained by the line search condition (12), then

 ∥ F (x k + 1) ∥ ≤ ρ ∥ F (x k) ∥

holds for infinitely many k. This indicates lim inf k → ∞ ∥ F (x k) ∥ = 0 .

There are only finite many α k , which is obtained by the line search condition (12). By (15) and Lemma 4, there is a subsequence { δ k } k ∈ K converging to zero. Since { x k } K is bounded, we may assume that { x k } K → x * without loss of generality. Hence, { F ′ (x k + 1) } tends to F ′ (x *) , and there exists a constant C 1 such that ∥ F ′ (x k + 1) ∥ ≤ C 1 for all sufficiently large k ∈ K . According to the subproblem (11) and the definition of δ k , one has

 ∥ d k ∥ = ∥ F ′ (x k + 1) − 1 ((F ′ (x k + 1) − B k) d k − F (x k)) ∥ ≤ ∥ F ′ (x k + 1) − 1 ∥ ∥ (F ′ (x k + 1) − B k) d k ∥ + ∥ F (x k) ∥ ≤ C 1 (δ k ∥ d k ∥ + ∥ F (x k) ∥) ,

which indicates that there exists a constant M 1 such that

 ∥ d k ∥ ≤ M 1 ∥ F (x k) ∥

holds for all sufficiently large k ∈ K . Thus, the subsequence { d k } K is bounded, and we can assume that { d k } K → d * . Since ∥ (F ′ (x k + 1) − B k) d k ∥ = δ k ∥ d k ∥ , then we have

 B k d k → F ′ (x *) d * , k → ∞ , k ∈ K .

Taking limit in the subproblem (11) as k → ∞ , k ∈ K , one has

 F ′ (x *) d * + F (x *) = 0 .

(20)

Denote α * = lim sup k → ∞ , k ∈ K α k . It is clear that α * ≥ 0 and α * d * = 0 . If α ¯ > 0 , then d * = 0 ; hence, it follows from (20) that F (x *) = 0 . If α * = 0 , or equivalently lim k → ∞ α k = 0 . According to the line search rule, when k ∈ K is sufficiently large, α k < 1 and hence

 ∥ F (x k + ρ − 1 α k d k) ∥ − ∥ F (x k) ∥ > − σ 2 ∥ ρ − 1 α k d k ∥ 2 .

(21)

Multiplying both sides of (21) by (∥ F (x k + ρ − 1 α k d k)) ∥ + ∥ F (x k) ∥) / (ρ − 1 α k) and taking limit as k → ∞ , k ∈ K , we obtain

 F (x *) T F ′ (x *) d * ≥ 0 .

Combined with (20), we have F (x *) = 0 . Then, we complete the proof. □

In what follows, we will show that, when k is sufficiently large, the α k ≡ 1 will be accepted.

Theorem 3.

Suppose Assumption 1 holds and { x k } is generated by Algorithm 1. Then, there exist a constant δ > 0 and an index k ¯ such that α k = 1 whenever δ k ≤ δ and k ≥ k ¯ . Furthermore, the inequality (12) holds for all k ≥ k ¯ satisfying δ k ≤ δ .

Proof.

According to Theorem 2, { x k } converges to the solution x * of (1). Then, there exists a constant M 2 > 0 such that ∥ F ′ (x k + 1) − 1 ∥ ≤ M 2 for all k sufficiently large. Moreover, it can be deduced similarly that there exists constant M 3 > 0 such that, when δ k ≤ δ and k is large enough,

 ‖ d k ‖ ≤ M 3 ‖ F (x k) ‖ .

(22)

By the subproblem (11), one has

 F ′ (x k + 1) (x k + d k − x *) = F ′ (x k + 1) (x k − x *) + (F ′ (x k + 1) − B k) d k − F (x k) = (F ′ (x k + 1) − F ′ (x *)) (x k − x *) + (F ′ (x k + 1) − B k) d k − F (x k) + F (x *) + F ′ (x *) (x k − x *) .

This implies

 ∥ x k + d k − x * ∥ ≤ ∥ F ′ (x k + 1) − 1 ∥ (∥ F ′ (x k + 1) − F ′ (x *) ∥ ∥ x k − x * ∥ + ∥ (F ′ (x k + 1) − B k) d k ∥ + ∥ F (x k) − F (x *) − F ′ (x *) (x k − x *) ∥) ≤ M 2 (o (∥ x k − x * ∥) + δ k ∥ d k ∥) ≤ M 2 (o (∥ x k − x * ∥) + δ k M 3 ∥ F (x k) − F (x *) ∥) ≤ M 2 (o (∥ x k − x * ∥) + δ k M 3 M 4 ∥ x k − x * ∥) ,

where M 4 an upper bound of ∥ F ′ (x) ∥ on the level set Ω . Then, by the last inequality, we have

 ∥ F (x k + d k) ∥ = ∥ F (x k + d k) − F (x *) ∥ ≤ M 4 ∥ x k + d k − x * ∥ ≤ M 2 M 4 (o (∥ x k − x * ∥) + δ k M 3 M 4 ∥ x k − x * ∥) ,

On the other hand, by the nonsingularity of F ′ (x *) and the convergence of { x k } , there is a constant m > 0 such that the inequality

 ∥ F (x k) ∥ = ∥ F (x k) − F (x *) ∥ ≥ m ∥ x k − x * ∥

(23)

holds for all k sufficiently large. Thus, we deduce from (22) and (23) that, when δ k ≤ δ ,

 ∥ F (x k + 1) ∥ − ρ ∥ F (x k) ∥ + σ 1 ∥ d k ∥ 2 ≤ M 2 M 4 (o (∥ x k − x * ∥) + δ k M 3 M 4 ∥ x k − x * ∥ − ρ m ∥ x k − x * ∥ + σ 1 M 3 2 ∥ F (x k) ∥ 2 ≤ (M 2 M 3 M 4 2 δ k − ρ m) ∥ x k − x * ∥ + o (∥ x k − x * ∥) + σ 1 M 2 2 M 3 2 ∥ x k − x * ∥ 2 ≤ − (ρ m − M 2 M 3 M 4 2 δ k) ∥ x k − x * ∥ + o (∥ x k − x * ∥) .

Let δ = min { δ , 1 2 ρ m (M 2 M 3 M 4 2) − 1 } ; then, we complete the proof. □

  The following theorem presents that Algorithm 1 is superlinearly convergent.

Theorem 4.

Let the Assumption 1 hold. Then, the sequence { x k } generated by Algorithm 1 converges to the unique solution x * of (1) superlinearly.

Proof.

Let δ and k ¯ be as defined by Theorem 3. Then, according to Lemma 4, we have that

 1 k ∑ j = 0 k − 1 δ j 2 ≤ 1 2 δ 2

holds for all k ≥ k ˜ , which implies that, in this case, there are at least ⌈ k 2 ⌉ many indices j ≤ k satisfying δ j ≤ δ . Let k ′ = max { k ¯ , k ˜ } . Moreover, on the basis of Theorem 3, for any k ≥ 2 k ′ , there are at least ⌈ k 2 ⌉ − k ′ many indices j ≤ k , which make α j = 1 and

 ∥ F (x j + 1) ∥ = ∥ F (x j + d k) ∥ ≤ ρ ∥ F (x j) ∥ .

(24)

Define J k = { j ∣ (24) holds } and | J k | as the number of the elements in J k . Then, | J k | ≥ k 2 − k ′ − 1 . On the other side, for each j ∉ J k , we have

 ∥ F (x j + 1) ∥ ≤ (1 + η k) ∥ F (x j) ∥ .

(25)

Multiplying inequalities (24) with j ∈ J k and (25) with j ∉ J k from j = k ′ to k yields

 ∥ F (x k + 1) ∥ ≤ λ j k ∥ F (x k ′) ∥ [Π j = k ′ k (1 + η j)] ≤ ∥ F (x k ′) ∥ λ k 2 − k ′ − 1 e η .

Thus, we obtain ∑ k = 0 ∞ ∥ F (x k) ∥ < ∞ . This together with (23) implies ∑ k = 0 ∞ ∥ x k − x * ∥ < ∞ , and hence

 ∑ k = 0 ∞ ∥ s k ∥ < ∞ .

Then, following from Lemma 4, one has

 δ k = 0 .

Consequently, according to (23), the sequence { x k } converges to x * superlinearly. □

4. Numerical Experiments

In this section, we compare the SDBroyden method with Schubert’s method [8]. We also compare the SDBroyden method with a direct Broyden method and Newton’s method. All the methods are written in MATLAB R2018a and run in an iMac with 16G. The product F ′ (x) s is computed by the automatic differentiation tool TOLMAB [24].

The testing problems are listed in Appendix A. The Jacobian matrices of the tested problems have different structures such as: diagonal (Problem 1, 2), tridiagonal (Problems 3, 4, 5, 6, 7, 8), block-diagonal (Problems 9, 10, 11), and special structure (Problem 12). The parameters in Algorithm 1 are specified as [19]

 ϵ = 10 − 5 , ρ = 0.9 , σ 1 = σ 2 = 0.001 , β = 0.45 , η k = 1 (k + 1) 2 .

For all the methods, we also stop the iteration if the number of iterations exceeds 200. We report the numerical performance of the above four methods in Table 1, Table 2, Table 3, Table 4, Table 5, Table 6 and Table 7 and Figure 1 and Figure 2, where the meaning of each column is as follows:

	Schubert:
	Schubert’s method;

	SDBroyden:
	sparse direct Broyden method with LF condition;

	Pro
	the number of the test problem;

	Dim:
	the dimension of the problem;

	Ite
	the total number of iterations;

	Nfun:
	the total number of function evaluations;

	R:
	Broyden’s mean convergence rate;

	Time(s):
	CPU time in second;

	Fail:
	the stopping criterion was not satisfied.

(1) In the first set of our numerical experiments, we test the performance of the SDBroyden method and Schubert’s method. When B 0 is chosen as unit matrix I, the results are listed in Table 1 and Table 2, respectively. For SDBroyden method and Schubert’s method, we compute the problems with dimensions (n = 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10,000, 20,000, 50,000), but we select a subset of the dimensions (n = 10, 100, 1000, 2000, 10,000, 20,000, 50,000) to improve the readability of the corresponding tables. The two methods fail on two problems (3, 8). Considering the iteration counts, the SDBroyden method is more efficient than Schubert’s method on seven problems (1, 2, 4, 5, 10, 11, 12), equivalent to Schubert’s method on three problems (6, 7, 9). For the total number of function evaluations, the SDBroyden method has better performance on seven problems (1, 2, 4, 9, 10, 11, 12), while Schubert’s method needs less function evaluations on one problem (5), and both methods are equivalent on two problems (6, 7). As for the Broyden’s mean convergence rate, SDBroyden works well on seven problems (1, 2, 4, 6, 10, 11, 12), equal to Schubert’s method on three problems (5, 7, 9). It can be seen that the SDBroyden method outperforms Schubert’s method in iteration counts, function evaluation counts, and Broyden’s mean convergence rate.

When B 0 is chosen as the exact Jacobian matrix F ′ (x 0) , the results are given in Table 3 and Table 4, respectively. The two methods solve the 12 problems successfully. The SDBroyden method needs fewer iterations than Schubert’s method on seven problems (1, 2, 4, 5, 8, 10, 11), equal iterations with Schubert’s method on five problems (3, 6, 7, 9, 12). For the total number of function evaluations, the SDBroyden method is more efficient than Schubert’s method on six problems (1, 2, 4, 5, 8, 11) and equivalent to Schubert’s method on six problems (3, 6, 7, 9, 10, 12). As for the Broyden’s mean convergence rate, SDBroyden has better performance on nine problems (1, 2, 3, 4, 5, 8, 10, 11, 12) and equals Schubert’s method on two problems (7, 9). The two methods are competitive on one problem (6). It also can be seen that the SDBroyden method outperforms Schubert’s method in terms of number of iterations, number of function evaluations, and Broyden’s mean convergence rate. Meanwhile, the CPU time of SDBroyden method is mostly more than that of Schubert’s method.

Performance ration [25] is used to compare the numerical performance. For given solvers set S and problems set P, let t p , s be the number of iterations, the number of function evaluations or others, required to solve problem p by solver s. Then, define the performance ration as

 r p , s = t p , s min { t p , q : q ∈ S } ,

whose distribution function is defined as

 ρ s (t) = 1 N p size { p ∈ P : r p , s ≤ t } ,

where N p is the number of problems in the set P. Thus, ρ s : R → [0 , 1] was the probability for solver s ∈ S that a performance ratio r p , s was within a factor t ∈ R of the best possible ratio. According to the definition of performance profiles, we can see that the top curve corresponds to the best solver.

In Figure 1, the performance of the two methods: the SDBroyden method and Schubert’s method, relative to the number of iterations, and the number of function evaluations are evaluated. Figure 1 indicates that SDBroyden has better performance than Schubert’s method on the number of iterations and number of function evaluations.

(2) In the second set of numerical experiments, we compare the SDBroyden method with the direct Broyden quasi-Newton method (DBQN). We give the results of the DBQN method with B 0 = I in Table 5. The DBQN method fails on four problems (3, 5, 8, 9). For the number of iterations and number of function evaluations, the SDBroyden method needs less iterations on five problems (2, 4, 6, 7, 11) and equals DBQN on three problems (1, 10, 12). For the Broyden’s mean convergence rate, the SDBroyden method performs better on five problems (2, 4, 6, 7, 11), equals DBQN on two problems (1, 10), and works badly on one problem (12).

The results of the DBQN method with B 0 = F ′ (x 0) are listed in Table 6. The DBQN method fails on one problem (5). For the number of iterations, SDBroyden is better than the DBQN method on seven problems (2, 4, 6, 8, 10, 11, 12), equivalent to the DBQN method on three problems (1, 3, 9). At the same time, DBQN performs well on one problem (7). For the number of function evaluations and Broyden’s mean convergence rate, SDBroyden is excellent on six problems (2, 4, 6, 8, 11, 12), while the DBQN method works well on one problem (10). The two methods coincide with each other on three problems (3, 9, 10).

In Figure 2, we also give the comparison of the SDBroyden method and DBQN method relative to the number of iterations and number of function evaluations. It can be seen that the top curve corresponds to the SDBroyden method. This means that the SDBroyden method has satisfactory performance in terms of number of iterations and number of function evaluations when compared with its dense version.

(3) In the third set of our numerical experiments, we compare the SDBroyden method with Newton’s method, where the results are listed in Table 7. Newton’s method fails on three problems (5, 8, 10). One can see that the SDBroyden method requires slightly more iterations than Newton’s method in most tests and has no significant advantages in the number of iterations, number of function evaluations, and Broyden’s mean convergence rate. However, the CPU time for Newton’s method is much higher than that of the SDBroyden method. Moreover, the CPU time of Newton’s method increases significantly faster than that of the quasi-Newton methods. Thus, the SDBroyden method can be applied to solve large-scale nonlinear equations.

5. Conclusions

We have developed a sparse direct Broyden quasi-Newton method for solving large-scale nonlinear equations, which is the sparse case of the direct Broyden method and is an extension of Broyden’s method. The method approximates the Jacobian matrix by least change updating and satisfies the sparsity condition and direct tangent condition simultaneously. We show that the method is locally and superlinearly convergent. Combined with a nonmonotone line search, we also establish the global and superlinear convergence. In particular, the unit step length is essentially accepted. Our numerical results show that the proposed method is effective and competitive for sparse nonlinear equations.

Author Contributions

Conceptualization, H.C.; methodology, H.C. and J.H.; software, H.C.; formal analysis, H.C.; writing—original draft preparation, H.C. and J.H.; writing—review and editing, H.C. and J.H. All authors have read and agreed to the published version of the manuscript.

Funding

The work is supported by the National Natural Science Foundation of China, Grant No. 11701577; the Natural Science Foundation of Hunan Province, China, Grant No. 2019JJ51002, 2020JJ5960; the Scientific Research Foundation of Hunan Provincial Education Department, China, Grant No. 18C0253; and the Natural Science Foundation of Shaanxi Province, China, Grant No. 2022JQ006.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The date used to support the research plan and all the computer codes used in this study are available from the corresponding author upon request.

Acknowledgments

The authors would like to thank the four anonymous referees for their careful reading of this paper and their comments to improve the quality of this paper. The authors also would like to thank the corresponding editor for providing insightful suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

In this section, we list the test problems with initial guess x 0

 F (x) = (f 1 (x) , f 2 (x) … , f n (x)) T ,

where references [26,27,28,29,30,31,32,33,34,35] are cited in the Appendix A.

Problem 1. Logarithmic function [26]

 F i (x) = ln (x i + 1) − x i n , i = 1 , 2 , … , n . x 0 = (1 , 1 , … , 1) T .

Problem 2. Strictly convex function [27]

 F (x) is the gradient of h (x) = ∑ i = 1 n (e x i − x i) .

 F i (x) = e x i − 1 , i = 1 , 2 , … , n . x 0 = 1 n , 2 n , … , 1 T .

Problem 3. Broyden Tridiagonal function [28]

 F 1 (x) = (3 − 0.5 x 1) x 1 − 2 x 2 + 1 , F i (x) = (3 − 0.5 x i) x i − x i − 1 − 2 x i + 1 + 1 , i = 2 , … , n − 1 , F n (x) = (3 − 0.5 x n) x n − x n − 1 + 1 . x 0 = (− 3 , − 3 , … , − 3) T .

Problem 4. Trigexp function [28]

 F 1 (x) = 3 x 1 3 + 2 x 2 − 5 + sin (x 1 − x 2) sin (x 1 + x 2) , F i (x) = − x i − 1 e (x i − 1 − x i) + x i (4 + 3 x i 2) + 2 x i + 1 + sin (x i − x i + 1) sin (x i + x i + 1) − 8 , i = 2 , … , n − 1 , F n (x) = − x n − 1 e (x n − 1 − x n) + 4 x n − 3 . x 0 = (0 , 0 , … , 0) T .

Problem 5. Tridiagonal system [29]

 F 1 (x) = 4 (x 1 − x 2 2) , F i (x) = 8 x i (x i 2 − x i − 1) − 2 (1 − x i) + 4 (x i − x i + 1 2) , i = 2 , … , n − 1 F n (x) = 8 x n (x n 2 − x n − 1) − 2 (1 − x n) . x 0 = (12 , … , 12) T .

Problem 6. Tridiagonal exponential problem [30]

 F 1 (x) = x 1 − exp (cos (h (x 1 + x 2))) , F i (x) = x i − exp (cos (h (x i − 1 + x i + x i + 1))) , i = 2 , … , n − 1 , F n (x) = x n − exp (cos (h (x n − 1 + x n))) , h = 1 / (n + 1) . x 0 = (1.5 , 1.5 , … , 1.5) T .

Problem 7. Discrete boundary value problem [31]

 F 1 (x) = 2 x 1 + 0.5 h 2 (x 1 + h) 3 − x 2 , F i (x) = 2 x i + 0.5 h 2 (x i + h i) 3 − x i − 1 + x i + 1 , i = 2 , … , n − 1 , F n (x) = 2 x n + 0.5 h 2 (x n + h n) 3 − x n − 1 , h = 1 / (n + 1) . x 0 = (h (h − 1) , h (2 h − 1) , … , h (n h − 1)) T .

Problem 8. Troesch problem [32]

 F 1 (x) = 2 x 1 + ρ h 2 sinh (ρ x 1) − x 2 , F i (x) = 2 x i + ρ h 2 sinh (ρ x i) − x i − 1 − x i + 1 , i = 2 , … , n − 1 , F n (x) = 2 x n + ρ h 2 sinh (ρ x n) − x n − 1 , ρ = 10 , h = 1 / (n + 1) . x 0 = (0 , 0 , … , 0) T .

Problem 9. Extended Rosenbrock function (n is even) [33]

 F 2 i − 1 (x) = 10 (x 2 i − x 2 i − 1 2) , F 2 i (x) = 1 − x 2 i − 1 , i = 1 , 2 , … , n / 2 . x 0 = (5 , 1 , … , 5 , 1) T .

Problem 10. Problem 21 in [26] (n is multiple of 3)

 F 3 i − 2 (x) = x 3 i − 2 x 3 i − 1 − x 3 i 2 − 1 , F 3 i − 1 (x) = x 3 i − 2 x 3 i − 1 x 3 i − x 3 i − 2 2 + x 3 i − 1 2 − 2 , F 3 i (x) = e − x 3 i − 2 − e − x 3 i − 1 , i = 1 , 2 , … , n / 3 . x 0 = (1 , 1 , ⋯ , 1) T .

Problem 11. Tridimensional valley function (n is multiple of 3) [34]

 F 3 i − 2 (x) = (c 2 x 3 i − 2 3 + c 1 x 3 i − 2) exp − x 3 i − 2 2 100 − 1 , F 3 i − 1 (x) = 10 (sin (x 3 i − 2) − x 3 i − 1) , F 3 i (x) = 10 (cos (x 3 i − 2) − x 3 i) , i = 1 , 2 , … , n / 3 , c 1 = 1.003344481605351 , c 2 = − 3.344481605351171 × 10 − 3 . x 0 = (2 , 1 , 2 , … , 2 , 1 , 2) T .

Problem 12. [35]

 F 1 (x) = x 1 , F i (x) = cos (x k − 1) + x k − 1 , i = 2 , … , n . x 0 = (0.5 , 0.5 , … , 0.5) T .

References

	

Yuan, Y.X. Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numer. Algebra Control Optim. 2011, 1, 15–34. [Google Scholar] [CrossRef]

	

Sun, W.; Yuan, Y.X. Optimization Theory and Methods: Nonlinear Programming; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]

	

Wright, S.; Nocedal, J. Numerical Optimization; Springer Science: New York, NY, USA, 1999; Volume 35, p. 7. [Google Scholar]

	

Fletcher, R. Practical Methods of Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]

	

Broyden, C.G. A class of methods for solving nonlinear simultaneous equations. Math. Comput. 1965, 19, 577–593. [Google Scholar] [CrossRef]

	

Broyden, C.G.; Dennis, J.E., Jr.; Moré, J.J. On the local and superlinear convergence of quasi-Newton methods. IMA J. Appl. Math. 1973, 12, 223–245. [Google Scholar] [CrossRef]

	

Dennis, J.E.; Moré, J.J. Quasi–Newton methods, motivation and theory. SIAM Rev. 1977, 19, 46–89. [Google Scholar] [CrossRef]

	

Schubert, L.K. Modification of a quasi-Newton method for nonlinear equations with a sparse Jacobian. Math. Comput. 1970, 24, 27–30. [Google Scholar] [CrossRef]

	

Toint, P.L. On sparse and symmetric matrix updating subject to a linear equation. Math. Comput. 1977, 31, 954–961. [Google Scholar] [CrossRef]

	

Nocedal, J. Updating quasi-Newton matrices with limited storage. Math. Comput. 1980, 35, 773–782. [Google Scholar] [CrossRef]

	

Van de Rotten, B.; Lunel, S.V. A limited memory Broyden method to solve high-dimensional systems of nonlinear equations. In Proceedings of the International Conference on Differential Equations, Hasselt, Belgium, 22–26 July 2003; pp. 196–201. [Google Scholar]

	

Griewank, A.; Toint, P.L. Partitioned variable metric updates for large structured optimization problems. Numer. Math. 1982, 39, 119–137. [Google Scholar] [CrossRef]

	

Griewank, A.; Toint, P.L. Local convergence analysis for partitioned quasi-Newton updates. Numer. Math. 1982, 39, 429–448. [Google Scholar]

	

Cao, H.P.; Li, D.H. Partitioned quasi-Newton methods for sparse nonlinear equations. Comput. Optim. Appl. 2017, 66, 481–505. [Google Scholar] [CrossRef]

	

Leong, W.J.; Hassan, M.A.; Yusuf, M.W. A matrix-free quasi-Newton method for solving large-scale nonlinear systems. Comput. Math. Appl. 2011, 62, 2354–2363. [Google Scholar] [CrossRef]

	

Li, D.H.; Wang, X.; Huang, J. Diagonal BFGS updates and applications to the limited memory BFGS method. Comput. Optim. Appl. 2022, 81, 829–856. [Google Scholar] [CrossRef]

	

Martínez, J.M. A quasi-Newton method with modification of one column per iteration. Computing 1984, 33, 353–362. [Google Scholar] [CrossRef]

	

Griewank, A. The “global” convergence of Broyden-like methods with suitable line search. ANZIAM J. 1986, 28, 75–92. [Google Scholar] [CrossRef]

	

Li, D.H.; Fukushima, M. A derivative-free line search and global convergence of Broyden-like method for nonlinear equations. Optim. Methods Softw. 2000, 13, 181–201. [Google Scholar] [CrossRef]

	

Griewank, A.; Walther, A. On constrained optimization by adjoint based quasi-Newton methods. Optim. Methods Softw. 2002, 17, 869–889. [Google Scholar] [CrossRef]

	

Schlenkrich, S.; Griewank, A.; Walther, A. On the local convergence of adjoint Broyden methods. Math. Program. 2010, 121, 221–247. [Google Scholar] [CrossRef]

	

Marwil, E. Convergence results for Schubert’s method for solving sparse nonlinear equations. SIAM J. Numer. Anal. 1979, 16, 588–604. [Google Scholar] [CrossRef]

	

Powell, M.J.D. A hybrid method for nonlinear equations. In Numerical Methods for Nonlinear Algebraic Equations; Gordon and Breach: London, UK, 1970. [Google Scholar]

	

Forth, S.A.; Edvall, M.M. User Guide for MAD-MATLAB Automatic Differentiation Toolbox TOMLAB/MAD; Version 1.1 The Forward Mode; TOMLAB Optimisation Inc.: San Diego, CA, USA, 2007; p. 92101. [Google Scholar]

	

Dolan, E.D.; Moré, J.J. Benchmarking optimization software with performance profiles. Math. Program. 2002, 91, 201–213. [Google Scholar] [CrossRef]

	

La Cruz, W.; Martínez, J.; Raydan, M. Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 2006, 75, 1429–1448. [Google Scholar] [CrossRef]

	

Raydan, M. The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Numer. Anal. 1997, 7, 26–33. [Google Scholar] [CrossRef]

	

Gomes-Ruggiero, M.A.; Martínez, J.M.; Moretti, A.C. Comparing algorithms for solving sparse nonlinear systems of equations. SIAM J. Sci. Comput. 1992, 13, 459–483. [Google Scholar] [CrossRef]

	

Li, G. Successive column correction algorithms for solving sparse nonlinear systems of equations. Math. Program. 1989, 43, 187–207. [Google Scholar] [CrossRef]

	

Bing, Y.; Lin, G. An efficient implementation of Merrill’s method for sparse or partially separable systems of nonlinear equations. SIAM J. Optim. 1991, 1, 206–221. [Google Scholar] [CrossRef]

	

Moré, J.J.; Garbow, B.S.; Hillstrom, K.E. Testing unconstrained optimization software. ACM Trans. Math. Softw. (TOMS) 1981, 7, 17–41. [Google Scholar] [CrossRef]

	

Roberts, S.M.; Shipman, J.S. On the closed form solution of Troesch’s problem. J. Comput. Phys. 1976, 21, 291–304. [Google Scholar] [CrossRef]

	

Gasparo, M.G. A nonmonotone hybrid method for nonlinear systems. Optim. Methods Softw. 2000, 13, 79–94. [Google Scholar] [CrossRef]

	

Friedlander, A.; Gomes-Ruggiero, M.A.; Kozakevich, D.N.; Mario Martínez, J.; Augusta Santos, S. Solving nonlinear systems of equations by means of quasi-neston methods with a nonmonotone stratgy. Optim. Methods Softw. 1997, 8, 25–51. [Google Scholar] [CrossRef]

	

Luksan, L.; Matonoha, C.; Vlcek, J. Problems for Nonlinear Least Squares and Nonlinear Equations; Technical Report 1259; Institute of Computer Science, Academy of Sciences of the Czech Republic: Prague, Czech Republic, 2018. [Google Scholar]

[image: Symmetry 14 01552 g001 550]

Figure 1. Performance profiles for SDBroyden and Schubert: (a) results comparison on the number of iterations with B 0 = I ; (b) results comparison on the number of function evaluations with B 0 = I ; (c) results comparison on the number of iterations with B 0 = F ′ (x 0) ; (d) results comparison on the number of function evaluations with B 0 = F ′ (x 0) .

Figure 1. Performance profiles for SDBroyden and Schubert: (a) results comparison on the number of iterations with B 0 = I ; (b) results comparison on the number of function evaluations with B 0 = I ; (c) results comparison on the number of iterations with B 0 = F ′ (x 0) ; (d) results comparison on the number of function evaluations with B 0 = F ′ (x 0) .

[image: Symmetry 14 01552 g001]

[image: Symmetry 14 01552 g002 550]

Figure 2. Performance profiles of SDBroyden and DBQN (a) results comparison on the number of iterations with B 0 = I ; (b) results comparison on the number of function evaluations with B 0 = I ; (c) results comparison on the number of iterations with B 0 = F ′ (x 0) ; (d) results comparison on the number of function evaluations with B 0 = F ′ (x 0) .

Figure 2. Performance profiles of SDBroyden and DBQN (a) results comparison on the number of iterations with B 0 = I ; (b) results comparison on the number of function evaluations with B 0 = I ; (c) results comparison on the number of iterations with B 0 = F ′ (x 0) ; (d) results comparison on the number of function evaluations with B 0 = F ′ (x 0) .

[image: Symmetry 14 01552 g002]

[image: Table]

Table 1. Results of Schubert’s method with B 0 = I .

Table 1. Results of Schubert’s method with B 0 = I .

	Pro(Dim)
	10
	100
	1000
	2000
	10,000
	20,000
	50,000

	(1)Ite
	6
	6
	6
	6
	6
	6
	6

	(1)Nfun
	7
	7
	7
	7
	7
	7
	7

	(1)R
	0.8915
	1.1098
	1.1326
	1.1338
	1.1349
	1.1350
	1.1351

	(1)Time(s)
	0.0600
	0.0000
	0.0200
	0.0000
	0.0400
	0.0400
	0.0800

	(2)Ite
	7
	7
	7
	7
	7
	7
	7

	(2)Nfun
	8
	8
	8
	8
	8
	8
	8

	(2)R
	1.0407
	1.0831
	1.0919
	1.0924
	1.0929
	1.0929
	1.0929

	(2)Time(s)
	0.0100
	0.0000
	0.0100
	0.0000
	0.0200
	0.0400
	0.0900

	(4)Ite
	12
	12
	12
	13
	16
	14
	14

	(4)Nfun
	20
	20
	21
	23
	26
	21
	22

	(4)R
	0.3429
	0.3440
	0.3496
	0.3441
	0.3215
	0.4183
	0.4178

	(4)Time(s)
	0.0100
	0.0000
	0.0000
	0.0100
	0.1300
	0.2400
	0.4100

	(5)Ite
	20
	17
	25
	22
	22
	16
	21

	(5)Nfun
	63
	32
	64
	73
	40
	36
	48

	(5)R
	0.1051
	0.2288
	0.1106
	0.1052
	0.1902
	0.2461
	0.1664

	(5)Time(s)
	0.0400
	0.0000
	0.0000
	0.0000
	0.1400
	0.1600
	0.3400

	(6)Ite
	4
	3
	2
	2
	2
	2
	1

	(6)Nfun
	5
	4
	3
	3
	3
	3
	2

	(6)R
	1.5553
	2.5624
	3.0388
	3.4398
	4.3713
	4.7641
	3.8427

	(6)Time(s)
	0.0600
	0.0000
	0.0100
	0.0000
	0.0200
	0.0300
	0.0300

	(7)Ite
	10
	8
	6
	6
	4
	4
	3

	(7)Nfun
	11
	11
	8
	8
	6
	6
	5

	(7)R
	0.4980
	0.3935
	0.5299
	0.5489
	0.5362
	0.5613
	0.5820

	(7)Time(s)
	0.0300
	0.0000
	0.0000
	0.0000
	0.0300
	0.0700
	0.1100

	(9)Ite
	4
	4
	4
	4
	4
	4
	4

	(9)Nfun
	7
	7
	7
	7
	7
	7
	7

	(9)R
	Inf
	Inf
	Inf
	Inf
	Inf
	Inf
	Inf

	(9)Time(s)
	0.0400
	0.0000
	0.0000
	0.0000
	0.5100
	0.9400
	1.5100

	Dim
	12
	102
	1002
	2001
	10,002
	20,001
	50,001

	(10)Ite
	4
	4
	5
	5
	5
	5
	5

	(10)Nfun
	6
	6
	7
	7
	7
	7
	7

	(10)R
	1.0563
	1.0563
	1.5586
	1.5586
	1.5586
	1.5586
	1.5586

	(10)Time(s)
	0.0100
	0.0000
	0.1100
	0.1300
	0.2600
	0.4500
	0.8000

	Dim
	12
	102
	1002
	2001
	10,002
	20,001
	50,001

	(11)Ite
	6
	6
	7
	7
	7
	7
	7

	(11)Nfun
	8
	8
	9
	9
	9
	9
	9

	(11)R
	0.9175
	0.9175
	1.4972
	1.4972
	1.4972
	1.4972
	1.4972

	(11)Time(s)
	0.0300
	0.0100
	0.3000
	0.1000
	0.5200
	0.7900
	1.7100

	(12)Ite
	5
	5
	5
	5
	5
	6
	6

	(12)Nfun
	6
	6
	6
	6
	6
	7
	7

	(12)R
	1.1312
	1.1156
	1.1142
	1.1142
	1.1141
	1.5918
	1.5985

	(12)Time(s)
	0.0400
	0.0000
	0.0000
	0.0000
	0.0200
	0.0500
	0.1200

[image: Table]

Table 2. Results of the SDBroyden method with B 0 = I .

Table 2. Results of the SDBroyden method with B 0 = I .

	Pro(Dim)
	10
	100
	1000
	2000
	10,000
	20,000
	50,000

	(1)Ite
	5
	4
	5
	5
	5
	5
	5

	(1)Nfun
	6
	5
	6
	6
	6
	6
	6

	(1)R
	1.6865
	1.2113
	2.1390
	2.1415
	2.1435
	2.1437
	2.1439

	(1)Time(s)
	0.0700
	0.3600
	1.4700
	2.5200
	13.2600
	27.9500
	88.0700

	(2)Ite
	5
	5
	5
	5
	5
	6
	6

	(2)Nfun
	6
	6
	6
	6
	6
	7
	7

	(2)R
	1.1023
	1.1587
	1.1705
	1.1712
	1.1718
	1.9449
	1.9450

	(2)Time(s)
	0.0300
	0.2200
	0.7800
	1.7400
	7.8200
	20.2500
	59.1100

	(4)Ite
	12
	12
	12
	12
	13
	13
	13

	(4)Nfun
	17
	18
	18
	20
	19
	19
	20

	(4)R
	0.4108
	0.4253
	0.4335
	0.4085
	0.4443
	0.4747
	0.4364

	(4)Time(s)
	0.2850
	1.2600
	11.2800
	22.5000
	139.3500
	299.0400
	834.3150

	(5)Ite
	16
	16
	20
	18
	19
	20
	

	(5)Nfun
	29
	35
	57
	48
	52
	48
	56

	(5)R
	0.2179
	0.2396
	0.1505
	0.1674
	0.1738
	0.1664
	0.1675

	(5)Time(s)
	0.1400
	0.5100
	4.6200
	17.5600
	80.7900
	182.6200
	375.0000

	(6)Ite
	3
	2
	2
	2
	2
	2
	1

	(6)Nfun
	4
	3
	3
	3
	3
	3
	2

	(6)R
	1.4566
	2.4834
	4.4685
	5.0549
	5.6778
	5.1461
	3.8427

	(6)Time(s)
	0.0500
	0.0800
	0.6200
	1.1100
	6.5800
	13.2100
	20.2600

	(7)Ite
	10
	8
	6
	6
	4
	4
	3

	(7)Nfun
	11
	11
	8
	8
	6
	6
	5

	(7)R
	0.4980
	0.3935
	0.5299
	0.5489
	0.5362
	0.5613
	0.5820

	(7)Time(s)
	0.1700
	0.3800
	2.0700
	4.1000
	14.1400
	29.3900
	69.4400

	(9)Ite
	4
	4
	4
	4
	4
	4
	4

	(9)Nfun
	6
	6
	6
	6
	6
	6
	6

	(9)R
	Inf
	Inf
	Inf
	Inf
	Inf
	Inf
	Inf

	(9)Time(s)
	0.0500
	0.1450
	0.5600
	1.3000
	13.6700
	28.0700
	84.4600

	Dim
	12
	102
	1002
	2001
	10,002
	20,001
	50,001

	(10)Ite
	3
	3
	3
	3
	4
	4
	4

	(10)Nfun
	5
	5
	5
	5
	6
	6
	6

	(10)R
	1.3420
	1.3420
	1.3420
	1.3420
	2.3852
	2.3852
	2.3852

	(10)Time(s)
	0.0600
	0.1700
	0.9000
	1.8100
	10.8000
	21.5800
	64.8000

	Dim
	12
	102
	1002
	2001
	10,002
	20,001
	50,001

	(11)Ite
	5
	6
	6
	6
	6
	6
	6

	(11)Nfun
	7
	8
	8
	8
	8
	8
	8

	(11)R
	1.0013
	1.8209
	1.8209
	1.8209
	1.8209
	1.8209
	1.8209

	(11)Time(s)
	0.0900
	0.3000
	2.1500
	3.5300
	18.8500
	40.5600
	109.5900

	(12)Ite
	4
	4
	4
	4
	4
	4
	4

	(12)Nfun
	5
	5
	5
	5
	5
	5
	5

	(12)R
	1.7679
	1.7551
	1.7540
	1.7539
	1.7538
	1.7538
	1.7538

	(12)Time(s)
	0.0500
	0.1500
	0.6700
	1.2700
	6.4500
	13.7700
	43.1500

[image: Table]

Table 3. Results of Schubert’s method with B 0 = F ′ (x 0) .

Table 3. Results of Schubert’s method with B 0 = F ′ (x 0) .

	Pro(Dim)
	10
	100
	1000
	2000
	10,000
	20,000
	50,000

	(1)Ite
	6
	6
	6
	6
	6
	6
	6

	(1)Nfun
	8
	7
	7
	7
	8
	8
	8

	(1)R
	0.8661
	0.9523
	0.9693
	0.9703
	0.9077
	0.9077
	0.9077

	(1)Time(s)
	0.0000
	0.0000
	0.0100
	0.0000
	0.0300
	0.0400
	0.0900

	(2)Ite
	6
	6
	6
	6
	6
	6
	6

	(2)Nfun
	7
	7
	7
	7
	7
	7
	7

	(2)R
	1.1690
	1.1982
	1.2024
	1.2026
	1.2028
	1.2028
	1.2028

	(2)Time(s)
	0.0500
	0.0000
	0.0000
	0.0000
	0.0400
	0.0400
	0.0800

	(3)Ite
	10
	11
	11
	11
	11
	11
	11

	(3)Nfun
	11
	12
	12
	12
	12
	12
	12

	(3)R
	0.6216
	0.5988
	0.6391
	0.6515
	0.6806
	0.6931
	0.7097

	(3)Time(s)
	0.0400
	0.0000
	0.0200
	0.0000
	0.0900
	0.1400
	0.2000

	(4)Ite
	13
	23
	23
	29
	21
	30
	27

	(4)Nfun
	25
	44
	45
	58
	44
	81
	72

	(4)R
	0.2705
	0.1743
	0.1820
	0.1455
	0.2054
	0.1256
	0.2367

	(4)Time(s)
	0.0500
	0.0000
	0.0100
	0.0000
	0.0600
	0.1100
	0.1800

	(5)Ite
	18
	24
	26
	24
	23
	23
	23

	(5)Nfun
	26
	44
	68
	54
	42
	42
	42

	(5)R
	0.2543
	0.1425
	0.1190
	0.1420
	0.1864
	0.1900
	0.1947

	(5)Time(s)
	0.0600
	0.0000
	0.0000
	0.0000
	0.2100
	0.2400
	0.5100

	(6)Ite
	5
	3
	2
	2
	2
	2
	2

	(6)Nfun
	6
	4
	3
	3
	3
	3
	3

	(6)R
	1.1562
	1.8540
	2.4963
	2.8469
	3.6620
	4.0131
	4.4773

	(6)Time(s)
	0.0400
	0.0000
	0.0100
	0.0000
	0.0100
	0.0400
	0.0700

	(7)Ite
	12
	12
	7
	4
	1
	1
	1

	(7)Nfun
	18
	21
	11
	6
	2
	2
	2

	(7)R
	0.2585
	0.2158
	0.3382
	0.6401
	1.7302
	1.8807
	2.0797

	(7)Time(s)
	0.0100
	0.0000
	0.0100
	0.0100
	0.0100
	0.0400
	0.0500

	(8)Ite
	8
	8
	8
	7
	7
	7
	7

	(8)Nfun
	10
	11
	10
	9
	10
	10
	19

	(8)R
	0.5898
	0.5317
	0.5779
	0.5637
	0.5789
	0.5881
	0.6023

	(8)Time(s)
	0.0300
	0.0000
	0.0000
	0.0000
	0.4200
	1.3500
	3.8000

	(9)Ite
	3
	3
	3
	3
	3
	3
	3

	(9)Nfun
	4
	4
	4
	4
	4
	4
	4

	(9)R
	4.0327
	4.0327
	4.0327
	4.0327
	4.0327
	4.0327
	4.0327

	(9)Time(s)
	0.0000
	0.0100
	0.0000
	0.0100
	0.0400
	0.0700
	0.2300

	Dim
	12
	102
	1002
	2001
	10,002
	20,001
	50,001

	(10)Ite
	9
	10
	10
	10
	11
	11
	11

	(10)Nfun
	10
	11
	11
	11
	12
	12
	12

	(10)R
	0.5520
	0.5886
	0.5886
	0.5886
	0.6701
	0.6701
	0.6701

	(10)Time(s)
	0.0200
	0.0200
	0.2800
	0.2600
	0.7400
	1.1800
	2.4700

	Dim
	12
	102
	1002
	2001
	10,002
	20,001
	50,001

	(11)Ite
	5
	6
	6
	6
	6
	6
	6

	(11)Nfun
	6
	7
	7
	7
	7
	7
	7

	(11)R
	1.1416
	1.7664
	1.7664
	1.7664
	1.7664
	1.7664
	1.7664

	(11)Time(s)
	0.0300
	0.0300
	0.2000
	0.2200
	0.4300
	0.6500
	1.3500

	(12)Ite
	8
	8
	8
	8
	8
	8
	8

	(12)Nfun
	9
	9
	9
	9
	9
	9
	10

	(12)R
	0.5909
	0.6449
	0.7003
	0.7170
	0.7558
	0.7725
	0.7210

	(12)Time(s)
	0.0200
	0.0000
	0.0000
	0.0100
	0.0600
	0.1100
	0.1800

[image: Table]

Table 4. Results of the SDBroyden method with B 0 = F ′ (x 0) .

Table 4. Results of the SDBroyden method with B 0 = F ′ (x 0) .

	Pro(Dim)
	10
	100
	1000
	2000
	10,000
	20,000
	50,000

	(1)Ite
	4
	5
	5
	5
	5
	5
	5

	(1)Nfun
	6
	6
	6
	6
	7
	7
	7

	(1)R
	0.9211
	1.6975
	1.7287
	1.7304
	1.6431
	1.6431
	1.6431

	(1)Time(s)
	0.0300
	0.2200
	1.6600
	2.6400
	14.2100
	29.4400
	88.3100

	(2)Ite
	4
	4
	4
	5
	5
	5
	5

	(2)Nfun
	5
	5
	5
	6
	6
	6
	6

	(2)R
	1.2544
	1.2872
	1.2916
	2.1183
	2.1187
	2.1187
	2.1187

	(2)Time(s)
	0.0400
	0.1300
	0.6600
	1.6900
	7.7100
	16.1100
	48.0500

	(3)Ite
	11
	11
	11
	11
	11
	11
	11

	(3)Nfun
	12
	12
	12
	12
	12
	12
	12

	(3)R
	0.5609
	0.5642
	0.6045
	0.6170
	0.6460
	0.6586
	0.6751

	(3)Time(s)
	0.1900
	0.6100
	5.5200
	10.8000
	55.6500
	112.3100
	307.9200

	(4)Ite
	13
	17
	17
	18
	20
	23
	18

	(4)Nfun
	24
	28
	28
	35
	38
	59
	56

	(4)R
	0.2867
	0.2688
	0.2707
	0.2218
	0.6251
	0.5620
	0.6294

	(4)Time(s)
	0.1500
	0.8900
	5.8100
	12.4900
	66.7200
	142.7600
	402.8600

	(5)Ite
	23
	21
	22
	20
	20
	20
	20

	(5)Nfun
	46
	40
	35
	34
	34
	34
	34

	(5)R
	0.1996
	0.1651
	0.1957
	0.2207
	0.2309
	0.2354
	0.2412

	(5)Time(s)
	0.3500
	1.7100
	13.8200
	26.4100
	143.4000
	293.5900
	341.0000

	(6)Ite
	4
	3
	2
	2
	2
	2
	2

	(6)Nfun
	5
	4
	3
	3
	3
	3
	3

	(6)R
	1.1204
	2.0735
	2.4895
	2.8401
	3.6550
	4.0062
	4.4704

	(6)Time(s)
	0.1000
	0.1800
	1.1100
	1.6500
	8.7100
	20.2800
	53.0700

	(7)Ite
	12
	12
	7
	4
	1
	1
	1

	(7)Nfun
	18
	21
	11
	6
	2
	2
	2

	(7)R
	0.2585
	0.2158
	0.3382
	0.6401
	1.7302
	1.8807
	2.0797

	(7)Time(s)
	0.2100
	0.8900
	3.9500
	4.4100
	5.9700
	12.5000
	32.9300

	(8)Ite
	11
	7
	6
	6
	6
	6
	6

	(8)Nfun
	14
	9
	8
	8
	9
	9
	9

	(8)R
	0.4237
	0.5767
	0.6337
	0.8068
	0.7790
	0.7811
	0.7995

	(8)Time(s)
	0.1900
	0.4100
	2.8100
	6.1500
	13.3900
	24.0600
	48.4500

	(9)Ite
	3
	3
	3
	3
	3
	3
	3

	(9)Nfun
	4
	4
	4
	4
	4
	4
	4

	(9)R
	Inf
	Inf
	Inf
	Inf
	Inf
	Inf
	Inf

	(9)Time(s)
	0.0300
	0.1400
	0.5400
	1.3100
	5.7400
	13.2200
	37.1600

	Dim
	12
	102
	1002
	2001
	10,002
	20,001
	50,001

	(10)Ite
	8
	9
	9
	9
	9
	9
	9

	(10)Nfun
	10
	11
	11
	11
	11
	11
	11

	(10)R
	0.5616
	0.6068
	0.6068
	0.6068
	0.6309
	0.6374
	0.6438

	(10)Time(s)
	0.1300
	0.4600
	3.5500
	6.6100
	39.4200
	82.5100
	242.4400

	Dim
	12
	102
	1002
	2001
	10,002
	20,001
	50,001

	(11)Ite
	4
	5
	5
	5
	5
	5
	5

	(11)Nfun
	5
	6
	6
	6
	6
	6
	6

	(11)R
	1.3736
	2.3204
	2.3204
	2.3204
	2.3204
	2.3204
	2.3204

	(11)Time(s)
	0.0600
	0.2300
	1.8600
	2.9500
	15.8600
	33.6900
	92.8300

	(12)Ite
	8
	8
	8
	8
	8
	8
	7

	(12)Nfun
	9
	9
	9
	9
	9
	9
	9

	(12)R
	0.6704
	0.7239
	0.7793
	0.7960
	0.8348
	0.8515
	0.7721

	(12)Time(s)
	0.1100
	0.2900
	2.1600
	3.7500
	19.3700
	41.5900
	106.5800

[image: Table]

Table 5. Results of the DBQN method with B 0 = I .

Table 5. Results of the DBQN method with B 0 = I .

	Pro(Dim)
	10
	20
	50
	100
	200
	500
	1000

	(1)Ite
	5
	4
	4
	4
	4
	5
	5

	(1)Nfun
	6
	5
	5
	5
	5
	6
	6

	(1)R
	1.6865
	1.0998
	1.1828
	1.2113
	1.2258
	2.1341
	2.1390

	(1)Time(s)
	0.2900
	0.1900
	0.1500
	0.5400
	0.5600
	3.1000
	19.3500

	(2)Ite
	5
	5
	5
	5
	5
	6
	6

	(2)Nfun
	6
	6
	6
	6
	6
	7
	7

	(2)R
	0.9943
	1.0107
	1.0229
	1.0274
	1.0297
	1.2624
	1.2631

	(2)Time(s)
	0.1000
	0.1300
	0.1600
	0.2100
	0.4500
	3.1700
	21.8400

	(4)Ite
	24
	33
	53
	59
	58
	73
	95

	(4)Nfun
	42
	68
	117
	118
	120
	187
	318

	(4)R
	0.1630
	0.0963
	0.0606
	0.0585
	0.0587
	0.0383
	0.0233

	(4)Time(s)
	1.0800
	1.9000
	6.3600
	12.6900
	24.1200
	97.9500
	510.2200

	(6)Ite
	6
	5
	3
	3
	2
	2
	2

	(6)Nfun
	7
	6
	4
	4
	3
	3
	3

	(6)R
	0.8516
	1.1498
	1.6230
	2.0975
	2.4436
	3.0384
	3.4893

	(6)Time(s)
	0.2000
	0.2700
	0.1500
	0.7800
	0.4200
	1.5500
	8.1900

	(7)Ite
	15
	23
	20
	24
	14
	12
	11

	(7)Nfun
	22
	32
	30
	27
	29
	22
	20

	(7)R
	0.2285
	0.1356
	0.1421
	0.1510
	0.1401
	0.1741
	0.1863

	(7)Time(s)
	0.5700
	0.6900
	1.3200
	3.0500
	3.9500
	10.9700
	47.1200

	Dim
	12
	21
	51
	102
	201
	501
	1002

	(10)Ite
	3
	3
	3
	3
	3
	3
	3

	(10)Nfun
	5
	5
	5
	5
	5
	5
	5

	(10)R
	1.3420
	1.3420
	1.3420
	1.3420
	1.3420
	1.3420
	1.3420

	(10)Time(s)
	0.1500
	0.1800
	0.1300
	0.2600
	0.6400
	2.0000
	10.9100

	Dim
	12
	21
	51
	102
	201
	501
	1002

	(11)Ite
	7
	7
	7
	7
	8
	8
	8

	(11)Nfun
	13
	13
	13
	13
	14
	14
	14

	(11)R
	0.5532
	0.5532
	0.5532
	0.5532
	0.6535
	0.6224
	0.5851

	(11)Time(s)
	0.2200
	0.3400
	0.2800
	0.5700
	1.3100
	4.8700
	33.8700

	(12)Ite
	4
	4
	4
	4
	4
	4
	4

	(12)Nfun
	5
	5
	5
	5
	5
	5
	5

	(12)R
	1.9415
	1.8389
	1.7860
	1.7696
	1.7617
	1.7569
	1.7554

	(12)Time(s)
	0.1400
	0.1700
	0.1500
	0.2500
	0.5000
	2.1700
	13.6100

[image: Table]

Table 6. Results of the DBQN method with B 0 = F ′ (x 0) .

Table 6. Results of the DBQN method with B 0 = F ′ (x 0) .

	Pro(Dim)
	10
	20
	50
	100
	200
	500
	1000

	(1)Ite
	4
	5
	5
	5
	5
	5
	5

	(1)Nfun
	6
	6
	6
	6
	6
	6
	6

	(1)R
	0.9211
	1.5530
	1.6623
	1.6975
	1.7149
	1.7252
	1.7287

	(1)Time(s)
	0.0900
	0.2200
	0.4800
	0.5100
	0.6700
	3.1600
	20.2400

	(2)Ite
	11
	11
	12
	12
	12
	13
	13

	(2)Nfun
	12
	12
	13
	13
	13
	14
	14

	(2)R
	0.4726
	0.4677
	0.4819
	0.4822
	0.4827
	0.4807
	0.4808

	(2)Time(s)
	0.2000
	0.3300
	0.3200
	0.5100
	1.1300
	6.7900
	47.0600

	(3)Ite
	10
	11
	11
	11
	11
	11
	11

	(3)Nfun
	11
	12
	12
	12
	12
	12
	12

	(3)R
	0.5629
	0.5496
	0.5542
	0.5641
	0.5754
	0.5912
	0.6035

	(3)Time(s)
	0.4800
	0.6900
	0.7200
	1.1800
	2.2700
	9.2200
	45.4800

	(4)Ite
	16
	25
	32
	29
	35
	34
	33

	(4)Nfun
	23
	40
	56
	58
	64
	83
	67

	(4)R
	0.3164
	0.1641
	0.1241
	0.1219
	0.1142
	0.0897
	0.1128

	(4)Time(s)
	0.7800
	1.2400
	4.0200
	6.7600
	15.7000
	49.1800
	180.5200

	(6)Ite
	5
	5
	4
	4
	3
	3
	3

	(6)Nfun
	6
	6
	5
	5
	4
	4
	4

	(6)R
	1.0196
	1.1784
	1.5102
	1.9224
	1.8193
	2.2563
	2.5914

	(5)Time(s)
	0.1000
	0.1700
	0.3200
	0.4400
	0.6200
	2.2700
	12.2300

	(7)Ite
	3
	3
	3
	3
	3
	1
	1

	(7)Nfun
	4
	4
	4
	4
	4
	2
	2

	(7)R
	1.5674
	1.8740
	2.2760
	2.5987
	2.9294
	2.0320
	2.2588

	(7)Time(s)
	0.1100
	0.1000
	0.3100
	0.3900
	0.7100
	0.8600
	4.2900

	(8)Ite
	14
	14
	18
	23
	20
	23
	24

	(8)Nfun
	20
	23
	38
	59
	44
	76
	80

	(8)R
	0.2827
	0.2437
	0.1454
	0.0953
	0.1199
	0.0731
	0.0670

	(8)Time(s)
	0.6300
	1.0300
	1.6100
	2.7100
	5.0500
	20.8500
	102.1800

	Dim
	12
	21
	51
	102
	201
	501
	1002

	(9)Ite
	3
	3
	3
	3
	3
	3
	3

	(9)Nfun
	4
	4
	4
	4
	4
	4
	4

	(9)R
	3.8134
	3.7605
	3.7383
	3.5184
	3.4381
	3.6076
	3.5910

	(9)Time(s)
	0.0300
	0.0600
	0.2200
	0.2200
	0.3700
	1.4300
	9.5300

	Dim
	12
	21
	51
	102
	201
	501
	1002

	(10)Ite
	9
	9
	9
	9
	9
	9
	9

	(10)Nfun
	10
	10
	10
	10
	10
	10
	10

	(10)R
	0.7420
	0.7420
	0.7420
	0.7420
	0.7420
	0.7420
	0.7420

	(10)Time(s)
	0.3200
	0.2500
	0.4300
	1.4000
	1.6200
	6.0500
	32.8000

	Dim
	12
	21
	51
	102
	201
	501
	1002

	(11)Ite
	5
	5
	5
	5
	5
	5
	5

	(11)Nfun
	6
	6
	6
	6
	6
	6
	6

	(11)R
	1.3488
	1.3488
	1.3488
	1.3488
	1.3488
	1.3488
	1.3488

	(11)Time(s)
	0.1300
	0.1300
	0.1900
	0.4200
	0.7500
	3.0700
	20.7800

	(12)Ite
	11
	13
	15
	15
	15
	15
	15

	(12)Nfun
	12
	14
	16
	16
	16
	16
	16

	(12)R
	0.4607
	0.3912
	0.3475
	0.3534
	0.3610
	0.3720
	0.3808

	(12)Time(s)
	0.1500
	0.3900
	0.5600
	0.9900
	1.9300
	8.0200
	55.5800

[image: Table]

Table 7. Results of the Newton’s method.

Table 7. Results of the Newton’s method.

	Pro(Dim)
	10
	20
	50
	100
	200
	500
	1000

	(1)Ite
	4
	5
	5
	5
	5
	5
	5

	(1)Nfun
	6
	6
	6
	6
	6
	6
	6

	(1)R
	0.9211
	1.5530
	1.6623
	1.6975
	1.7149
	1.7252
	1.7287

	(1)Time(s)
	0.0000
	0.0000
	0.0100
	0.0700
	0.1900
	1.9100
	16.8700

	(2)Ite
	4
	4
	4
	4
	4
	4
	4

	(2)Nfun
	5
	5
	5
	5
	5
	5
	5

	(2)R
	1.2544
	1.2704
	1.2826
	1.2872
	1.2896
	1.2911
	1.2916

	(2)Time(s)
	0.0100
	0.0000
	0.0100
	0.0100
	0.1500
	2.2600
	13.3200

	(3)Ite
	4
	4
	4
	4
	4
	4
	5

	(3)Nfun
	5
	5
	5
	5
	5
	5
	6

	(3)R
	1.2884
	1.3061
	1.3333
	1.3542
	1.3729
	1.3913
	2.2609

	(3)Time(s)
	0.0000
	0.0000
	0.0100
	0.0100
	0.1900
	2.1300
	17.8300

	(4)Ite
	16
	17
	18
	18
	19
	19
	20

	(4)Nfun
	17
	18
	19
	19
	20
	20
	21

	(4)R
	0.3721
	0.3649
	0.3625
	0.3617
	0.3620
	0.3618
	0.3623

	(4)Time(s)
	0.0200
	0.0100
	0.0100
	0.1100
	0.8500
	7.8600
	67.7600

	(6)Ite
	15
	12
	8
	6
	5
	4
	3

	(6)Nfun
	16
	13
	9
	7
	6
	5
	4

	(6)R
	0.3600
	0.4488
	0.6793
	0.9078
	1.1567
	1.4961
	1.7423

	(6)Time(s)
	0.0300
	0.0000
	0.0100
	0.0600
	0.2000
	1.4900
	9.9400

	(7)Ite
	22
	18
	12
	8
	4
	1
	1

	(7)Nfun
	23
	19
	13
	9
	5
	2
	2

	(7)R
	0.1919
	0.2323
	0.3217
	0.4503
	0.7825
	2.0320
	2.2588

	(7)Time(s)
	0.0300
	0.0000
	0.0200
	0.0600
	0.1200
	0.3800
	3.3100

	(9)Ite
	2
	2
	2
	2
	2
	2
	2

	(9)Nfun
	3
	3
	3
	3
	3
	3
	3

	(9)R
	Inf
	Inf
	Inf
	Inf
	Inf
	Inf
	Inf

	(9)Time(s)
	0.0000
	0.0000
	0.0100
	0.0100
	0.1000
	0.7000
	5.8800

	Dim
	12
	21
	51
	102
	201
	501
	1002

	(11)Ite
	3
	3
	3
	3
	3
	3
	3

	(11)Nfun
	4
	4
	4
	4
	4
	4
	4

	(11)R
	2.0137
	2.0137
	2.0137
	2.0137
	2.0137
	2.0137
	2.0137

	(11)Time(s)
	0.0100
	0.0000
	0.0100
	0.0200
	0.1100
	1.0600
	11.1200

	(12)Ite
	4
	4
	4
	4
	4
	4
	4

	(12)Nfun
	5
	5
	5
	5
	5
	5
	5

	(12)R
	1.4972
	1.4718
	1.4581
	1.4541
	1.4523
	1.4511
	1.4508

	(12)Time(s)
	0.0100
	0.0000
	0.0100
	0.0300
	0.1600
	1.2900
	12.0100

	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file4.png
'---_‘------_.

<)
’
L.
1
i
J—
J'
Tan,
-
. Jl.ll. ¢
= @ © < N
o o o o
1=>(s‘d)s:dd
1
[
|
i
|
|
|
|
g
|
|}
) !
L
A
-_.__
L
3
J!-
J.'
- %
! i
~ 0] (o} =t 0.._
o

o o o
1=>(s‘d)s:dd

]
. S
i 55
. 5
I =R
| [|
| I
p— 1 [|
i1l i
—-
;
g
..Jl.. -
e « © = N
=] o =] S
1=>(s‘d)s:dg
i
|
I
_
_
I
]
Ny
ol
h,
&
[]
i
L
1
.
&
. T
e
- a0 w <t

S © o
1=>(s‘d)s:dd

N
o

nav.xhtml

 symmetry-14-01552

 		
 symmetry-14-01552

media/file0.png

media/file2.png
To)
1 =
o)
_ &
L
.
-llllll'
_ . . T =
- i o © i N o
o o o o
1=>(s‘d)r.dd
To)
1 =r
.....mﬁ)
_ I
. o
_
—
!I.'ll'
_ : - _ .
- 00 0 <t oy o
o o

o o
1=>(s‘d).:dd

g
&
= D
89
18]]
5 0O ~
wwm
1
]
1
e _ o
|
..
] 1 &
L
b |
1
'J..'
R it . W _ =
- © © ¥ o O
o o o o
1=>(s‘d)s:dd
o
il e
& ®
1N
-.l:.
.III'.'.J . —
o o

o o
1=>(s‘d)s:dd

media/file3.jpg
H 5
i 5
i .
i % mw
! -}
n i
g! o i
TEgEg@g e Fg3aomge

1=>(s'duidd 1=>(s'duidd

)

T T e

° =didd

media/file1.jpg
(@
3
t

