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Abstract: This paper constructs the double penalized expectile regression for linear mixed effects
model, which can estimate coefficient and choose variable for random and fixed effects simultane-
ously. The method based on the linear mixed effects model by cojoining double penalized expectile
regression. For this model, this paper proposes the iterative Lasso expectile regression algorithm to
solve the parameter for this mode, and the Schwarz Information Criterion (SIC) and Generalized
Approximate Cross-Validation Criterion (GACV) are used to choose the penalty parameters. Ad-
ditionally, it establishes the asymptotic normality of the expectile regression coefficient estimators
that are suggested. Though simulation studies, we examine the effects of coefficient estimation
and the variable selection at varying expectile levels under various conditions, including different
signal-to-noise ratios, random effects, and the sparsity of the model. In this work, founding that the
proposed method is robust to various error distributions at every expectile levels, and is superior to
the double penalized quantile regression method in the robustness of excluding inactive variables.
The suggested method may still accurately exclude inactive variables and select important variables
with a high probability for high-dimensional data. The usefulness of doubly penalized expectile
regression in applications is illustrated through a case study using CD4 cell real data.

Keywords: double penalized; mixed effects; expectile regression; Lasso algorithm

1. Introduction

Linear mixed effect model (LME) is an important statistical model, which is widely
used in various fields. The LME model includes the fixed effect and random effect. The
fixed effect is used to represent the general characteristics of the sample population, and
the random effect is used to depict the divergences between individuals and the correlation
between multiple observations. The structure and property of this model reveal substantial
differences compared to the general linear models and complete random coefficient linear
models. Compared with other linear models, the inclusion of random effects in the mixed
effects model captures the correlation between the observed variables.

Maximum likelihood and least square method are the classical methods of estimation
used for the LME model. However, the least square method leads to biased estimates
when the data with heavy-tailed distribution or significant heteroscedasticity. Koenker and
Bassett (1978) [1] considered the quantile regression to solve such problems by regressing
covariates according to the conditional quantiles of response, and capture the regression
models under the all quantiles. However, the sparsity of sample variable is an issue
which can not be ignored when it involves the correction analysis of variables, that is
not all variables have predictive roles on regression analysis. In practical applications,
massive candidate variables can be used for modeling analysis and prediction. Retaining
the incorrelated variables in the model for prediction is undesirable, where the retention of
irrelevant variables will produce the large deviation and non-interpretability of the model.
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How to select variables effectively is a challenging topic for the linear mixed effects models.
Similar to the general linear regression, replacing the different types of penalty terms
in the quantile regression can achieve synchrosqueezing for coefficients to reach target
of variable selection. For example, Tibshirani (1996) [2] proposed a Lasso method with
penalty terms, and selected variables by squeeze parameters sparsely in quantile regression.
Quantile Lasso regression constraints some coefficients of irrelevant variables to 0 when the
sum of absolute values of coefficients is less than a pre-specified constant, which not only
can acquire a more simplified model and select variables simultaneously, also solve the
problem of data with sparsity. Next, Zou (2006) [3] gave the proof of the oracle properties
of adaptive Lasso in generalized linear models. Biswas and Das (2021) [4] proposed a
Bayesian approach of estimating the quantiles of multivariate longitudinal data. Koenker
(2004) [5] proposed the L1 penalty quantile regression based on random effects, which can
estimates parameter through weighting random effects information of multiple quantiles.
Wang (2018) [6] proposed a new semiparametric approach that uses copula to account
for intra-subject dependence and approximates the marginal distributions of longitudinal
measurements, given covariates, through regression of quantiles. Wu and Liu (2009) [7]
proposed the SCAD and adaptive Lasso penalized quantile regression method, and gave
the oracle properties in the situation of variable number unchanged. For different types of
data, Peng (2021) [8] illustrated the practical utility of quantile regression in actual survival
data analysis through two cases. Li (2020) [9] constructed a double penalized quantile
regression method, and used the Lasso algorithm to solve the parameters. It proved that
the estimated accuracy of the double penalized quantile regression is better than the other
quantile regression. And according to the article above, we find that double penalized
quantile regression model lacks accuracy and stability in excluding inactive variables. And
expectile regression can accurately reflect the tail characteristics of the distribution, the
variables of the model can be accurately selected. Therefore, in order to excluding inactive
variables more accurately, this paper cojoin the double penalty terms into the expectile
regression to obtain the double penalized expectile regression model.

Newey and Powell (1987) [10] replaced the L1-norm loss function to L2-norm loss
function for weighted least-squares, and proposed expectile regression. It regresses the
covariates based on the conditional expectile of the response to obtain the regression model
under all expectiles level. Almanjahie et al. (2022) [11] investigated the nonparametric
estimation of the expectile regression model for strongly mixed function time series data.
Gu (2016) [12] proposed the regularized expectile regression to analysis heteroscedastictiy
of high-dimensional data. Farooq and Steinwart (2017) [13] analysed a support vector
machine type approach for estimating conditional expectiles. Expectile and quantile are
metric indicators that capture the tail behavior of data distribution. When covariates make
different impacts on the distributions of different response, such as right or left skew, the
two metrics can not only decrease the effects of outliers on statistical inference, but also
provide a more comprehensive characteristics of entire distribution. Therefore, quantile
and expectile regression provide a more comprehensive relation between the covariates
and response.

Quantile regression is the generalization of median regression, and expectile regression
is the generalization of mean regression, so expectile regression inherits the computational
convenience and sensitivity to the observation values. Especially in the financial field,
researchers need the sensity of expectile regression to data. For panel data, the model
proposed by Schulze and Kauermann (2017) [14] allows multiple covariates, and a semi-
parametric approach with penalized splines is pursued to fit smooth expectile curves. For
cross-sectional data, expectile regression models and its applications have been studied.
Sobotha et al. (2013) [15] discussed the expectile confidence interval based on large sample
properties; Zhao and Zhao (2018) [16] proposed the penalized expectile regression model
with SCAD penalty with the proof of asymptotic property; Liao et al. (2019) [17] proposed
penalized expectile regression with adaptive Lasso and SCAD penalty for variable selec-
tion, and gave the proof of oracle properties under independent but different distributions
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of error terms. Waldmannetal et al. (2017) [18] proposed a combined Bayesian method
with weighted least squares to estimate complex expectile regression. Next, the newly
proposed iterative Lasso-expectile regression algorithm is used to solve the estimation of
parameters and variables selections. Xu and Ding (2021) [19] combined the elastic network
punishment with expectile regression and constructed the elastic network penalized ex-
pectile regression model. For the underlying optimization problem, Farooq and Steinwart
(2017) [20] proposed an efficient sequential-minimal-optimization-based solver and derived
its convergence. For the model selection problem, Spiegel et al. (2017) [21] introduced
several approaches on selection criteria and shrinkage methods to perform model selection
in semiparametric expectile regression. Expectile regression has also received attention in
the economic and financial sector, particularly in actuarial and financial risk management.
Daouia et al. (2020) [22] derive joint weighted Gaussian approximations of the tail empirical
expectile and quantile processes under the challenging model of heavy-tailed distributions.
Ziegel (2013) [23] applied expectile regression to the field of risk measurement.

Expectile regression is widely used in various fields. Including economic field [11,14,17,22,23],
biomedical field [12,19] and health field [15,18,21] etc. Therefore, the study of expectile
regression has many practical significances, and it is very necessary to study it.

To select the important variables into the model and the inactive variables excluded
from the model more accurately, this paper combines the linear mixed effect model with
the expectile regression model, and cojoin penalty terms into the estimation of random and
fixed effects to construct the double penalized expectile regression for linear mixed effects
model. And the iterative Lasso-Expectile regression algorithm is used to solve parameters.
The asymptotic property of double penalized expectile regression estimation is proved. The
simulation studies will analysis the results of coefficient estimation and variable selection
of the method proposed in this paper under different conditions, and the robustness of this
method in excluding inactive variables is mainly studied. Finally, based on the research
on the real data of CD4 cells, the practical utility difference between the double penalized
quantile regression and the double penalized expectile regression are compared.

The rest of this paper is organized as follows. We propose the double penalized
expectile regression method and the iterative Lasso expectile regression algorithm in
Section 2. The convergence of the algorithm and the asymptotic properties of the model
are given in Section 3. In Section 4, we present the simulation studies. And a real data
example is illustrated in Section 5. Moreover, this method is compared with the existing
double penalized quantile regression method in parameter estimation and variable selection
in simulation studies and real data analysis. In Section 6, we give the conclusions. In
Appendices, we show the proofs of lemmas and asymptotic properties, and some graphs
and tables obtained by simulation studies.

2. Methodologies

In order to get the specific formula of the linear mixed effect double penalized expectile
regression model, we introduce the LME model and summarize the estimation methods.
And give the specific steps of iterative lasso-expectile regression algorithm. Then we discuss
the selection criteria of penalty parameters.

2.1. Model and Estimation

Firstly, we consider the LME model

yij = xT
ijβ + zT

ijαi + rij, i = 1, 2, · · · , n,j = 1, 2, · · · , ni,∑
i

ni = N, (1)

where β(t) = {β1(t), · · · , βh(t)}T is the h× 1 vector of fixed effects regression coefficients,
αi = (αi1, αi2, · · · , αil)

T is a l × 1 vector of random effects. xT
ij is the row vector of the

known design matrix, zij is the l × 1 covariate associated with random effects, and yij is
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the jth scalar of the ith subject’s continuous random variable. And we let αi ∼ N(0, P),
ri ∼ N(0, Qi). The Equation (1) can be expressed as

yi = Xiβ + Ziαi + ri, αi ∼ N(0, P), ri ∼ N(0, Qi), i = 1, 2, . . . , n (2)

where Xi = (xi1, xi2, · · · , xini )
T, Zi = (zi1, zi2, · · · , zini )

T, yi = (yi1, yi2 · · · , yini )
T, and

ri = (ri1, ri2, · · · , rini )
T.

Next, we let Z = diag(Z1, Z2, · · · , Zn), r = (rT
1 , rT

2 , · · · , rT
n)

T, X = (XT
1 , XT

2 , · · · , XT
n)

T,

and y = (yT
1 , yT

2 , · · · , yT
n)

T, α= (αT
1 , αT

2 , · · · , αT
n)

T, P̃ = diag(P, P, · · · , P),
Q = diag(Q1, Q2, · · · , Qn). So Considering the matrix form, the LME model (2) can
be expressed as

y = Xβ + Zα + r, α ∼ N(0, P̃), r ∼ N(0, Q) (3)

Using the maximum likelihood and generalized least square method, the parameters
β and αi can be calculated. According to the known P and Qi, i = 1, 2, · · · , n, consider
following joint density function of yi and αi:

L(β, αi |y ) =
n
∑

i=1
{(yi −Xiβ− Ziαi)

TQ−1
i (yi −Xiβ− Ziαi)

+αT
i P−1αi + log|P|+ log|Qi|

} (4)

It is possible to determine the β and αi by minimizing the twice negative logarithm
of Equation (4). Equation (4) is not a typical log-likelihood function since αi are vectors of
random effects parameters. To be more specific, the first part in Equation (4) is a weighted
residual that accounts for within-subject variation, while αT

i P−1αi is a representation of a
penalty term resulting from random effects αi that accounts for between-subject variation.

Minimizing Equation (4) is identical to solving the following mixed model equation [24,25]
for given the Qi and P.(

XTQ−1X XTQ−1Z
ZTQ−1X ZTQ−1Z + P̃

−1

)(
β
α

)
=

(
XTQ−1y
ZTQ−1y

)
Expressed in matrix form as:

β̂= (XTW−1X)−1XTW−1y (5)

α̂i = PZT
i W−1

i (yi −Xi β̂) (6)

where Wi = ZiPZT
i + Qi, W = diag(W1, W2, . . . , Wn). Since this outcome had already

been achieved, Robinson [26] credited Henderson [27] with the aforementioned normal
equations. The “best linear unbiased predictor” (BLUP), which Goldberger [28] introduced,
is used to refer to the random effect estimated value β̂ and associated estimated value α̂i.
And Rao [24] put up a way to demonstrate the following Proposition 1:

Proposition 1. β̂ solves min
α,β
‖y−Xβ− Zα‖2

Q−1 + ‖α‖2
P̃
−1 , where ‖x‖2

T = xTTx.

Although the implicit estimation solution of random effects may be distinct from
others, seeing the random effects estimation value as a penalized least squares estimator
offers useful insights for the addition of punishment items. By shrinking the unrestricted
α̂ reaches the expected value, and both accuracy of the estimator of β̂ and the individual
fixed effect estimation will be improved. According to the classical statistical conclusion, in
the case of non-informative priors, the posterior expectations of parameters of Bayesian
estimation of LME are also solutions (5) and (6).
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2.2. Double Penalized Expectile Regression

Li (2020) [9] proposed a double penalized quantile regression estimation for the LME
model that finds α̂i ∈ Rl and β̂ ∈ Rh, i = 1, . . . ,n that minimize

n

∑
i=1

ni

∑
j=1

γθ(yij − xT
ijβ− zT

ijαi) + λβ

h

∑
k=1
|βk|+ λα

n

∑
i=1

l

∑
T=1
|αit| (7)

where the so-called check function of under θth level quantile regression is denoted by
γθ(k) = k(θ − I(k < 0)). Equation (7) can simultaneously perform a variable selection
operation and estimate the mixed expectile functions of the response variable, as stated in
Li (2020) [9].

Considering the lack of robustness of quantile regression for excluding inactive vari-
ables. Inspired by Newey and Powell (1987) [10], we can use the following method for the
conditional expectile functions of the response of the jth observation on the ith individual
yij,

Qyij(τ
∣∣∣xij, αi) = xT

ijβ + zT
ijαi (8)

The same individual is connected to each component of αi = (αi1, αi2, · · · , αil)
T. We

suggest a double penalized expectile regression method for the LME model based on
Equation (8), which find α̂i ∈ Rl and β̂ ∈ Rh, i = 1, · · · , n that minimize

L(β, α) =
n

∑
i=1

ni

∑
j=1

ρτ(yij − xT
ijβ− zT

ijαi) + λβ

h

∑
k=1
|βk|+ λα

n

∑
i=1

l

∑
t=1
|αit| (9)

where ρτ(u) = |τ − I(u < 0)|u2 signifies the check function, and τ ∈ (0, 1).
Compared with Equation (7), the expectile regression has the sensitivity to extreme

values, and the square loss function used in the regression has the computational advantage.
When discussing the asymptotic properties of the estimation, the covariance matrix of the
asymptotic distribution does not need to calculate the density function of the residual.
Therefore, compared with quantile regression, expectile regression depends more on the
overall distribution, and similar to Equation (7), our method also considers selecting
variables when estimating coefficients.

2.3. Iterative Lasso-Expectile Regression Algorithm

Obviously, it is very difficult to directly estimate parameters β, αi, λβ and λα of the
iterative double penalized expectile regression model. We propose the Lasso-expectile
regression algorithm to solve this optimization problem by selecting one variable and
fixing another to solve αi and β, it is equivalent to solving the general lasso expectile
model. The iterative series can not guarantee the convergence to the global optimum, the
objective function increases monotonically and achieves the maximum value. Therefore,
the algorithm terminates after limited iterations and reaches a local optimum (the detailed
proof in Section 3).

It is more efficient to combine the iterative approach with the adjustment of λβ than
to solve β̂ for a fixed λβ since this algorithm can find the solution paths of β̂ with λβ

when provided α. According to several selection criteria, we choose the best λβ to fit β
and the best λα to fit αi. The SIC [29] (Schwarz Information Criterion) and GACV [30]
(generalized approximate cross-validation criterion) are the two criteria that are most
frequently employed for expectile regression, respectively.

SIC(λβ) = ln(SK/N) +
ln(N)

2N
|K| (10)

GACV(λβ) =
SM

N − |M| (11)
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where SK =
n
∑

i=1

ni
∑

j=1
γθ(yij − xT

ijβ− zT
ijα̂i), N =

n
∑

i=1
ni, and the dimension of the process K is

|K|, which is the same as one of the non-zero components of β. Only when the result of SIC
or GACV is at the inflection point is the ideal parameter obtained.

In fact, we can present a different set of tuning parameters firstly, such as dividing
(0, a] evenly into b parts, and then select the best tuning parameter based on these two
criteria. In order to solve the parameter β for the variables αi = α̂i, i = 1, 2, · · · , n, we
compared these two criteria. The solution to αi might also be derived similarly provided
β = β̂.

We summarize the above iterative algorithm in the following Algorithm 1 steps. The
specific steps of iterative Lasso-expectile regression algorithm are as follows.

Algorithm 1. Iterative Lasso-Expectile Regression Algorithm.

Input: y, X, Z
Output: β̂, α̂, λβ, λα.

Step 1: Give the initial value, α̂
(0)
i = 0, i = 1, · · · , n, and get the standard Lasso solution β̂(0)

according to β̂(0) = argminL∗(β, 0);
Step 2: Iterate the following two Lasso optimization steps, v = 0, 1, · · · ,
•α̂(v+1) = argminL∗(β̂(v), α), and the modified residual is f (v) = yij − xT

ij β̂
(v);

•β̂(v+1) = argminL∗(β, α̂(v+1)), and get a new response variable y∗ij = yij − zT
ijα̂

(v+1)
i ;

Step 3: Terminate when
h
∑

k=1

∣∣∣(β̂
(v+1)
k − β̂

(v)
k )
∣∣∣/h < δ for a pre-specified small value δ.

Then we use an example to show the solution path in each iteration step for SIC and
GACV. We consider the following the process of model data generating:

yij = xT
ijβ + zT

ijαi + rij

where β = (3,−1.5, 0, 0, 2, 0, 0, 0)T, zT
ij = (1, xij1), xT

ij =
(
xij1, xij2, · · · , xij8

)
, i = 1, 2, · · · , 10,

j = 1, 2, · · · , 20 are iid from standard normal distribution, and the random effects are iid
from αi = (αi0, αi1)

T ∼ N2(0, I), rij ∼ N(0, 4). We use double penalized Lasso ecpectile
regression (DLER) and double penalized Lasso quantile regression (DLQR) methods to
study the two criteria, and get the following results.

Figures A1 and A2 (in the Appendix B) show the search paths of the DLER method
for penalty parameters α and β under the SIC and GACV criteria in the first iteration
respectively. It can be seen in the graph that the penalty parameter search paths of SIC and
GACV are obviously different, but the corresponding optimal penalty parameter values
are close.

Figures A3 and A4 (in the Appendix B) show the results of DLQR method in the first
iteration process respectively. The loss functions of DLER method and DLQR method are
obviously different in nature. Under different penalty parameters, the criterion values
of the two methods are not comparable, so they cannot be compared and analyzed hori-
zontally from the numerical perspective of the two criteria. From the path of fixed effect
coefficient, it can be seen that with the increase of penalty coefficient λ, DLER method will
quickly compress the inactive covariate coefficients to 0, while the coefficients of important
covariates change slowly around the true value. However, The DLQR method does not
fluctuate much with changes in the penalty coefficient. It shows that the DLER method has
an absolute advantage over DLQR in terms of variable selection.

3. Asymptotic Properties

In this part, we give the convergence of iterative Lasso expectile regression algorithm
and the asymptotic property of double penalized expectile regression.
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3.1. Convergence of Iterative Lasso-Expectile Algorithm

In order to prove the asymptotic properties of the double penalized expectile regression
method. The following lemmas are provided:

Lemma 1. There exists a single β(α) that minimizes the cost function L(β, α) for any given λβ,
λα, if L(β, α) is a continuous and strictly convex function of α and β. The same conclusion also
applies to α.

The Proof of Lemma 1 is given in Appendix A.

Lemma 2. For a given λβ, λα, definition η : Rd → Rd is the mapping of the above iterative
algorithm for updating process of (β, α)→ (β(1), α(1)) in one step, then η is continuous.

The Proof of Lemma 2 is given in Appendix A.

Lemma 3. The sequence solution (β̂(r), α̂(r)) provided in the iterative Lasso expectile algorithm re-
duces the objective function (β̂(r), α̂(r)) and L(β̂(r), α̂(r)) converges to (β, α) under the assumption
that there is a unique (β, α) for the givenλβ and λα to minimize L(β, α).

The Proof of Lemma 3 is given in Appendix A.

3.2. Asymptotic Properties of DLER

In order to obtain the asymptotic properties of the double penalized expectile regres-
sion method, we first propose the following regularization assumptions:

(A1) yij has independent conditional distribution function Fij(·) and density function
fij(·), given xij, zij, αi, and 0 < fij(κij(τ)) < +∞, i = 1, 2, · · · , n, j = 1, 2, · · · , m.

Where κij(τ) = xT
ijβ(τ) + zT

ijαi, Var[Πτ(riτ)riτ ] = E
[
Πτ(riτ)riτrT

iτΠτ(riτ)
]
= Λiτ ,

riτ = (ri1τ , · · · , rimτ)
T, rijτ = yij − xT

ijβτ , Πτ(riτ) =
[
diag(ϕτ(rijτ))

]m
j=1;

(A2) Assuming that αit,i = 1, 2, · · · , n, t = 1, 2, · · · , l are independent, and their
distribution function and density function are Git(·) and git(·) respectively, 0 < git(0) <
+∞;

(A3) Definition ϑ = τ(1− τ), ∆ = diag( fij(κij(τ))), and there are the positive definite
matrixes

P0(τ) = lim
m→ ∞
n→ ∞

ϑm−1
(

ZTΛτZ ZTΛτX/
√

n
XTΛτZ/

√
n XTΛτX/n

)

P1(τ) = lim
m→ ∞
n→ ∞

m−1
(

ZTE[Πτ(rτ)]Z ZTE[Πτ(rτ)]X/
√

n
XTE[Πτ(rτ)]Z/

√
n XTE[Πτ(rτ)]X/n

)

where Λτ = Var[Πτ(rτ)rτ ] = diag[Λiτ ]
n
i=1;

(A4) max1≤i≤n,1≤j≤m‖xij‖/
√

nm→ 0 , max1≤i≤n,1≤j≤m‖zij‖/
√

m→ 0 .
The above assumptions (A1) and (A3) are the standard conditions of the panel data

models, where assumption (A1) is common in the literature of quantile regression, which
not only ensures the independence between observation individuals, but also allows the
heterogeneity within individuals; (A3) gives the full rank condition, according to Lindeberg-
Feller central limit theorem, when τ = 0.5, it will be simplified by P1(τ), and then (A3) will
be simplified.
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We give the asymptotic properties of the double penalty expectile regression estimation
of Equation (7), and consider the following objective function:

Γnm(u) =
n
∑

i=1

m
∑

j=1

[
ρτ(yij − κij(τ)−

xT
iju

(1)
√

nm −
zT

iju
(2)
i√
m )− ρτ(yij − κij(τ))

]
+λβ

h
∑

k=1

(∣∣∣∣βk +
u(1)

k√
nm

∣∣∣∣− |βk|
)
+ λα

n
∑

i=1

l
∑

t=1

(∣∣∣∣αit +
u(2)

it√
m

∣∣∣∣− |αit|
) (12)

where Γnm(u) is a convex function whose minimum value is

û =

(
û(1)

û(2)

)
=

(√
nm(β̂(τ)− β(τ))√

m(α̂− α)

)
(13)

Theorem 1. Under assumptions (A1)–(A4), when, n→ ∞ , m→ ∞ , if, λβ/
√

mn→ λ1 ≥ 0 ,
λα/
√

m→ λ2 ≥ 0 , and there is the a > 0, and na/m→ 0 is satisfied, so we have

û = argminΓmn(u)
d→ argminΓ0(u)

where

Γ0(u) = −2uTW + uTP1u + λ1

h

∑
k=1

[
u(1)

k sgn(βk)I(βk 6= 0) +
∣∣∣u(1)

k

∣∣∣I(βk = 0)
]
+ λ2STu(2)

W ∼ N(0, P0), S ∼ N(0, diag(4Git(0)(1− Git(0))))

According to the aforementioned theorem, for non-zero coefficients, the double penal-
ized estimation resulted in bias, and the bias degree was regulated by the tuning parameter.
The proof of Theorem 1 is given in the Appendix A.

4. Simulation Study

In this section, we illustrate the performance of the proposed double penalized expec-
tile regression. In order to study the impact of the SIC criteria and the GACV criteria on
double penalized Lasso expectile regression model and double penalized Lasso quantile
regression model [9]. Simulation 1 is used to compare the two methods with different
expectile levels and signal-to-noise ratio. And briefly denoted as DLER-SIC, DLER-GACV,
DLQR-SIC, and DLQR-GACV; To illustrate the robustness of the DLER method in exclud-
ing inactive variables, simulation 2 and simulation 3 are given to study the impact of
random effects on the coefficient estimation, comparing the performance of DLER and
DLQR under different random effects. As well as comparing the obtained experimental
values at different error distributions and different model sparsity to illustrate the advan-
tage of DLER in variable selection; in order to illustrate the advantage of the DLER method
in high-dimensional data, simulation 4 compares the two methods when dimensions of
covariate is larger than the sample size.

In order to evaluate the accuracy of model coefficient estimation, we use mean square
error (MSE) as the evaluation index. MSE is defined as:

MSE =
(

β̂t − β
)T

Σ−1
(

β̂t − β
)

(14)

where Σ =
(

ρ|k−h|
)

8×8
, and β̂t is the estimator of β in the sth simulation. SD stands

for the 100-repetition Bootstrap standard deviation. Corr expresses the average propor-
tion of important variables that were entered into the model correctly, and Incorr ex-
presses the average proportion of inactive variables that were entered into the model
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incorrectly.X1(SD1), X2(SD2), X5(SD5) represent the total number of choosing each impor-
tant variable into the model correctly and its bootstrap standard deviation respectively.
X3(SD3), X4(SD4), X6(SD6), X7(SD7), X8(SD8) represent the total number of correctly ex-
cluded each redundant variable out of the model and its bootstrap standard deviation
respectively. Int (SDint) represent the total number of choosing intercept into the model
and its bootstrap standard deviation.

Simulation 1. The impact of “signal-to-noise ratio” on estimation.

We compared the effectiveness of the two tuning parameter criteria, SIC and GACV.
The process for producing the model data listed below was rated as

yij = β0 + xT
ijβ + zT

ijαi + σrij (15)

We let xT
ij =

(
xij1, xij2, · · · , xij8

)
, i = 1, 2, · · · , 20, j = 1, 2, · · · , 25,

ZT
ij =

(
xij1, xij2, · · · , xij5

)
, and X1, · · · , X8 are generated from N(0, 1) with correlation

between Xk and Xl being ρ|l−k|, ρ = 0.5. This paper sets the random effects are iid from
αi = (αi0, αi1, · · · , αi5)

T ∼ N6(0, P), where P = diag(1, 1, 1, 1, 0, 0). And β0 = 0, β =

(3,−1.5, 0, 0, 2, 0, 0, 0)T. The error terms are iid from rij ∼ N(0, 1), we set τ = 0.25, 0.5, 0.75,
and σ = 1, 2, 3 to compare the estimation methods. In every simulation, we consider the
estimator of coefficients to be 0 if its absolute value is less than 0.1. We set ε = 10−3 in
the iterative Lasso algorithm of DLER as the same settings in the iterative algorithm of
DLQR of Li (2020) [8]. Tables A1 and A2 (in the Appendix C) give the results of coefficient
estimation and variable selection, respectively.

According to Table A1, the estimation accuracy of the model is first analyzed. When
σ is fixed, the MSE of the two methods is almost reaches the minimum at τ = 0.5, the
estimation accuracy of the two methods is better, while the accuracy at the other fractile
is slightly worse, but the difference is not obvious, for example when σ = 1, MSE of
DLER-SIC method is 0.292 at τ = 0.5, while at the other expectile levels are 0.306 and
0.374, respectively. In this case, this shows that the DLER method has the same accuracy
as the DLQR method in parameter estimation. In addition, according to the results of the
two tunning parameter criterions, the estimation accuracy under the SIC is better than the
GACV whether the DLER model or the DLQR model.

Next, analyze the accuracy of variable selection. According to the SD of each variable
estimation in Table A1, when fixed σ, with the increase of τ, SD decreases gradually, and the
accuracy of variable selection of the two models is gradually increased. For each important
variable, according to Table A2, the DLER method can select 99% of the important variables
into the model. In addition, for each inactive variable, comparing the results in the table,
shows that when τ is fixed, with the increase of σ, the SD is also increasing, indicating that
the accuracy of DLQR method is gradually weakened in excluding inactive variables out of
the model. For DLER method, the SD is the largest at σ = 2, DLER method has the low
accuracy, it is still better than DLQR at this time, especially at σ = 3, the SD is the smallest,
indicating that with the increase of signal-to-noise ratio, DLER method is better than DLQR
method in excluding the redundant variables. Combined with the results of Table A2, the
same conclusion can be obtained.

Therefore, for the parameter estimation of the methods, when the signal-to-noise ratio
with relatively large, the DLER method is better than the DLQR method. In terms of model
variables selection, whether in SIC and GACV criteria, almost 99%of important variables
can be selected in both methods. For the ability to exclude the redundant variables, the
DLER method is more advantageous than the DLQR method. Therefore, in terms of the
accuracy of parameter estimation, DLER method and DLQR method have the same effect.
However, the DLER method is better than the DLQR method in terms of estimated stability
and excluding inactive variables.

Simulation 2. The influence of random effects.
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We use the simulation to show the influence of random effects on DLER-SIC, DLER-
GACV, DLQR-SIC and DLQR-GACV. The data generation model is Equation (15) with the
fixed σ = 1. And consider the covariance matrix of the random effect P with three forms:

P1 = diag(1, 1, 1, 1, 0, 0)

P2 = diag(2, 2, 2, 2, 0, 0)

P3 = diag(3, 3, 3, 3, 0, 0)

With the increasing of random effects, we get the results of 100 repetitions simulations
with τ = 0.25, 0.5, 0.75. Tables A3 and A4 (in the Appendix C) give the results of estimation
and variable selection of different methods under different random effects at τ = 0.5.

According to Table A3, with the increasing interference of random effects, although the
estimation accuracy of the two methods is decreasing, and the accuracy of the fixed effect
coefficient is decreasing, especially the first two important covariates interfered by random
effects. However, in term of variable selection, DLER method has little change in the
accuracy of variable selection, and almost all the important variables can be choosing into
the model, and the ability to exclude the inactive variables is still better than DLQR method.
In particular, the DLER-SIC method, combined with Table A4, shows that the proportion of
correctly choosing variables is 99%, and the accuracy of excluding the redundant variables
is almost above 90%. In general, since the double penalized expectile regression takes
into account the random effects while selecting fixed effects, it can be almost free from
the interference of random effects in the accuracy of variables selection, but it will still be
affected by random effects to a degree in the accuracy of fixed effect coefficient estimation.
Therefore, in terms of the accuracy of parameter estimation, DLER method and DLQR
method have the same effect. However, DLER is still more robust than DLQR in variable
selection, even if the interference of random effects is added to the model.

Simulation 3. The case of different model sparsity and error distribution.

We compare DLQR and DLER under different model sparsity and error distribution.
The data generation model is Equation (15), considering the fixed effect as the following
three cases

(1) Dense β = (1, 1, 1, 1, 1, 1, 1, 1)T

(2) Sparse β = (3, 1.5, 0, 0, 2, 0, 0, 0)T

(3) High Sparse β = (5, 0, 0, 0, 0, 0, 0, 0)T

We consider σ = 1, τ = 0.5, P = diag(2, 2, 2, 2, 0, 0), the distribution of error term
respectively comes form N(0, 1), t(3) and Cauchy(0, 1). Comparing the models DLER-SIC,
DLER-GACV, DLQR-SIC and DLQR-GACV. Tables shows the results of the three models
by 100 repetitions simulations. Tables A5 and A6 show the results of coefficient estimation
and variable selection under the dense model, Tables A7 and A8 show the results under
the sparse model, Tables A9 and A10 show the results under the highly sparse model.
(See Appendix C for tables).

According to Table A5. At this time, all variables are important variables. With the
change of error distribution, MSE are increasing, and the estimation accuracy of the two
methods are decreased. We find that DLER method and DLQR method have the same
effect in term of the accuracy of parameter estimation. In addition, considering the accuracy
of variable selection of the two methods. Although the two methods cannot completely
choose all the important variables into the model, it can be known from Table A6 that the
average of the correct variables retained by them is more than 7.6, which is very close to
the true value 8. Moreover, when the error term is adjusted from the normal distribution
to the heavy-tailed distribution, the change of DLER is the smallest in all methods, so it is
weak on the influence of different error distributions. In summary, DLER is robust to the
change of error distribution on variable selection.
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Next, the results of sparse model and highly sparse model are analyzed. Firstly, the
estimation accuracy of DLER method and DLQR method is analyzed. The results are
similar to the dense model, with the error distribution becoming more complex, MSE are
increasing, and the estimation accuracy of the two methods is decreased. Next, considering
the accuracy of the variable selection in model, according to Tables A7 and A8, when the
error obeys the normal distribution, for the sparse model, the two methods have little
difference in the accuracy of excluding the inactive variables. However, when the error
obeys distribution t(3) or Cauchy(0, 1), the DLER method is significantly better than DLQR.
Especially in the highly sparse model with error distribution Cauchy(0, 1), DLER excluding
the inactive variables advantage is more obvious, especially DLER-SIC method. It shows
that expectile regression is quite robust than quantile regression.

Simulation 4. The case of high dimensional data.

High-dimensional data is widely available in the stock exchange market, biomedicine,
aerospace and other fields, so the modeling and analysis of high-dimensional data has very
important practical significance. Next, we investigate the performance of the proposed
model in the high-dimensional scenarios of selecting variables. The data generation model
is still the Equation (15), we reduce the sample size to n = 10, m = 10, that is, the total
sample size is 100. In addition, 102 independent noise variables X9, X10, · · · , X110 are added
to the above sparse model, all variables are independent and identically distributed in
N
(
0, 0.252), thus the total number of variables is 110, larger than the total sample size,

and β110×1= (3, 1.5 , 0, 0, 2, 0, 0, 0, · · · , 0)T. There are three real important covariates and
107 redundant covariates. In addition, we set σ = 0.5, P = diag(1, 1, 1, 1, 0, 0). Tables A11
and A12 (in the Appendix C) show 100 repeated results of the two methods at τ= 0.5, 0.75,
where X0(SD0) denote the average and bootstrap standard deviation of all redundant
variables being correctly excluded out of the model.

Firstly, analyze the estimation precision of the two methods. According to Table A11,
in the situation of fixed quantile, when the dimension of covariates is larger than the
sample size, the MSE is larger than the previous simulation, the change of the MSE value
of the DLER method is less than DLQR, and the MSE of the DLQR method is significantly
larger than the DLER, indicating that although the estimation accuracy of the two methods
is decreasing, the DLER method is significantly better than the DLQR method, and the
stability of the DLER method is better than the DLQR method. Next, analyze the accuracy
of variable selection. According to Tables A11 and A12, the DLER method can ensure that
the proportion of excluding redundant variables is more than 95% under three expectile
levels. When the expectile level is fixed, DLER method has absolute advantages over DLQR
in excluding redundant variables, especially DLER-GACV method can exclude more than
97% of the inactive variables at τ = 0.5. Therefore, when the dimension of covariates is
larger than the sample size, DLER method is superior to DLQR in terms of estimation
accuracy and excluding the inactive variables both at median τ = 0.5 and extreme expectile
level τ = 0.75.

5. Application

CD4 cells play an important role in determining the efficacy of AIDS treatment and
the immune function of patients, so excluding inactive variables is important for analyzing
CD4 cell data. We applied the model to the real data of CD4 cell count. For a complete
description of the data set, please refer to Diggle P.J’ s homepage: https://www.lancaster.
ac.uk/staff/diggle/, accessed on 30 June 2022, and we select a part of this data set. The
response variable is the open-root conversion of CD4 cell count. The variables in the data
set include the time of seroconversion (time), the age relative to a starting point (age),
the smoking status depicted by the number of packets smoked (smoking), the number of
sexual partners (sex partner), and the depression state and depression degree (depression).
Choosing time, smoking, age and sex partner as important fixed effect to determine the CD4

https://www.lancaster.ac.uk/staff/diggle/
https://www.lancaster.ac.uk/staff/diggle/
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cell numbers, where time and age are important random effects. On this basis, consider the
following model:

Yij = XT
ijβ + ZT

ijαi + rij

where Yij is the jth observation of the ith individual, XT
ij is the observation of explanatory

variables, and ZT
ij is a subset of XT

ij. We set that the threshold of β is 0.05, and the thresh-
old of αi is 0.1. Table A13 (in the Appendix C) gives the results of the four methods at
τ= 0.1, 0.25, 0.5, 0.75, 0.9.

From the results of Table A13, the double penalized expectile regression method
proposed can give the results of variable selection while estimating the coefficients. The
variable with a value of 0 in the table indicates that it can be excluded from the model. It can
be found that both estimation methods excluded variables X3 and X4 from the model. In
the four variables, only time and smoking will affect CD4 cells. From the sign of coefficient
estimation, the value of time is always less than 0, indicating that time has a negative
influence on CD4 cells. The values of smoking are all larger than 0, indicating that smoking
has a positive influence on CD4 cells.

Analysis of the numerical changes. For variable X2, under the SIC criterion, with the
changes of expectile level, the DLER method fluctuates less, and the DLER is relatively
stable. Indicating that the stability of the DLER-SIC method is slightly stronger. For variable
X1, whether it is the SIC criteria or the GACV criteria, the numerical fluctuation of the
DLER method is less than the DLQR method, indicating that the stability of DLER for
estimation of variable X1 is better than that of DLOR.

This shows that DLER method has strong practical utility for CD4 data in excluding
inactive variables and analyzing its influencing factors.

6. Conclusions

In this paper, we propose the double penalized expectile regression method for linear
mixed effects model, which imposes penalties on both fixed effects and random effects,
fully accounting for the random effects in coefficient variable selection and estimation. The
model proposed in this paper is found to be highly robust in excluding inactive variables
after simulations and application studies. The conclusion is also supported by comparison
with double penalized quantile regression method, through the comparison of the results of
the two estimation methods, it can be found that the double penalized expectile regression
has the same effect as the double penalized quantile regression in term of the accuracy
of parameter estimation, but has absolute advantage in selecting variables, especially in
excluding inactive variables.

When the signal-to-noise ratio is different, the precision of coefficient estimation and
the accuracy of variable selection will be different. When the signal-to-noise ratio is larger,
the proposed method outperforms the quantile model in terms of coefficient estimation
ability and excluding inactive variables. In addition, because the double penalized expectile
regression select variable for both fixed and mixed effects, it is almost undisturbed to
random effects in terms of variable selection accuracy. When comparing the dense and
sparse models, it is found that the sparser the model and the more complex the error term
distribution, the advantage of the new method is more obvious, indicating that it has strong
robustness. When the dimension of covariates is larger than the sample size, the method
has obvious advantages in the estimation precision of coefficients and excluding inactive
variables. Finally, when analyzing the real data, it is found that the new method has
strong practical utility for the longitudinal data of CD4 cells, which can exclude its inactive
variables and analyze the influence trend of various factors, therefore obtain accurate
medical judgment.
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Appendix A

Proof of Lemma 1. First, prove the existence of the conclusion.

We give α and select β0 ∈ Rh randomly. Define

Mβ =
{

β ∈ Rh
∣∣∣ L(β, α) ≤ L(β0, α)

}
The continuity of L shows that Mβ is a closed area. For a given λβ > 0, then

L(β, α) ≤ L(β0, α)⇒ ‖β‖l ≤ L(β0, α)/λβ

Mβ is contained in the spherical region of kl , so Mβ is bounded. Therefor there exists
β in Mβ such that L∗(β, α) reaches the minimum.

Then prove the uniqueness of the conclusion. It can be easily obtained from the strictly
convex function of β of L. Similar to this, there is a specific α(β) such that L(β, α) reaches
the minimum value for a given β and λα > 0. �

Proof of Lemma 2. We can know that (β(1), α(1)) is a composite mapping that only depends
on β from the process of iterative algorithm, so all that must be demonstrated is that both
α(1) → β(1) and β→ α(1) are continuous mappings. In addition, since given β to solve
α(1), it is symmetrical to make L(β, α(1)) reach the minimum with given α(1) to solve β(1) to
make L(β, α(1)) reach the minimum. Just has to be demonstrated that mapping α(1) → β(1)

continuous.

For simplicity, here we omit the superscript. Next define the function g(α) = infβL(β, α).
g is a convex continuous function because the function L(β, α) is convex.

Next, we prove that β(αn)→ β(α) = β̃ is true for every sequence αn → α . Since g is
a continuous function and ∃N for ∀r > 0, when n ≥ N we have g(αn) ≤ g(α) + r, that is,
L(β(αn), αn) ≤ L(β̃, α) + r. And define

M = max
{

max
n=1,2,··· ,N

L(β(αn), αn), L(β̃, α) + r
}

A = {(β, α)|L(β, α) ≤ M}
,
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Since A is a bounded closed set with sequence (β(αn), αn) for a given λα,and λβ, there
is a convergent subsequence β(αnk ) whose limit value is β. From the continuity of L and g,
we can get

L(β̃, α) = g(α) = lim
h→∞

g(αnh) = lim
h→∞

L(β(αnh), αnh) = L(β, α)

Lemma 1 demonstrates that the point at which L(β, α) reaches the minimal value for a
given α is unique, and from the equation β = β̃ we may get

lim
n→∞

β(αn) = β̃ = β(α)

Thus, we established that β(αn)→ β(α) . The mapping α(1) → β(1) is continuous for
all sequences αn → α . �

Proof of Lemma 3. Given λβ and λα, from the definition (β̂(v+1), α̂(v+1)) in the iterative
Lasso expectile algorithm, it is easy to obtain

L(β̂(v), α̂(v)) ≥ L(β̂(v), α̂(v+1)) ≥ L(β̂(v+1), α̂(v+1))

Since L is a strictly convex function, unless (β̂(v+1), α̂(v+1)) = (β, α), at least one
greater-than symbol must be included in the two formulas above. As a result, the sequence
L(β̂(v), α̂(v)) is strictly decreasing. And since L(β̂(v), α̂(v)) > 0, its limit is real, indicated
by L.

And consider
A =

{
(β, α)

∣∣∣L(β, α) ≤ L(β̂(0), α̂(0))
}

is a bounded closed region.
Clearly, we can have (β̂(v), α̂(v)) ∈ A. Denote lim

h→∞
(β̂(vh), α̂(vh)) = (β̃, α̃) by randomly

selecting a convergent subsequence (β̂(vh), α̂(vh)).
Because the continuity of L, we can obtain

lim
h→∞

(β̂(vh), α̂(vh)) = L(β̃, α̃)

Assuming that (β̃, α̃) 6= (β, α), that is, L(β̃, α̃) > L(β, α), so we can further obtain
(β̃(1), α̃(1)) to produce

r = L(β̃, α̃)− L(β̃(1), α̃(1)) > 0

Define (β(1), α(1)) = h(β, α). It can be seen from Lemma 2 that h is continuous, and
because L(h(β, α)) and L are continuous, � > 0 is present, resulting in∣∣∣L(h(β, α))− L(h(β̃, α̃))

∣∣∣ = ∣∣∣L(β(1), α(1))− L(β̃(1), α̃(1))
∣∣∣ < r

2

to make it true for every (β, α) ∈ U((β̃, α̃),�)
It can be seen from lim

h→∞
(β̂(vh), α̂(vh)) = (β̃, α̃) that when h is large enough, we have

L(β̂(vh+1), α̂(vh+1)) ≤ L(β̃(1), α̃(1)) +
r
2

Thus, to sum up L(β̂(vh+1), α̂(vh+1)) ≤ L(β̃, α̃)− r + r
2 = L(β̃, α̃)− r

2 .
This is obviously in contradiction with

lim
h→∞

L(β̂(vh), α̂(vh)) = L(β̃, α̃)
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So (β̃, α̃) = (β, α). We can obtain (β̂(v), α̂(v))→ (β, α) due to the limitation of any
subsequent being the same.

The proof is ended. �

Proof of Theorem 1. First, similarly [27], we decompose the objective function and equation
to prove Theorem 1, we define the objective function as following

Rmn(u) =
n

∑
i=1

m

∑
j=1

ρτ

yij − κij(τ)−
xT

iju
(1)

√
mn
−

zT
iju

(2)
i√
m

− ρτ

{
yij − κij(τ)

}
(A1)

Our goal is to approximate Rmn by a quadratic function with a unique minimizing
value, and use results to show that the asymptotic distribution of that minimizing quadratic
function. This quadratic approximation is mainly composed by the Taylor expansion of the
expected value and by a linear approximation function.

Let x̃ij = (xT
ij, zT

ij)
T, ũ = (u(1)T/

√
mn, u(2)T/

√
m)

T
, rijτ = yij − κij(τ), The function

E(ρτ(rijτ − x̃T
ijũ)− ρτ(rijτ)) is convex, continuously differentiable twice, reaches the mini-

mum value when ũ = 0, and around ũ = 0 it is represented as

E
[
ρτ

(
rijτ − x̃T

ijũ
)
− ρτ

(
rijτ
)]
= ũTx̃ijE

[
ϕτ

(
rijτ
)]

x̃T
ijũ

−2ũTx̃ijE
[
ϕτ

(
rijτ
)
·rijτ

]
+ o‖ ũ ‖2

(A2)

where ϕτ(u) = τ − I(u < 0). According to

arg min
u∈Rn+p

E
[
ρτ

(
rijτ − x̃T

ijũ
)
− ρτ

(
rijτ
)]

= 0 (A3)

We give the first-order condition

E
[
ϕτ(rijτ) · rijτ

]
= 0 (A4)

Equation (13) can be simplified as follows

E
[
ρτ

(
rijτ − x̃T

ijũ
)
− ρτ

(
rijτ
)]

= ũTx̃ijE
[
ϕτ

(
rijτ
)]

x̃T
ijũ + o‖ ũ ‖2 (A5)

Taylor expansion of Equation (12) around ũ = 0 can be regarded as a linear approxi-
mation function. Define

Dij(rijτ) = −2ϕτ(rijτ) · rijτ (A6)

According to Equation (15), and E(Dij(rijτ)) = 0. Give a definition

qij(ũ) = ρτ(rijτ − x̃T
ijũ)− ρτ(rijτ)− ũTx̃ijDij(rijτ)

And
Rmn(ũ) =

n
∑

i=1

m
∑

j=1
(E
[
ρτ(rijτ − x̃T

ijũ)− ρτ(rijτ)
]
)

+
n
∑

i=1

m
∑

j=1
ũTx̃ijDij(rijτ) +

n
∑

i=1

m
∑

j=1
(qij(ũ)−E

[
qij(ũ)

]
)

According to Koenker [5], the objective function Rmn(ũ) can be reduced to

Rmn(ũ) = ũT
n
∑

i=1

m
∑

j=1

(
x̃ijE

[
ϕτ(rijτ)

]
x̃T

ij

)
ũ + ũT

n
∑

i=1

m
∑

j=1
x̃ijDij(rijτ) + O‖ũ‖2 + o‖ũ‖2

= ũT
n
∑

i=1

m
∑

j=1

(
x̃ijE

[
ϕτ(rijτ)

]
x̃T

ij

)
ũ + ũT

n
∑

i=1

m
∑

j=1
x̃ijDij(rijτ) + op(1)

' ũT
n
∑

i=1

m
∑

j=1

(
x̃ijE

[
ϕτ

(
rijτ

)]
x̃T

ij

)
ũ + ũT

n
∑

i=1

m
∑

j=1
x̃ijDij(rijτ)

(A7)
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Let x̃ij =
(

zT
ij, xT

ij

)T
, ũ =

(
uT

0 /
√

m, uT
1 /
√

mn
)T, Then there is

Rmn(u) = −2 1√
m

n
∑

i=1

m
∑

j=1

(
zT

iju0 + xT
iju1/

√
n
)

ϕτ

(
yij − κij(τ)

)
·
(

yij − κij(τ)
)

+ 1
m

n
∑

i=1

m
∑

j=1
E
[

ϕτ

(
yij − κij(τ)

)](
zT

iju0 + xT
iju1/

√
n
)2

= −2 1√
m

[
uT

0 ZTΠτ(rτ)rτ + uT
1 /
√

nXTΠτ(rτ)rτ

]
+ 1

m
[
uT

0 ZTE[Πτ(rτ)]Zu0 + 2uT
0 ZTE[Πτ(rτ)]Xu1/

√
n + uT

1 XTE[Πτ(rτ)]Xu1/n
]

= Γ(1)
mn(u) + Γ(2)

mn(u)

(A8)

Therefore, we decompose Γmn(u) into four parts

Γmn(u) = Γ(1)
mn(u) + Γ(2)

mn(u) + Γ(3)
mn(u) + Γ(4)

mn(u) (A9)

where
Γ(1)

mn(u) = −2
1√
m

[
uT

0 ZTΠτ(rτ)rτ + uT
1 /
√

nXTΠτ(rτ)rτ

]
Γ(2)

mn(u) = 1
m
[
uT

0 ZTE[Πτ(rτ)]Zu0 + 2uT
0 ZTE[Πτ(ετ)]Xu1/

√
n + uT

1 XTE[Πτ(rτ)]Xu1/n
]

Γ(3)
mn(u) = λβ

h
∑

k=1

(∣∣∣∣βk +
u(1)

k√
mn

∣∣∣∣− |βk|
)

Γ(4)
mn(u) = λα

n
∑

i=1

l
∑

t=1

(∣∣∣∣αit +
u(2)

it√
m

∣∣∣∣− |αit|
)

For Γ(1)
mn(u), conditions A2 and A3 mean Lindbergh condition, we have

Γ(1)
mn(u) = −2

1√
m

[
u(1)TZT + u(2)T/

√
nXT

]
Πτ(rτ)rτ

d→ −2uTW (A10)

where W ∼ N(0, P0).
For Γ(2)

mn(u), according to hypothesis A2, we have

Γ(2)
nm(u) = 1

m

[
u(1)TZTE[Πτ(rτ)]Zu(1) + 2u(1)TZTE[Π(rτ)]Xu1/

√
n + uT

1 XTE[Π(rτ)]Xu1/n
]

→ uTP1u
(A11)

For Γ(3)
mn(u),

Γ(3)
mn(u) = λβ

h
∑

k=1

(∣∣∣∣βk −
u(1)

k√
mn

∣∣∣∣− |βk|
)

=
λβ√
mn

h
∑

k=1

[
u(1)

k sgn(βk)I(βk 6= 0) +
∣∣∣u(1)

k

∣∣∣I(βk = 0)
]

→ λ1∑
h

[
u(1)

k sgn(βk)I(βk 6= 0) +
∣∣∣u(1)

k

∣∣∣I(βk = 0)
] (A12)

For Γ(4)
mn(u), it can be divided into two parts

Γ(4)
mn(u) = Γ(41)

mn (u) + Γ(42)
mn (u) (A13)

by |u− υ| − |u| = −υsgn(u) + 2
∫ υ

0 (I(u ≤ s)− I(u ≤ 0))ds.
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where Γ(41)
mn (u) = λα

n
∑

i=1

l
∑

t=1

u(2)
it√
m sgn(αit) =

λα√
m

n
∑

i=1

l
∑

t=1
u(2)

it

n
∑

i=1

l
∑

t=1
u(2)

it sgn(αit)→ λ2STu(2) and

S ∼ N(0, diag(4Git(0)(1− Git(0))));

Γ(42)
mn (u) = 2

λα√
m

n

∑
i=1

l

∑
t=1

∫ −u(2)
it

0

(
I
(

αit ≤
s√
m

)
− I(αit ≤ 0)

)
ds

In hypothesis A2, ∃a > 0, na/m→ 0 is satisfied, we have

E
(

Γ(42)
mn (u)

)
= 2 λα√

m

n
∑

i=1

l
∑

t=1

∫ −u(2)
it

0 E
[

I
(

αit ≤ s√
m

)
− I(αit ≤ 0)

]
ds

= 2 λα√
m

n
∑

i=1

l
∑

t=1

∫ −u(2)
it

0

[
Git

(
s√
m

)
− Git(0)

]
ds

= λα
m

n
∑

i=1

l
∑

t=1
git(0)

(
u(2)

it

)2
+ o(1)

→ 0

And Var
(

Γ(42)
mn (u)

)
→ 0 .

According to the results of Equations (A1)–(A13). Although the function Γmn(u) is
convex and the point at which it reaches the minimum value is unique, we obtain

û = argminΓmn(u)
d→ argminΓ0(u) (A14)

The proof is ended. �

Appendix B

The solution paths of β and α of DLQR and DLER under the two criteria.
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Table A1. The results 1 of simulation 1 under three signal-to-noise ratio. 
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=2σ  

DLER-SIC 0.388 0.261 0.307 0.292 0.063 0.070 0.113 0.074 0.079 0.080 
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=3σ  
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Figure A4. The solution paths of β and α of DLER under criterion GACV.
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Appendix C

Table A1. The results 1 of simulation 1 under three signal-to-noise ratio.

Parameters Method MSE SDint SD1 SD2 SD3 SD4 SD5 SD6 SD7 SD8

τ = 0.25

σ = 1

DLER-SIC 0.306 0.300 0.313 0.288 0.029 0.033 0.054 0.022 0.027 0.012
DLER-GACV 0.486 0.303 0.411 0.383 0.027 0.035 0.056 0.024 0.035 0.025
DLQR-SIC 0.280 0.261 0.297 0.250 0.060 0.046 0.091 0.015 0.024 0.020
DLQR-GACV 0.289 0.266 0.299 0.254 0.063 0.049 0.088 0.037 0.039 0.031

σ = 2

DLER-SIC 0.388 0.261 0.307 0.292 0.063 0.070 0.113 0.074 0.079 0.080
DLER-GACV 0.490 0.266 0.371 0.342 0.066 0.069 0.113 0.085 0.084 0.078
DLQR-SIC 0.527 0.234 0.332 0.335 0.108 0.088 0.167 0.076 0.069 0.086
DLQR-GACV 0.535 0.236 0.333 0.324 0.110 0.098 0.169 0.083 0.086 0.084

σ = 3
DLER-SIC 0.585 0.337 0.324 0.321 0.117 0.129 0.178 0.138 0.107 0.113
DLER-GACV 0.649 0.342 0.330 0.343 0.139 0.133 0.186 0.139 0.128 0.110
DLQR-SIC 0.868 0.341 0.337 0.375 0.162 0.162 0.244 0.134 0.165 0.117
DLQR-GACV 0.894 0.353 0.325 0.398 0.163 0.163 0.244 0.153 0.152 0.119

τ = 0.5

σ = 1

DLER-SIC 0.292 0.283 0.305 0.265 0.016 0.015 0.048 0.013 0.013 0
DLER-GACV 0.509 0.283 0.438 0.342 0.015 0.019 0.049 0.014 0 0
DLQR-SIC 0.207 0.242 0.262 0.224 0.026 0.022 0.083 0.015 0.015 0.017
DLQR-GACV 0.219 0.240 0.256 0.231 0.032 0.038 0.093 0.029 0.026 0.032

σ = 2

DLER-SIC 0.403 0.278 0.284 0.335 0.072 0.075 0.128 0.067 0.081 0.071
DLER-GACV 0.472 0.276 0.320 0.359 0.076 0.074 0.133 0.065 0.069 0.063
DLQR-SIC 0.424 0.273 0.262 0.325 0.088 0.095 0.160 0.079 0.058 0.073
DLQR-GACV 0.464 0.272 0.269 0.324 0.095 0.097 0.167 0.086 0.075 0.091

σ = 3
DLER-SIC 0.558 0.333 0.313 0.326 0.109 0.095 0.171 0.106 0.121 0.111
DLER-GACV 0.634 0.334 0.323 0.338 0.129 0.125 0.179 0.134 0.126 0.115
DLQR-SIC 0.673 0.317 0.300 0.346 0.119 0.135 0.216 0.122 0.106 0.114
DLQR-GACV 0.720 0.320 0.311 0.361 0.118 0.129 0.218 0.133 0.121 0.121

τ = 0.75

σ = 1

DLER-SIC 0.374 0.272 0.322 0.316 0.021 0.027 0.056 0.012 0.017 0
DLER-GACV 0.456 0.275 0.389 0.369 0.025 0.020 0.058 0 0.021 0.007
DLQR-SIC 0.307 0.275 0.320 0.255 0.054 0.027 0.105 0.024 0.023 0.028
DLQR-GACV 0.321 0.275 0.318 0.260 0.070 0.039 0.097 0.031 0.039 0.041

σ = 2

DLER-SIC 0.454 0.263 0.321 0.302 0.071 0.087 0.129 0.098 0.083 0.056
DLER-GACV 0.538 0.262 0.400 0.359 0.072 0.086 0.124 0.106 0.070 0.064
DLQR-SIC 0.547 0.251 0.319 0.309 0.097 0.117 0.187 0.093 0.060 0.070
DLQR-GACV 0.570 0.255 0.317 0.317 0.103 0.117 0.198 0.099 0.081 0.078

σ = 3

DLER-SIC 0.577 0.312 0.330 0.318 0.116 0.145 0.183 0.111 0.119 0.125
DLER-GACV 0.617 0.309 0.347 0.336 0.130 0.146 0.187 0.116 0.123 0.115
DLQR-SIC 0.701 0.283 0.336 0.322 0.119 0.137 0.246 0.131 0.129 0.129
DLQR-GACV 0.770 0.304 0.329 0.348 0.121 0.153 0.247 0.154 0.150 0.157
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Table A2. The results 2 of simulation 1 under three signal-to-noise ratio.

Parameters Method Corr (SD) Incorr (SD) Int X1 X2 X3 X4 X5 X6 X7 X8

τ = 0.25

σ = 1

DLER-SIC 3 (0) 1.04 (0.665) 14 100 100 95 95 100 97 96 99
DLER-GACV 2.99 (0.1) 1.11 (0.751) 14 100 99 96 94 100 95 94 96
DLQR-SIC 3 (0) 1.29 (0.518) 0 100 100 87 91 100 99 96 98
DLQR-GACV 3 (0) 1.5 (0.628) 0 100 100 84 91 100 92 90 93

σ = 2

DLER-SIC 3 (0) 1.6 (0.865) 1 100 100 90 88 100 88 88 85
DLER-GACV 2.99 (0.1) 1.81 (0.982) 1 100 99 87 84 100 82 82 83
DLQR-SIC 3 (0) 1.99 (0.959) 0 100 100 73 79 100 82 87 80
DLQR-GACV 3 (0) 2.04 (1.063) 0 100 100 75 76 100 83 81 81

σ = 3
DLER-SIC 3 (0) 1.87 (1.116) 0 100 100 85 83 100 83 79 83
DLER-GACV 3 (0) 2.24 (1.311) 0 100 100 73 76 100 78 72 77
DLQR-SIC 3 (0) 2.56 (1.351) 0 100 100 67 70 100 69 65 73
DLQR-GACV 3 (0) 2.41 (1.280) 0 100 100 64 70 100 72 74 79

τ = 0.5

σ = 1

DLER-SIC 3 (0) 0.75 (0.520) 29 100 100 99 99 100 99 99 100
DLER-GACV 2.98 (0.2) 0.74 (0.525) 30 99 99 99 98 100 99 100 100
DLQR-SIC 3 (0) 0.78 (0.645) 35 100 100 96 96 100 98 99 98
DLQR-GACV 3 (0) 0.95 (0.770) 36 100 100 95 91 100 94 96 93

σ = 2

DLER-SIC 2.99 (0.1) 1.37 (0.960) 29 100 99 89 87 100 86 85 87
DLER-GACV 2.99 (0.1) 1.38 (1.080) 27 100 99 85 86 100 89 86 89
DLQR-SIC 2.99(0.1) 1.66 (1.075) 27 100 99 78 78 100 83 88 80
DLQR-GACV 2.99 (0.1) 1.76 (1.264) 31 100 99 76 78 100 79 81 79

σ = 3
DLER-SIC 3 (0) 1.7 (1.124) 25 100 100 82 79 100 80 81 83
DLER-GACV 3 (0) 1.98 (1.303) 28 100 100 74 71 100 73 78 78
DLQR-SIC 3 (0) 2.38 (1.153) 22 100 100 66 69 100 62 72 71
DLQR-GACV 3 (0) 2.22 (1.211) 20 100 100 70 69 100 74 70 75

τ = 0.75

σ = 1

DLER-SIC 2.99 (0.1) 0.94 (0.528) 15 100 99 98 96 100 99 98 100
DLER-GACV 2.99 (0.1) 0.96 (0.470) 14 100 99 96 98 100 100 97 99
DLQR-SIC 3 (0) 1.29 (0.478) 0 100 100 87 96 100 96 98 94
DLQR-GACV 3 (0) 1.47 (0.717) 0 100 100 80 94 100 94 93 92

σ = 2

DLER-SIC 3 (0) 1.72 (0.877) 0 100 100 88 84 100 82 86 88
DLER-GACV 2.99 (0.1) 1.84 (1.042) 1 100 99 83 85 100 75 88 84
DLQR-SIC 3 (0) 2.04 (0.974) 0 100 100 78 72 100 71 92 83
DLQR-GACV 3 (0) 2.12 (1.113) 0 100 100 74 75 100 75 85 79

σ = 3

DLER-SIC 3 (0) 1.93 (1.066) 0 100 100 87 80 100 83 82 75
DLER-GACV 3 (0) 2.16 (1.245) 0 100 100 78 77 100 78 76 75
DLQR-SIC 3 (0) 2.44 (1.192) 0 100 100 72 69 100 70 72 73
DLQR-GACV 3 (0) 2.62 (1.237) 0 100 100 67 70 100 69 68 64
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Table A3. The results 1 of simulation 2 under different influence of random effects.

τ=0.5 Method MSE SDint SD1 SD2 SD3 SD4 SD5 SD6 SD7 SD8

P1
DLER-SIC 0.336 0.268 0.314 0.281 0.016 0.012 0.054 0.022 0.010 0.026

DLER-GACV 0.490 0.266 0.409 0.321 0.019 0.017 0.057 0.021 0.016 0.019
DLQR-SIC 0.286 0.229 0.294 0.279 0.051 0.037 0.079 0.030 0.021 0.018

DLQR-GACV 0.294 0.233 0.298 0.276 0.056 0.043 0.085 0.038 0.034 0.031

P2
DLER-SIC 1.318 0.539 0.559 0.568 0.013 0 0.049 0.021 0.014 0.012

DLER-GACV 2.231 0.538 0.789 0.574 0.020 0 0.051 0.020 0.013 0.011
DLQR-SIC 0.898 0.520 0.534 0.508 0.045 0.478 0.099 0.022 0.026 0

DLQR-GACV 0.916 0.517 0.528 0.516 0.052 0.049 0.107 0.041 0.037 0.018

P3
DLER-SIC 2.577 0.876 0.906 0.726 0.022 0.024 0.049 0 0.017 0.022

DLER-GACV 3.946 0.879 1.065 0.733 0.015 0.018 0.052 0.014 0.013 0.012
DLQR-SIC 1.869 0.732 0.793 0.746 0.040 0.092 0.108 0.027 0.011 0.010

DLQR-GACV 1.878 0.727 0.803 0.760 0.050 0.099 0.076 0.027 0.019 0.020

Table A4. The results 2 of simulation 2 with different influence of random effects.

τ = 0.5 Method Corr (SD) Incorr (SD) Int X1 X2 X3 X4 X5 X6 X7 X8

P1
DLER-SIC 3 (0) 0.8 (0.651) 29 100 100 98 99 100 98 99 97
DLER-GACV 3 (0) 0.81 (0.598) 29 100 100 98 98 100 98 98 98
DLQR-SIC 3 (0) 1.03 (0.643) 30 100 100 85 93 100 94 97 98
DLQR-GACV 3 (0) 1.17 (0.877) 28 100 100 85 90 100 91 94 95

P2
DLER-SIC 2.91 (0.288) 0.98 (0.376) 9 100 91 99 100 100 97 98 99
DLER-GACV 2.78 (0.462) 0.99 (0.362) 8 98 80 98 100 100 98 98 99
DLQR-SIC 3 (0) 1.12 (0.591) 15 15 100 90 90 100 98 96 100
DLQR-GACV 3 (0) 1.24 (0.754) 17 17 100 87 90 100 91 93 98

P3
DLER-SIC 2.75 (0.435) 1.04 (0.470) 6 99 76 98 98 100 100 98 96
DLER-GACV 2.46 (0.673) 1.01 (0.460) 7 90 56 99 98 100 99 98 98
DLQR-SIC 2.97 (0.171) 1.11 (0.601) 15 100 100 93 87 100 96 99 99
DLQR-GACV 2.97 (0.171) 1.24 (0.605) 4 100 100 87 84 100 96 98 97

Table A5. The results 1 of simulation 3 with dense model under different error distributions.

Model Method MSE SDint SD1 SD2 SD3 SD4 SD5 SD6 SD7 SD8

Dense

N(0, 1)

DLER-SIC 0.908 0.522 0.544 0.527 0.058 0.061 0.066 0.068 0.058 0.053
DLER-GACV 0.922 0.522 0.558 0.550 0.058 0.062 0.066 0.068 0.059 0.053
DLQR-SIC 0.853 0.468 0.485 0.527 0.079 0.079 0.081 0.093 0.076 0.070
DLQR-GACV 0.882 0.463 0.476 0.536 0.088 0.086 0.087 0.102 0.084 0.073

t(3)

DLER-SIC 0.965 0.556 0.570 0.534 0.140 0.097 0.104 0.113 0.108 0.113
DLER-GACV 1.114 0.551 0.560 0.590 0.187 0.114 0.125 0.126 0.131 0.163
DLQR-SIC 0.871 0.518 0.525 0.467 0.113 0.099 0.101 0.118 0.108 0.094
DLQR-GACV 0.872 0.520 0.520 0.484 0.115 0.095 0.088 0.113 0.103 0.095

Cauchy(0, 1)

DLER-SIC 4.397 0.391 0.404 0.678 0.105 0.272 0.391 0.370 0.753 0.377
DLER-GACV 4.828 0.535 0.405 0.795 0.306 0.310 0.397 0.370 0.725 0.424
DLQR-SIC 2.450 0.249 0.350 0.605 0.039 0.089 0.031 0.072 0.092 0.127
DLQR-GACV 2.157 0.237 0.361 0.555 0.008 0.0536 0.041 0.020 0.094 0.129
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Table A6. The results 2 of simulation 3 with dense model under different error distributions.

Model Method Corr (SD) Incorr (SD) Int X1 X2 X3 X4 X5 X6 X7 X8

Dense

N(0, 1)

DLER-SIC 7.99 (0.33) 0.74 (0.44) 26 94 96 100 100 100 100 100 100
DLER-GACV 7.7 (0.63) 0.74 (0.44) 26 84 86 100 100 100 100 100 100
DLQR-SIC 7.9 (0.33) 0.78 (0.42) 22 94 96 100 100 100 100 100 100
DLQR-GACV 7.91 (0.32) 0.81 (0.39) 19 96 95 100 100 100 100 100 100

t(3)

DLER-SIC 7.72 (0.62) 0.84 (0.37) 16 83 90 99 100 100 100 100 100
DLER-GACV 7.37 (0.92) 0.83 (0.38) 17 66 73 99 100 100 100 100 99
DLQR-SIC 7.88 (0.33) 0.84 (0.37) 16 93 95 100 100 100 100 100 100
DLQR-GACV 7.91 (0.29) 0.84 (0.37) 16 95 96 100 100 100 100 100 100

Cauchy(0, 1)

DLER-SIC 7.6 (0.80) 0.8 (0.40) 20 100 100 100 100 80 80 100 100
DLER-GACV 7.68 (0.47) 1 (0) 0 100 100 100 100 88 80 100 100
DLQR-SIC 8 (0) 0.8 (0.40) 20 100 100 100 100 100 100 100 100
DLQR-GACV 8 (0) 0.8 (0.40) 20 100 100 100 100 100 100 100 100

Table A7. The results 1 of simulation 3 with the sparse model under different error distributions.

Model Method MSE SDint SD1 SD2 SD3 SD4 SD5 SD6 SD7 SD8

Sparse

N(0, 1)

DLER-SIC 1.345 0.608 0.622 0.550 0.011 0 0.051 0.015 0.015 0.023
DLER-GACV 2.084 0.608 0.849 0.606 0.011 0 0.052 0.019 0.014 0.018
DLQR-SIC 0.978 0.508 0.527 0.544 0.030 0.033 0.123 0.030 0.020 0.013
DLQR-GACV 0.947 0.516 0.527 0.529 0.036 0.037 0.106 0.037 0.028 0.027

t(3)

DLER-SIC 1.230 0.676 0.533 0.605 0.055 0.039 0.104 0.075 0.049 0.064
DLER-GACV 2.737 0.670 1.083 0.742 0.070 0.053 0.204 0.082 0.057 0.075
DLQR-SIC 1.008 0.522 0.498 0.530 0.065 0.049 0.102 0.041 0.047 0.048
DLQR-GACV 1.000 0.529 0.492 0.531 0.066 0.055 0.106 0.046 0.047 0.049

Cauchy(0, 1)

DLER-SIC 5.756 0.620 0.732 0.404 0.121 0 0.399 0.587 0.238 0.385
DLER-GACV 6.791 0.708 0.753 0.307 0.384 0.073 0.542 0.682 0.521 0.460
DLQR-SIC 2.099 0.593 0.411 0.310 0.105 0.193 0.152 0.119 0.046 0.062
DLQR-GACV 1.758 0.638 0.385 0.342 0 0.173 0.113 0.095 0.049 0.034

Table A8. The results 2 of simulation 3 with the sparse model under different error distributions.

Model Method Corr (SD) Incorr (SD) Int X1 X2 X3 X4 X5 X6 X7 X8

Sparse

N(0, 1)

DLER-SIC 2.91 (0.288) 0.98 (0.40) 8 100 91 99 100 100 99 98 98
DLER-GACV 2.79 (0.478) 0.98 (0.40) 8 97 82 99 100 100 97 99 99
DLQR-SIC 3 (0) 1.09 (0.62) 14 100 100 94 92 100 95 97 99
DLQR-GACV 3 (0) 1.17 (0.63) 14 100 100 94 92 100 92 95 96

t(3)

DLER-SIC 2.94 (0.24) 1.38 (0.84) 8 100 94 91 96 100 87 93 87
DLER-GACV 2.59 (0.71) 1.55 (1.06) 12 87 72 84 91 100 83 90 85
DLQR-SIC 2.97 (0.17) 1.27 (0.79) 15 100 97 88 91 100 92 94 93
DLQR-GACV 2.97 (0.17) 1.38 (0.85) 16 100 97 86 86 100 90 93 91

Cauchy(0, 1)

DLER-SIC 2.84 (0.37) 2.02 (0.62) 0 100 84 79 100 100 80 59 80
DLER-GACV 3 (0) 4.62 (0.83) 7 100 100 2 78 100 18 15 18
DLQR-SIC 3 (0) 2.66 (1.11) 0 100 100 79 36 100 71 71 77
DLQR-GACV 3 (0) 2.09 (0.93) 0 100 100 100 43 100 71 84 93
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Table A9. The results 1 of simulation 3 with the high sparse model under different error distributions.

Model Method MSE SDint SD1 SD2 SD3 SD4 SD5 SD6 SD7 SD8

High Sparse

N(0, 1)

DLER-SIC 1.017 0.611 0.593 0.267 0.020 0.021 0.025 0.039 0.035 0.017
DLER-GACV 3.096 0.613 0.981 0.253 0.017 0.022 0.025 0.033 0.016 0
DLQR-SIC 0.773 0.523 0.493 0.475 0.038 0.029 0.030 0.020 0.018 0.035
DLQR-GACV 0.81 0.528 0.509 0.477 0.048 0.040 0.036 0.039 0.041 0.036

t(3)

DLER-SIC 1.264 0.528 0.73 0.282 0.055 0 0.024 0.042 0.083 0.091
DLER-GACV 2.478 0.519 1.019 0.307 0.069 0.039 0.03 0.039 0.092 0.087
DLQR-SIC 0.792 0.474 0.576 0.394 0.082 0.072 0.051 0.061 0.036 0.039
DLQR-GACV 0.777 0.483 0.575 0.374 0.056 0.054 0.047 0.038 0.029 0.035

Cauchy(0, 1)

DLER-SIC 1.925 1.147 0.162 0.741 0 0.513 0 0 0 0.371
DLER-GACV 14.720 1.200 0.298 1.289 0.932 1.201 0.602 0.513 0.227 0.334
DLQR-SIC 0.798 0.650 0.256 0.484 0.117 0.095 0.082 0.029 0.124 0.121
DLQR-GACV 0.822 0.567 0.238 0.415 0.116 0.088 0.060 0.0315 0.109 0.109

Table A10. The results 2 of simulation 3 with the high sparse model under different error distributions.

Model Method Corr (SD) Incorr (SD) Int X1 X2 X3 X4 X5 X6 X7 X8

High Sparse

N(0, 1)

DLER-SIC 1 (0) 1.43 (0.78) 4 100 75 98 98 98 92 95 97
DLER-GACV 1 (0) 1.27 (0.72) 4 100 83 98 98 98 94 98 100
DLQR-SIC 1 (0) 1.59 (0.78) 29 100 35 93 97 95 99 98 95
DLQR-GACV 1 (0) 1.71 (0.97) 31 100 39 92 92 94 95 92 94

t(3)

DLER-SIC 1 (0) 1.52 (0.92) 2 100 75 91 100 98 94 93 95
DLER-GACV 0.99 (0.1) 1.7 (1.11) 2 99 70 87 94 96 96 94 91
DLQR-SIC 1 (0) 2.25 (1.22) 14 100 34 78 84 89 90 94 92
DLQR-GACV 1 (0) 1.94 (1.08) 11 100 45 85 90 90 95 96 94

Cauchy(0, 1)

DLER-SIC 1 (0) 1.71 (0.76) 0 100 82 100 53 100 100 100 94
DLER-GACV 1 (0) 6.53 (2.35) 0 100 11 12 11 29 30 30 24
DLQR-SIC 1 (0) 3.93 (1.28) 6 100 6 40 68 54 99 67 67
DLQR-GACV 1 (0) 3.06 (1.54) 6 100 48 39 68 96 99 67 71

Table A11. The results 1 of simulation 4 with the high dimensional model.

Model Method MSE SD0 SD1 SD2 SD5

τ = 0.5
DLER-SIC 4.783 0.010 0.513 0.360 0.657
DLER-GACV 5.414 0.007 0.914 0.482 0.706
DLQR-SIC 39.235 0.406 0.585 0.606 0.443
DLQR-GACV 6.902 0.003 0.876 0.463 0.789

τ = 0.75
DLER-SIC 5.870 0.165 0.671 0.383 0.882
DLER-GACV 4.483 0.010 0.759 0.467 0.719
DLQR-SIC 40.62433 0.413 0.593 0.625 0.507
DLQR-GACV 7.799 0.009 0.916 0.514 0.723
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Table A12. The results 2 of simulation 4 with the high dimensional model.

Model Method Corr (SD) Incorr (SD) X0 X1 X2 X5

τ = 0.5
DLER-SIC 2.34 (0.590) 5.31 (2.237) 95.953 100 44 90
DLER-GACV 2.28 (0.805) 3.46 (1.904) 97.682 88 50 90
DLQR-SIC 3 (0) 94.3 (3.033) 12.794 100 100 100
DLQR-GACV 2.8 (0.426) 68.44 (33.202) 36.972 98 91 91

τ = 0.75
DLER-SIC 2.27 (0.737) 5.54 (7.885) 95.738 96 53 78
DLER-GACV 2.58 (0.684) 5.32 (3.490) 95.963 96 72 90
DLQR-SIC 2.99 (0.1) 94.46 (3.963) 12.654 100 100 99
DLQR-GACV 2.68 (0.490) 42.06 (41.702) 61.617 98 82 88

Table A13. CD4 cell data: the estimation of DLER-SIC, DLER-GACV, DLQR-SIC, DLQR-GACV.

Int Time
X1

Smoking
X2

Age
X3

Sex Partner
X4

τ = 0.1
DLER-SIC −0.255 −0.271 0.080 0 0
DLER-GACV −0.190 −0.266 0.058 0 0
DLQR-SIC −0.851 −0.314 0.117 0 0
DLQR-GACV −0.852 −0.313 0.119 0 0

τ = 0.25
DLER-SIC −0.047 −0.243 0.080 0 0
DLER-GACV 0 −0.234 0.051 0 0
DLQR-SIC −0.422 −0.258 0.117 0 0
DLQR-GACV −0.420 −0.259 0.123 0 0

τ = 0.5
DLER-SIC 0.129 −0.233 0.090 0 0
DLER-GACV 0.112 −0.241 0.101 0 0
DLQR-SIC 0.126 −0.208 0.113 0 0
DLQR-GACV 0.126 −0.207 0.105 0 0

τ = 0.75
DLER-SIC 0.345 −0.220 0.074 0 0
DLER-GACV 0.329 −0.230 0.098 0 0
DLQR-SIC 0.557 −0.167 0.104 0 0
DLQR-GACV 0.559 −0.166 0.129 0 0

τ = 0.9
DLER-SIC 0.492 −0.217 0.078 0 0
DLER-GACV 0.492 −0.228 0.093 0 0
DLQR-SIC 0.959 −0.141 0.154 0 0
DLQR-GACV 0.949 −0.14 0.153 0 0
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