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Abstract: The application of a modern solving algorithm or method of resolving dynamical equations
for small projectile of finite sizes orbiting to be captured in a trapped zigzaging oscillations on orbit
around the another large asteroid and in a further inelastic colliding scenario with him (using a
formulation of the elliptic restricted three-body problem, ER3BP) is studied semi-analytically. Herein,
two primaries MSun and mp (mp < MSun) revolve around their barycenter on Keplerian orbits with
low eccentricities. A smaller body (projectile for attacking a large asteroid) is supposed to be a solid,
almost symmetric ellipsoid, having the gravitational potential of the MacCullagh type. Our aim is to
develop a previously introduced solving procedure and to investigate the updated dynamics of the
projectile captured to a trapped dynamical resonance, thereby having the inelastic collision of a small
projectile orbiting on quasi-stable elliptic orbits around the large asteroid, mp.

Keywords: dynamics of finite-sized satellite; rotation of finite-sized satellite; elliptic restricted three-
body problem, ER3BP; trapped motion of satellite; gravitational potential of MacCullagh type;
quasi-stable elliptic orbit

1. Introduction

A lot of meaningful attempts have been made during the last 60 years in the field of
celestial mechanics for the theoretical description or prediction of the orbital, rotational,
resonance and collision dynamics of asteroids or other small celestial bodies with respect
to the Earth, other planets, natural satellites and other large celestial bodies in the Solar
System [1–44]. Having looked upon the search results of scientific databases (e.g., Scopus)
regarding the request “inelastic collision of asteroids”, one can find a wide variety of
approaches such as: modelling the after-impact dynamics of asteroids as a collisions inside
the flows of rubble-pile [1,2] fragments of asteroids; large-scale stochastic models for the
collision dynamics of asteroids within the Oort cloud; and various perturbations of classical
two-body problem which consider the relations stemming from conserving the angular
momentum or the orbital angular momentum (we should especially note here that the
spatial ER3BP, elliptical restricted three-body problem is not conservative, and no integrals
of motion are known [3–6]). For example, in the profound abovementioned work [1],
the moniker approach is applied to investigate wide-ranging population of rubble-pile
asteroids on near-Earth orbits with induced self-gravity (whereas they have significant
void space or bulk porosity inside) by direct or indirect methods of observations depending
on their shape and spin. Such rubble-pile asteroids are likely by-products of the continued
collisional evolution of the Main Asteroid Belt.
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Significant findings have been illuminated in seminal works [7,8] which should be
especially outlined. In [7], complex program computing-based algorithms (including the
Asteroid Redirection Demonstration System) are proposed as a demonstration mission
to redirect a small asteroid less than 10 m in diameter to collide with a larger asteroid
hundreds of meters in diameter, near the Earth. This collision will aim to disrupt the
larger asteroid or alter its trajectory, thereby demonstrating a capability to prevent such an
asteroid from colliding with Earth. In work [8], the authors proposed a new hazard scale
that would describe the risk posed by a particular potential impact in both absolute and
relative terms in order to conveniently compare and categorize the numerous potential
impact solutions being discovered.

As we can see, the aforementioned research investigated possible collision or approach
scenario near the Earth, in contrary to our approach suggested in the current semi-analytical
investigation with numerical findings, where we concentrate our efforts on small projectile
approaching large asteroid far from Earth, still using the formulation of the elliptical
restricted three-body problem, ER3BP (which is the main feature of our research direction).
In addition, we should note with respect to methodological basement that previous studies
were purely numerical (in the mainstream way of other research in this direction), which
is distinct from our research which is based on a semi-analytical algorithm with further
numerical findings.

In references [7–9], one can find empirically useful celestial mechanics applications
and data and formula (see (1) in [7]) on how to estimate the size of an asteroid via its
absolute magnitude H (a measure of the luminosity of an asteroid on an inverse logarithmic
magnitude scale) and geometric albedo, p. In [10], the authors come to the conclusion that
when a large asteroid suffers a catastrophic impact with only a fraction of the initial mass
re-accumulating into a “rubble pile,” a significant amount of angular momentum is carried
away by the escaping material. Important conclusions are made by the authors in [11]
where they outline, regarding the long timescale orbital dynamics of small celestial bodies
(which are suffering from repeatedly close approaches to large celestial bodies, and should
be in highly chaotic motion), that on two different computers—taking the same dynamical
model, the same initial conditions and the same numerical integrator—the outcome of
long-term integration would be different already after several close approaches. In [12],
the authors investigate the rotational dynamics of various types of asteroids depending on
their structure and size. In addition, the authors mention the interesting fact (referencing
work [13] in their rationale) that >15% of projectile kinetic energy survives as the kinetic
energy of the survived parts of the projectile (here, a small asteroid) following cratering
events, with the rest being absorbed internally by the target (a large asteroid).

The main idea of the current research is to suggest the use of a semi-analytical algo-
rithm for calculating the orbit of small projectile critically approaching other large asteroid
(or minor planet in the Asteroid Belt), assuming the phenomenon of cosmic billiard for cor-
recting the orbit of the large asteroid, which has a potential risk of further close approach
to Earth in the future. This motivates us to develop research previously illuminated in
work [43], solve an algorithm or method of resolving the dynamical equations for small
satellite m of finite sizes (orbiting around minor planet), and semi-analytically study the
updated type of dynamics of finite-sized asteroid m (small satellite in the terminology of
the problem formulated in [43]) correlated implicitly to a kind of trapped motion governed
by primaries (in the synodic co-rotating Cartesian coordinate system)—here, Sun MSun
and large asteroid mp (or minor planet)—in such a way that small asteroid m will be cap-
tured into further inelastic collision with the bigger ones, mp, both moving on quasi-stable
elliptic orbits.

In most optimistic scenario (excluding the direct impact of an asteroid to the minor
planet’s surface), small asteroid will pass very close to the surface of such a celestial body or
large asteroid at a negligible distance of the Roche limit [6] for this chosen celestial body. As
for the complete introduction to the problem under consideration, we recommend seminal
articles [14,15], especially [14], where significant theoretical explanations have been made in
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detail regarding planar dynamics of small celestial body of finite sizes, presented previously
in a case of the elliptical restricted three-body problem ER3BP (where the satellite was
assumed as a small celestial body—here, small asteroid—which is moving under the influence
of gravitational forces of two primaries MSun and mp, mp < MSun, which are orbiting around
their barycenter in mutual Keplerian motion) with the help of clear mathematical formulae
by the system of two coupled ordinary differential equations of the second order. We
restrict our current study by using the final form of the approximated scaled equations
derived in work [43].

2. Convenient form of Equations of Motion for Further Solving Procedure

According to [43], we present equations of motion in the scaled, pulsating, planar
coordinate system

→
r = {x, y} (in the elliptical restricted three-body problem, ER3BP) for the

following chosen set of initial conditions:

d2x
d f 2 (1 + e· cos f )4 − 2e(1 + e· cos f )3(sin f ) dx

d f − 2(1 + e· cos f )4 dy
d f =

= (1 + e· cos f )4x− 2e(1 + e· cos f )3(sin f )y− (x−µ+1)(
(x−µ+1)2+y2

) 3
2
+

+
3hx

[
2
(
(x−µ+1)2+y2

)
−5(x−µ+1)x

]
10
(
(x−µ+1)2+y2

) 7
2

,

d2y
d f 2 (1 + e· cos f )4 − 2e(1 + e· cos f )3(sin f ) dy

d f + 2(1 + e· cos f )4 dx
d f =

= (1 + e· cos f )4y + 2e(1 + e· cos f )3(sin f )x− y(
(x−µ+1)2+y2

) 3
2
− 3hyx2

2
(
(x−µ+1)2+y2

) 7
2

.

(1)

where e is the eccentricity, f is the true anomaly, µ is the ratio of the mass (mass parameter
in denotations chosen in [43]), and h is the extent of deviation of the projectile from the
symmetrical form of the ellipsoid of rotation (also in denotations given in work [43]).

3. Graphical Plots for Numerical Solutions

Furthermore, let us present hereby the schematic imaging for numerical solutions of
Equation (1) (see Figures 1–8). It is worthy to note that dynamical trends of numerical
solutions and their quasi-periodicity (depending on the true anomaly f ) are dependent on
parameter h in (1), which stems from the deviation of the form of the projectile from an
ellipsoid of rotation.
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The required clarifications should be given regarding an essential brief explanation
vis-à-vis the text with a total research flowchart or framework diagram for the proposed
algorithm in order to indicate how this employed model is working to receive the experi-
mental results (for an easy understanding of how the proposed approach is working for
common readers of the journal). Namely, the aforementioned total research flowchart is
as follows:

1. First, we choose from the very beginning the set of initial data with zero values;
2. Then, we initiate the numerical solving of system (1) using the Runge–Kutta fourth-

order method with step 0.001 starting from the abovementioned set of initial conditions;
3. In the case where we obtain the required positive result (which is associated with

recognizing the dynamical features of the projectile’s trapped motion when approach-
ing the large asteroid during such celestial motion in ER3PB), the algorithm will
be stopped;

4. In the case where we obtain a negative result, initial data should be shifted by step
(+/−) 0.001 with respect to the absolute magnitudes of the initial conditions. Hereafter,
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the algorithm should work during the next cycles of numerical calculating up to
reaching the positive result.

It is of keen interest to consider the case of two primaries for the system “Ceres (dwarf
planet, large asteroid)—Sun” where eccentricity is chosen to be e = 0.0785, µ ∼= 4.7·10−10

in the series of numerical solutions illuminated by Figures 1–8. We obtain the numerical
solutions by the Runge–Kutta fourth-order method with step 0.001 starting for the case of
Ceres (Figures 1–4) with the initial conditions chosen as:

x0 = −0.9, (
.
x)0 = 0.9, y0 = −0.12, (

.
y)0 = −0.2.

We can make the obvious conclusion from Figures 3 and 4 that the projectile expe-
riences strong oscillations during forced trapped orbiting when approaching the large
asteroid. Such a regime of fast zigzagging oscillations stems from having been capturing
into a resonance with Ceres at the final part of the trajectory of the projectile’s motion in
ER3PB (case of two primaries “Ceres-Sun” for system “projectile-Ceres-Sun”).

In addition, let us consider the additional case of initial values for system “Ceres-Sun”
with respect to the numerical solutions illuminated by Figures 5–8. We will obtain the help
of Runge–Kutta fourth-order ansatz (step 0.001 starting from initial conditions): x0 = −1,
(

.
x)0 = −0.53, y0 = 0.167, (

.
y)0 = −0.57.

As we can obviously see from Figures 7 and 8, the projectile also experiences strong
zigzagging oscillations during its trapped motion when approaching the large asteroid
(here, the minor planet Ceres) for the reason of having been captured into a resonance
during such celestial motion in ER3PB (here, the case of two primaries “Ceres-Sun” for the
system “projectile-Ceres-Sun”).

4. Discussion and Conclusions

A sufficient volume of profound scientific research has been made in celestial mechan-
ics when discussing the superposing gravity fields obviously influencing the dynamics
of satellite of finite sizes (here, projectile), consisting of the combined central fields of
primaries in the elliptic restricted three-body problem (ER3BP).

An elegant application of modern solving algorithms or methods of resolving dy-
namical equations for small finite-sized projectile’s orbiting to be captured in trapped
zigzagging oscillations in orbit around another large asteroid and in a further inelastic
colliding scenario with him (using the formulation of the elliptic restricted three-body
problem, ER3BP) is studied here by semi-analytical methods along with numerical findings.
In such a formulation, two primaries, MSun and mp (mp < MSun), are revolving around
their barycenter on Kepler orbits with low eccentricities. A smaller body (a projectile
attacking a large asteroid) is supposed to be a solid, almost symmetric ellipsoid, having the
gravitational potential of the MacCullagh type.

Our aim is to develop previously introduced solving procedure [43] and to investigate
the updated dynamics of projectile captured in a trapped dynamical resonance, thereby
having the inelastic collision of that small projectile orbiting on quasi-stable elliptic orbits
around the large asteroid, mp.

It is worthy to note that the distance of the projectile from the large asteroid should
exceed Roche distance for this minor primary [6] (e.g., equal to 5Rp ∼= 1.55·10−5 in units of ap
or circa 6.4 km, in the case of Ceres) if we wish to exclude the direct impact of the projectile
to the minor primary’s surface. In any case, our calculations are valid for a restricted part
of the projectile’s trajectory, where such a small mass m (projectile) will be moving inside
the sphere of effective attraction, approaching the minor primary mp inside the so-called
Hill sphere [6] (but beyond Hill spheres of other planets of the Solar system):

rH ∼= ap·(1− e2)·
(

mp

3(MSun + mp)

) 1
3
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where we have chosen in [43] {ap (1 − e2)} = 1. Thus, we have for the case of Ceres,

rH ∼=
( µ

3
) 1

3 , µ ∼= 4.7·10−10 → r2 < rH ∼= 5.38·10−4 ; this means that in the case of Ceres,
the distance from the small asteroid to this minor planet should be less than
r2 < rH ∼= 5.38·10−4(2.7653·1a.e.) ∼= 222.6·103 km. Taking into account that the aver-
age velocity of a small asteroid (projectile) is circa 12–15 km/s, this means that such a
projectile will be moving more than 4 h in the Hill sphere of a minor planet before reaching
the minor primary (as the final target of the projectile’s trajectory). Despite the fact that the
aforementioned distance within the Hill sphere is located sufficiently close to the secondary
planet (minor planet), it is very important to describe correctly the final approaching mo-
tion of the small asteroid (projectile) to the target minor planet or large asteroid using the
approximation of ER3BP (elliptic restricted three-body problem).

If we consider the case of Apophis as a large asteroid system “small asteroid-Apophis-

Sun”, rH ∼=
( µ

3
) 1

3 , µ ∼= 1.358·10−20 → r2 < rH ∼= 1.59·10−7 ; this means that in the case of
Apophis, the distance from the small asteroid to this large asteroid should be less than
r2 < rH ∼= 1.59·10−7(0.9223·1a.e.) ∼= 21.9 km. Taking into account that the average velocity
of a small asteroid is circa 12–15 km/s, this means that the small asteroid will be moving
less than 2 s in a Hill sphere of Apophis before reaching the large asteroid as a target. Thus,
we conclude that it is sufficient for the calculation of the orbit of small asteroid approaching
Apophis to use the equations of ER2BP (two-body problem, “small asteroid—Sun”), taking
into account the Yarkovsky effect [25] for the proper correction of the orbit of Apophis
(“Apophis-Sun”). It is also worth noting that we have succeeded in the numerical solving
of system (1) (bearing estimation for h or restriction in Appendix A in mind) for the system
“projectile-Ceres-Sun” where the eccentricity is chosen to be e = 0.0785, µ ∼= 4.7·10−10 in the
scheme of our numerical experiments presented by Figures 1–8 (with the estimation of h as
reported in [43]). For obtaining numerical solutions we used the Runge–Kutta fourth-order
method with step 0.001 starting from various sets of initial conditions for the case of Ceres.

Last but not least, we should clarify properly which problems still need to be solved
and why the proposed approach is suitable to be used to solve this critical problem. We
have succeded in ajusting the initial data for numerical solving of system (1) as mentioned
above for system “projectile-Ceres-Sun”, but the cases of other large asteroids (Table 1,
referring to hierarchy by their masses) should be investigated additionally.

Table 1. Asteroids with nominal mass >10 × 1018 kg.

Name Approx. Mass (×1018 kg) Approx. Proportion of All Asteroids

1. Ceres 938.4 31%
2. Vesta 259.1 8.6%
3. Pallas 204 6.7%
4. Hygiea 87 3.7%
5. Interamnia 35 1.3%
6. Eunomia 30 1.1%

The proposed approach is adjustable to be used to solve the aforementioned critical
problem with help of adjusting the optimal set of initial data for each case.

As for a convincing literature review to indicate clearly the state-of-the-art develop-
ment, we have given in the Introduction (according to our understanding) an up-to-date
mentioning of scientific results in the field under consideration. We also should note
that the approach proposed in the current research quite differs from that one in [45] for
investigating the approach of asteroid 2006 RH120 to Earth. Moreover, the remarkable
articles [46–50] should be cited which detail the problem under consideration.

To the best of our knowledge, there are no alternative models (which could be used as
benchmark models) which use similar methods or approaches, or present such results. This
proves the novelty and originality both in the solving of the algorithm and in the results
presented by our model, with respect to the dynamics of the celestial motion of projectile
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approaching a large asteroid in the problem formulated as ER3BP (with further capturing
into a resonance motion of projectile around a large asteroid resulting in inelastic collision
as a reliable scenario).
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have read and agreed to the published version of the manuscript.
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Nomenclature

H
absolute magnitude, a measure of the luminosity of asteroid on an inverse
logarithmic magnitudes scale, dimensionless

p geometric albedo, dimensionless
m mass of finite-sized small asteroid or projectile (of ellipsoidal form), kg
mp mass of large asteroid or minor planet (here, Ceres), kg
MSun mass of Sun, kg
→
r = {x, y} coordinates of the scaled, pulsating, planar coordinate system, dimensionless
e eccentricity, dimensionless
f the true anomaly (in radians), rad

h
the extent of deviation of projectile from symmetrical form of ellipsoid
of rotation, dimensionless

r1 distance of projectile m from MSun, dimensionless
r2 distance of projectile m from Ceres, dimensionless
Rp radius of minor planet or large asteroid (here, Ceres), dimensionless

ap
semimajor axis of elliptic orbits of the rotating primaries around their barycenter,
dimensionless (here, {ap (1 − e2)} = 1)

rH radius of Hill sphere for large asteroid (here, Ceres), dimensionless
Greek symbols
µ the ratio of the mass (mass-parameter), dimensionless
Subscripts

1, 2
components of distances of projectile from each of primaries with mass MSun
and mplanet, accordingly

Appendix A. Estimation of Absolute Magnitudes for Parameter h

It is of keen interest to estimate the absolute magnitudes of parameter h for numerical
solutions on Figures 1–8:

3hx2

10(x2 + y2)
<<

∣∣∣→r 2

∣∣∣∣∣∣→r 1

∣∣∣ =
(
(x− µ + 1)2 + y2

) 1
2

(
(x− µ)2 + y2

) 1
2

<< 1 (A1)

where we have chosen parameters e = 0.0785, µ ∼= 4.7·10−10 for two primaries in system
“Ceres-Sun”.

We conclude that the same estimation is valid as obtained previously in [43] in case
of sufficiently large size of small projectile for system “projectile-Ceres-Sun” presented on
Figures 1–8 (where h is of the same order as in case above).



Symmetry 2022, 14, 1548 9 of 10

References
1. Walsh, K.J. Rubble pile asteroids. Annu. Rev. Astron. Astrophys. 2018, 56, 593–624. Available online: https://arxiv.org/abs/1810.0

1815 (accessed on 27 February 2022). [CrossRef]
2. Ershkov, S.V.; Leshchenko, D. On the dynamics OF NON-RIGID asteroid rotation. Acta Astronaut. 2019, 161, 40–43. [CrossRef]
3. Llibre, J.; Conxita, P. On the elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 1990, 48, 319–345. [CrossRef]
4. Ershkov, S.; Leshchenko, D.; Rachinskaya, A. On the motion of small satellite near the planet in ER3BP. J. Astronaut. Sci. 2021, 68,

26–37. [CrossRef]
5. Ershkov, S.; Leshchenko, D.; Rachinskaya, A. Note on the trapped motion in ER3BP at the vicinity of barycenter. Ingenieur-Archiv.

2020, 91, 997–1005. [CrossRef]
6. Ershkov, S.; Rachinskaya, A. Semi-analytical solution for the trapped orbits of satellite near the planet in ER3BP. Ingenieur-Archiv.

2020, 91, 1407–1422. [CrossRef]
7. Marcus, M.L.; Sloane, J.B.; Ortiz, O.B.; Barbee, B.W. Planetary defense mission using guided collision of near-earth objects.

J. Spacecr. Rocket. 2017, 54, 985–992. [CrossRef]
8. Chesley, S.R.; Chodas, P.W.; Milani, A.; Valsecchi, G.; Yeomans, D.K. Quantifying the risk posed by potential earth impacts. Icarus

2002, 159, 423–432. [CrossRef]
9. Asteroid Size Estimator. Available online: https://cneos.jpl.nasa.gov/tools/ast_size_est.html (accessed on 27 February 2022).
10. Cellino, A.; Zappalà, V.; Davis, D.R.; Farinella, P.; Paolicchi, P. Asteroid collisional evolution. I. Angular momentum splash:

Despinning asteroids through catastrophic collisions. Icarus 1990, 87, 391–402. [CrossRef]
11. Dvorak, R.; Freistetter, F. Dynamical evolution and collisions of asteroids with the earth. Planet. Space Sci. 2001, 49, 803–809.

[CrossRef]
12. Harris, A. Asteroid rotation rates: II. A theory for the collisional evolution of rotation rates. Icarus 1979, 40, 145–153. [CrossRef]
13. O’Keefe, J.D.; Ahrens, T.J. Impact ejecta on the moon. In Proceedings of the 7th Lunar and Planetary Science Conference, Houston,

TX, USA, 15–19 March 1976; pp. 3007–3025, published by NASA by Israel Programm for Scientific Translations, John Wiley &
Sons, New York-Toronto, und Keter Publishing House Ltd., Jerusalem.

14. Ashenberg, J. Satellite pitch dynamics in the elliptic problem of three bodies. J. Guid. Control. Dyn. 1996, 19, 68–74. [CrossRef]
15. Beletskii, V.V. Motion of an Artificial Satellite about Its Center of Mass. NASA TT F-429. 1966. (In Russian)
16. Arnold, V.I. Stability of equilibriu mp osition of a Hamiltonian system of ordinary differential equations in general elliptic case.

Doklady Akademii Nauk SSSR 1961, 137, 255.
17. Bennett, A. Characteristic exponents of the five equilibrium solutions in the elliptically restricted problem. Icarus 1965, 4, 177–187.

[CrossRef]
18. Narayan, A.; Usha, T. Stability of triangular equilibriumpoints in the elliptic restricted problem of three bodies with radiating and

triaxial primaries. Astrophys. Space Sci. 2014, 351, 135–142. [CrossRef]
19. Danby, J.M.A. Stability of the triangular points in the elliptic restricted problem of three bodies. Astron. J. 1964, 69, 165. [CrossRef]
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