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Abstract: For optimal control problems of Bolza involving time-state-control mixed constraints,
containing inequalities and equalities, fixed initial end-point, variable final end-point, and nonlinear
dynamics, sufficient conditions for weak minima are derived. The proposed algorithm allows us to
avoid hypotheses such as the continuity of the second derivatives of the functions delimiting the
problems, the continuity of the optimal controls or the parametrization of the final variable end-point.
We also present a relaxation relative to some similar works, in the sense that we arrive essentially to
the same conclusions but making weaker assumptions.
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1. Introduction

In this paper, we study sufficiency conditions for a weak minimum in two constrained
parametric and nonparametric optimal control problems having nonlinear dynamics, a left
fixed end-point, a right variable end-point and mixed time-state-control restrictions involv-
ing inequalities and equalities. In the parametric problem, we show how the deviation
between admissible costs and optimal costs is derived by some functions playing the role
of the square of some norms; in particular, the involvement of a functional whose structure
is very similar to the square of the classical norm of the Lebesgue measurable functions is a
fundamental component. See [1–4], where the authors study sufficient conditions for opti-
mality, and they obtain a similar behaviour with respect to the corresponding deviations
between optimal and feasible costs. In the parametric problem, the variable end-point is
subject to a parametrization involving a twice continuously differentiable manifold, and,
in the nonparametric problem, we make a relaxation of that concept because of the fact
that the final end-point is not only variable but also completely free, in the sense that the
final end-point may belong to any set which only must be contained in a surface having
continuous second derivatives of the independent variable. Another important relaxation
of this paper is that we avoid the imposition of two functional restrictions involving the
maximum of some crucial integrals, one of them concerning derivatives of admissible and
optimal dynamics and the other concerning the admissible and optimal controls, see [5,6].
In contrast, we show how, by fixing the left end-point, we are able to eliminate the integral
depending on the admissible dynamics of the problem and only make a weaker hypothesis
only involving the integral of admissible and the optimal controls. It is worth emphasizing
that the conclusions are very similar and the hypotheses are weaker.

On the other hand, the sufficiency technique employed to prove the main theorem
of the paper is self-contained because it is independent of classical approaches used to
obtain sufficiency in optimal control such as the Hamilton–Jacobi theory, the incorporation
of symmetric solutions of some matrix-valued Riccati equations or the use of fundamental
concepts appealing to Jacobi’s theory in terms of conjugate points, see [7–9], respectively.
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In contrast, our approach is direct in nature since it strongly depends upon three funda-
mental concepts; the first one concerns a similar version of the Legendre–Clebsch necessary
condition; the second one is related with the positivity of the second variation over the
cone of critical directions, and the third one involves a crucial integral inequality involving
a Weierstrass verification excess function and the integral of a mapping whose behavior
is very similar to the quadratic function around zero and very analogous to the absolute
value function around infinity and minus infinity. As the right end-point is variable in
the parametric optimal control problem as well as in the nonparametric optimal control
problem, our hypotheses also impose a transversality condition and the properties of the
proof of the theorem of the article find out the fulfillment of a second order inequality to
be crucial. This second order inequality has its origin in a symmetric inequality presented
in hypothesis (ii) of Theorem 1 and Corollary 1 of [5,6]. The absence of the continuity
of the proposed optimal controls in the content of this paper is also one of the essential
components of this work. See [7–21], where that assumption of continuity in the sufficiency
approaches containing a degree of generality very similar to that obtained in this article, is
a uniform unfortunate assumption since the admissible controls must only lie in the family
of measurable functions. To be more precise, it is an unfortunate issue that, in the works
mentioned above, their optimal controls need to be confined to the space of continuous
functions; meanwhile, all the feasible controls must only be measurable, see [5,6,22], where
we show that this assumption of continuity on the optimal controls is very strong.

The paper is organized as follows: In Section 2, we state the parametric optimal control
problem that we shall study, some basic definitions, and we enunciate the main theorem
of the article. In Section 3, we pose the nonparametric optimal control problem we are
going to study together with a fundamental lemma and a corollary which turns out to
be the principal result of the paper. In the same section, we illustrate with two examples
how even the non-expert can apply the main corollary of the article. In Section 4, we
establish three supplementary lemmas whose proofs can be found in [23] and on which
the proof of the theorem is strongly based. In Section 5, we make the proof of the theorem
of the paper by means of two lemmas. In Section 6, we present a discussion concerning
the relations between necessary and sufficient conditions, we add some comments about
an experimental economic model, and we exhibit some relevant references containing
the fundamental subject of mixed constraints. Finally, in Section 7, we provide the main
conclusions of the article.

2. An Auxiliary Theorem

Suppose that we are given an interval T := [t1, t2] in R, a fixed point ξ1 ∈ Rn

and C any nonempty subset of Rs, called the set of parameters, that we have functions
γ : Rn → R, Ψ : Rn → Rn, Γ(t, x, u) : T × Rn × Rm → R, f (t, x, u) : T × Rn × Rm → Rn

and ϕ(t, x, u) : T ×Rn ×Rm → Rq. Set

R := {(t, x, u) ∈ T ×Rn ×Rm | ϕσ(t, x, u) ≤ 0 (σ ∈ P), ϕς(t, x, u) = 0 (ς ∈ Q)}

where P := {1, . . . , p} and Q := {p + 1, . . . , q} (p = 0, 1, . . . , q). If p = 0, then P is empty,
and we disregard statements about ϕσ. If p = q, then Q is empty, and we disregard
statements about ϕς.

Throughout the paper, we suppose that Γ, f and ϕ = (ϕ1, . . . , ϕq) have first and
second derivatives with respect to x and u. Additionally, if we denote by G(t, x, u) either
Γ(t, x, u), f (t, x, u), ϕ(t, x, u) or any of their partial derivatives of order ≤ 2 with respect
to x and u, we are going to assume that, if G is any bounded subset of T × Rn × Rm,
then |G(G)| is a bounded subset of R. In addition, we suppose that, if ((hq, lq)) is any
sequence in AC(T ; Rn)× L∞(T ; Rm) such that for some (h, l) ∈ AC(T ; Rn)× L∞(T ; Rm),

(hq(·), lq(·))
L∞
−→ (h(·), l(·)) on T , then, for all q ∈ N, G(·, hq(·), lq(·)) is measurable on

T and
G(·, hq(·), lq(·))

L∞
−→ G(·, h(·), l(·)) on T .
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It is worth observing that conditions given above are satisfied if the functions Γ, f , ϕ
and their first and second derivatives relative to x and u are continuous on T ×Rn ×Rm.
We are going to suppose that the functions γ and Ψ are of class C2 on Rn.

Designate by X := {x : T → Rn | x is absolutely continuous} and for any positive
integer s, set Us := L∞(T ; Rs). Define A := X ×Um × Rs. The notation za := (z, a) =
(x, u, a) denotes any element za ∈ A.

We are going to study a parametric optimal control problem, denoted by
P(γ, Γ, C, f , ξ1, Ψ, R, s), consisting of minimizing a functional of the form

I(za) := γ(a) +
∫ t2

t1

Γ(t, x(t), u(t))dt

over all za in A satisfying the constraints
a ∈ C.
ẋ(t) = f (t, x(t), u(t)) (a.e. in T ).
x(t1) = ξ1, x(t2) = Ψ(a).
(t, x(t), u(t)) ∈ R (t ∈ T ).

Elements a = (a1, . . . , as)∗ in Rs (∗ denotes transpose) will be called parameters, mem-
bers za in A will be called processes, and a process is admissible if it verifies the constraints.

• A process ẑâ solves P(γ, Γ, C, f , ξ1, Ψ, R, s) if it is admissible and I(ẑâ) ≤ I(za) for all
admissible processes za. An admissible process ẑâ is a weak minimum of
P(γ, Γ, C, f , ξ1, Ψ, R, s) if it is a minimum of I relative to the norm

‖za‖ := |a|+ ‖(x, u)‖∞,

that is, if, for some ε > 0, I(ẑâ) ≤ I(za) for all admissible processes za verifying
‖za − ẑâ‖ < ε.

• For all (t, x, u, ω, ν) ∈ T ×Rn ×Rm ×Rn ×Rq, define the augmented Hamiltonian by

H(t, x, u, ω, ν) := ω∗ f (t, x, u)− Γ(t, x, u)− ν∗ϕ(t, x, u).

If ω ∈ X and ν ∈ Uq are given, set, for all (t, x, u) ∈ T ×Rn ×Rm,

F (t, x, u) := −H(t, x, u, ω(t), ν(t))− ω̇(t)x

and let

J(za) := ω∗(t2)x(t2)−ω∗(t1)x(t1) + γ(a) +
∫ t2

t1

F (t, x(t), u(t))dt.

• The second variation of J with respect to za in the direction wα, is given by

J′′(za; wα) := α∗γ′′(a)α +
∫ t2

t1

2Ω(t, x(t), u(t); y(t), v(t))dt,

where, for all (t, y, v) ∈ T ×Rn ×Rm,

2Ω(t, x(t), u(t); y, v) := y∗Fxx(t, x(t), u(t))y + 2y∗Fxu(t, x(t), u(t))v + v∗Fuu(t, x(t), u(t))v,

and the notation wα means any element (y, v, α) ∈ X× L2(T ; Rm)×Rs. In addition,
γ′′(a) is the second derivative of γ evaluated at a.

• Let
E(t, x, u, v) := F (t, x, v)−F (t, x, u)−Fu(t, x, u)(v− u).
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• Define

D(u) :=
∫ t2

t1

L(u(t))dt where L(c) := (1 + |c|2)1/2 − 1 (c ∈ Rm).

Finally, if (t, x, u) ∈ T ×Rn ×Rm is given, denote by

i(t, x, u) := {σ ∈ P | ϕσ(t, x, u) = 0},

the set of active indices of (t, x, u) relative to the inequality constraints. For all za ∈ A,
let Y(za) be the cone of all wα ∈ X× L2(T; Rm)×Rs satisfying

ẏ(t) = fx(t, x(t), u(t))y(t) + fu(t, x(t), u(t))v(t) (a.e. in T ).
y(t1) = 0, y(t2) = Ψ′(a)α.
ϕσx(t, x(t), u(t))y(t) + ϕσu(t, x(t), u(t))v(t) ≤ 0 (a.e. in T , σ ∈ i(t, x(t), u(t))).
ϕςx(t, x(t), u(t))y(t) + ϕςu(t, x(t), u(t))v(t) = 0 (a.e. in T , ς ∈ Q).

The set Y(za) is the cone of critical directions with respect to za.

Theorem 1. Let ẑâ be an admissible process. Assume that i(·, x̂(·), û(·)) is piecewise constant on
T that there exist ω ∈ X, ν ∈ Uq with νσ(t) ≥ 0, νσ(t)ϕσ(t, x̂(t), û(t)) = 0 (σ ∈ P, t ∈ T ) and
δ, ε > 0, such that

ω̇(t) = −H∗x(t, x̂(t), û(t), ω(t), ν(t)) (a.e. in T ),

H∗u(t, x̂(t), û(t), ω(t), ν(t)) = 0 (t ∈ T ),

and the following is satisfied:

(i) γ′∗(â) + Ψ′∗(â)ω(t2) = 0.
(ii) ω∗(t2)Ψ′′(â; h) ≥ 0 for all h ∈ Rs.
(iii) Huu(t, x̂(t), û(t), ω(t), ν(t)) ≤ 0 (a.e. in T ).
(iv) J′′(ẑâ; wα) > 0 for all wα ∈ Y(ẑâ), wα 6≡ (0, 0, 0).
(v) za admissible with ‖(x, u) − (x̂, û)‖∞ < ε implies that

∫ t2
t1

E(t, x(t), û(t), u(t)) ≥
δD(u− û).

Then, for some ρ1, ρ2 > 0 and all admissible processes za satisfying ‖za − ẑâ‖ < ρ1,

I(za) ≥ I(ẑâ) + ρ2 min{|a− â|2,D(u− û)}.

In particular, ẑâ is a weak minimum of P(γ, Γ, C, f , ξ1, Ψ, R, s).

3. The Principal Result

Suppose that an interval T := [t1, t2] in R is given, a fixed point Υ1 ∈ Rn, a set B ⊂ Rn

and functions ` : Rn → R, L(t, x, u) : T ×Rn ×Rm → R, g(t, x, u) : T ×Rn ×Rm → Rn

and φ(t, x, u) : T ×Rn ×Rm → Rq. Set

R := {(t, x, u) ∈ T ×Rn ×Rm | φσ(t, x, u) ≤ 0 (σ ∈ P), φς(t, x, u) = 0 (ς ∈ Q)}

where P := {1, . . . , p} and Q := {p + 1, . . . , q} (p = 0, 1, . . . , q). If p = 0, then P is empty,
and we disregard statements about φσ. If p = q, then Q is empty, and we disregard
statements about φς.

In this section, we shall assume that L, g and φ = (φ1, . . . , φq) satisfy the regularity
hypotheses mentioned in Section 2. In particular, if L, g, and φ have first and second
continuous partial derivatives with respect to x and u on T ×Rn ×Rm, then they verify
the previously mentioned regularity hypotheses. Moreover, we shall be assuming that the
function ` is of class C2 on Rn.
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Set A := X ×Um, where usually X is the space of absolutely continuous functions
mapping T to Rn, and Um is the space of all essentially bounded measurable functions
mapping T to Rm.

In this section, we are going to study the non-parametric optimal control problem
P(`,L, g, Υ1, B,R, n) of finding a minimum value to the functional

J (x, u) := `(x(t2)) +
∫ t2

t1

L(t, x(t), u(t))dt

over all pairs (x, u) in A verifying the constraints
ẋ(t) = g(t, x(t), u(t)) (a.e. in T ).
x(t1) = Υ1, x(t2) ∈ B.
(t, x(t), u(t)) ∈ R (t ∈ T ).

The elements (x, u) in A will be called processes. A process is admissible if it satisfies
the restrictions.

A process (x̂, û) is a global solution of P(`,L, g, Υ1, B,R, n) if it is admissible and
J (x̂, û) ≤ J (x, u) for all (x, u) admissible. An admissible process (x̂, û) is a weak minimum
of P(`,L, g, Υ1, B,R, n) if it is a minimum of J with respect to the essential supremum
norm, that is, J (x̂, û) ≤ J (x, u) for all admissible processes verifying ‖(x, u)− (x̂, û)‖∞ <
ε, for some ε > 0.

Let Ψ : Rn → Rn be any twice continuously differentiable function such that B ⊂
Ψ(Rn). Connect the nonparametric optimal control problem P(`,L, g, Υ1, B,R, n) with the
parametric optimal control problem stated in Section 2, denoted by P(γ, Γ, C, f , ξ1, Ψ, R, s),
that is, P(γ, Γ, C, f , ξ1, Ψ, R, s) is the parametric problem stated in Section 2, with the next
data; γ = ` ◦Ψ, Γ = L, C = Ψ−1(B), f = g, ξ1 = Υ1, Ψ the function given above, R = R
and s = n.

Lemma 1. The following conditions are satisfied:

(i) za is an admissible process of P(γ, Γ, C, f , ξ1, Ψ, R, n) if and only if (x, u) is a feasible process
of P(`,L, g, Υ1, B,R, n) and a ∈ Ψ−1(x(t2)).

(ii) If za is an admissible process of P(γ, Γ, C, f , ξ1, Ψ, R, n), then

J (x, u) = I(za).

(iii) If ẑâ solves P(γ, Γ, C, f , ξ1, Ψ, R, n), then (x̂, û) solves P(`,L, g, Υ1, B,R, n).

Proof. Index (i) follows from the definition of the problems. In order to prove (ii), note that,
if za is an admissible process of P(γ, Γ, C, f , ξ1, Ψ, R, n), then, by (i), (x, u) is an admissible
process of P(`,L, g, Υ1, B,R, n) and x(t2) = Ψ(a). Then,

J (x, u) = `(x(t2)) +
∫ t2

t1

L(t, x(t), u(t))dt

= `(Ψ(a)) +
∫ t2

t1

Γ(t, x(t), u(t))dt

= γ(a) +
∫ t2

t1

Γ(t, x(t), u(t))dt = I(za).

Finally, in order to prove (iii), let za be an admissible process of P(γ, Γ, C, f , ξ1, Ψ, R, n).
By (i), (x̂, û) and (x, u) are admissible of P(`,L, g, Υ1, B,R, n). Then, by (ii) and (iii),

J (x̂, û) = I(ẑâ) ≤ I(za) = J (x, u).
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Corollary 1 below is a straightforward implication of Theorem 1 and Lemma 1. It provides
sufficient conditions for weak minima of the nonparametric problem P(`,L, g, Υ1, B,R, n). It
is worth observing that the proposed optimal control is not necessarily continuous but only
measurable as was the case of Theorem 1.

Corollary 1. Let Ψ : Rn → Rn be any twice continuously differentiable function such that
B ⊂ Ψ(Rn) and let P(γ, Γ, C, f , ξ1, Ψ, R, n) be the parametric optimal control problem before
pronouncing Lemma 1. Let ẑâ be an admissible process of P(γ, Γ, C, f , ξ1, Ψ, R, n). Suppose that
i(·, x̂(·), û(·)) is piecewise constant on T , there exist ω ∈ X, ν ∈ Uq satisfying νσ(t) ≥ 0 and
νσ(t)ϕσ(t, x̂(t), û(t)) = 0 (σ ∈ P, t ∈ T ), two positive numbers δ, ε such that

ω̇(t) = −H∗x(t, x̂(t), û(t), ω(t), ν(t)) (a.e. in T ),

H∗u(t, x̂(t), û(t), ω(t), ν(t)) = 0 (t ∈ T ),

and the following conditions are satisfied:

(i) γ′∗(â) + Ψ′∗(â)ω(t2) = 0.
(ii) ω∗(t2)Ψ′′(â; h) ≥ 0 for all h ∈ Rn.
(iii) Huu(t, x̂(t), û(t), ω(t), ν(t)) ≤ 0 (a.e. in T ).
(iv) J′′(ẑâ; wα) > 0 for all wα ∈ Y(ẑâ), wα 6≡ (0, 0, 0).
(v) za admissible with ‖(x, u) − (x̂, û)‖∞ < ε implies that

∫ t2
t1

E(t, x(t), û(t), u(t)) ≥
δD(u− û).

Then, (x̂, û) is a weak minimum of P(`,L, g, Υ1, B,R, n).

Examples 1 and 2 below show how even a non-expert can apply Corollary 1. Examples 1 and 2
are concerned with an inequality-equality restrained optimal control problem in which one
has to verify that an element (x̂, û, ω, ν) satisfies the sufficient conditions

ω̇(t) = −H∗x(t, x̂(t), û(t), ω(t), ν(t)) (a.e. in T ), H∗u(t, x̂(t), û(t), ω(t), ν(t)) = 0 (t ∈ T ),

and that the former also satisfies conditions (i), (ii), (iii), (iv), and (v) of Corollary 1, implying
that it is a weak minimum of P(`,L, g, Υ1, B,R, n).

Example 1. Consider the nonparametric optimal control problem P(`,L, g, Υ1, B,R, n) of finding
a minimum value to the functional

J (x, u) = x2(1)− x(1) +
∫ 1

0
{exp(tu(t)) + sinh x(t)}dt

over all (x, u) in A verifying the constraints
ẋ(t) = u(t) almost everywhere in [0, 1].
x(0) = 0, x(1) ∈ (−∞, 0].
(t, x(t), u(t)) ∈ R (t ∈ [0, 1])

where

R := {(t, x, u) ∈ [0, 1]×R×R | (3/2)u2 − x2 − exp(−x)− x + 1 ≤ 0},

A := X×U1,

X := {x : [0, 1]→ R | x is absolutely continuous on [0, 1]},

U1 := {u : [0, 1]→ R | u is essentially bounded on [0, 1]}.

For this event, the data of the proposed nonparametric problem are given by T = [0, 1],
m = 1, p = 1, q = 1, `(·) = x2(·) − x(·), L(t, x, u) = exp(tu) + sinh x, g(t, x, u) = u,
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Υ1 = 0, B = (−∞, 0], R = {(t, x, u) ∈ T ×R×R | (3/2)u2 − x2 − exp(−x)− x + 1 ≤ 0}
and n = 1. Observe that

φ1(t, x, u) = (3/2)u2 − x2 − exp(−x)− x + 1.

We have that the functions L, g, φ = φ1, and their first and second derivatives relative
to x and u are continuous on T ×R×R. Additionally, the function ` is C2 in R.

Moreover, one can verify that the process (x̂, û) ≡ (0, 0) is admissible of
P(`,L, g, Υ1, B,R, n). Let Ψ : R → R be given by Ψ(b) := b. Clearly, Ψ is C2 in R and
B ⊂ Ψ(R). The connected parametric problem designated by P(γ, Γ, C, f , ξ1, Ψ, R, s) has
the next data; γ = ` ◦Ψ, Γ = L, C = Ψ−1(B), f = g, ξ1 = Υ1, Ψ the function given above,
R = R and s = n.

Observe that, if we set â := 0, then ẑâ = (x̂, û, â) ≡ (0, 0, 0) is admissible of
P(γ, Γ, C, f , ξ1, Ψ, R, n). Moreover, i(·, x̂(·), û(·)) ≡ {1} is constant on T . Let ω ≡ t, ν1 ≡ 1
and observe that (ω, ν) ∈ X ×U1, νσ ≥ 0 and νσ(t)ϕσ(t, x̂(t), û(t)) = 0 (t ∈ T , σ = 1).
Recall that ϕ = φ.

Now,

H(t, x, u, ω, ν) = ωu− exp(tu)− sinh x− ν1[(3/2)u2 − x2 − exp(−x)− x + 1],

and observe that

Hx(t, x, u, ω, ν) = − cosh x− ν1[−2x + exp(−x)− 1],

Hu(t, x, u, ω, ν) = ω− t exp(tu)− 3ν1u.

Then,

ω̇(t) = −Hx(t, x̂(t), û(t), ω(t), ν(t)) (a.e. in T ) and Hu(t, x̂(t), û(t), ω(t), ν(t)) = 0 (t ∈ T )

and hence (x̂, û, ω, ν) verifies the first order sufficiency conditions of Corollary 1. Since
Ψ(b) = b (b ∈ R), we have that γ(b) = b2 − b (b ∈ R). Then,

γ′(â) + Ψ′(â)ω(1) = 0

and hence condition (i) of Corollary 1 is verified. Moreover, one can verify that

ω(1)Ψ′′(â; h) = 0 for all h ∈ R

and then condition (ii) of Corollary 1 is verified.
Now, for all (t, x, u) ∈ T ×R×R,

H(t, x, u, ω(t), ν(t)) = tu− exp(tu)− sinh x− [(3/2)u2 − x2 − exp(−x)− x + 1]

and hence, for all t ∈ T ,

Huu(t, x̂(t), û(t), ω(t), ν(t)) = −t2 − 3 ≤ 0

implying that (x̂, û, ω, ν) satisfies condition (iii) of Corollary 1.
Additionally, note that, for all t ∈ T ,

fx(t, x̂(t), û(t)) = 0 and fu(t, x̂(t), û(t)) = 1,

ϕx(t, x̂(t), û(t)) = 0 and ϕu(t, x̂(t), û(t)) = 0.

Consequently, Y(ẑâ) is given by all wα ∈ X× L2(T ; R)×R verifying{
ẏ(t) = v(t) (a.e. in T ).
y(0) = 0, y(1) = α.



Symmetry 2022, 14, 1520 8 of 20

In addition, observe that, for all (t, x, u) ∈ T ×R×R,

F (t, x, u) = −tu + exp(tu) + (3/2)u2 + sinh x− x2 − exp(−x)− 2x + 1

and, for all t ∈ T ,

Fxx(t, x̂(t), û(t)) = −3, Fxu(t, x̂(t), û(t)) = 0, Fuu(t, x̂(t), û(t)) = t2 + 3.

Thus, for all wα ∈ Y(ẑâ),

J′′(ẑâ; wα) = 2α2 +
∫ 1

0
3{v2(t)− y2(t)}dt +

∫ 1

0
3t2v2(t)dt ≥ 2α2 +

∫ 1

0
3{ẏ2(t)− y2(t)}dt.

Hence,
J′′(ẑâ; wα) > 0

for all wα ∈ Y(ẑâ), wα 6≡ (0, 0, 0), and hence condition (iv) of Corollary 1 is fulfilled.
Now, note that, if za is admissible, for all t ∈ T ,

E(t, x(t), û(t), u(t)) = −tu(t) + exp(tu(t)) + (3/2)u2(t)− 1.

Thus, if za is admissible,

∫ 1

0
E(t, x(t), û(t), u(t))dt =

∫ 1

0
{−tu(t) + exp(tu(t)) + (3/2)u2(t)− 1}dt ≥

∫ 1

0
(1/2)u2(t)dt

≥
∫ 1

0
L(u(t)− û(t))dt = D(u− û).

Therefore, condition (v) of Corollary 1 is satisfied for any ε > 0 and δ = 1. By Corollary
1, (x̂, û) is a weak minimum of P(`,L, g, Υ1, B,R, n).

Example 2. Let us study the nonparametric optimal control problem P(`,L, g, Υ1, B,R, n) of
minimizing the functional

J (x, u) = x2(1) +
∫ 1

0
{ 1

2 (u1(t) + u2(t))2 + u1(t)}dt

over all (x, u) in A satisfying the constraints
ẋ(t) = u1(t) + u2(t) + x3(t) almost everywhere in [0, 1].
x(0) = 0, x(1) ∈ R.
(t, x(t), u(t)) ∈ R (t ∈ [0, 1])

where
R := {(t, x, u) ∈ [0, 1]×R×R2 | − 1

2 x2 − u1 ≤ 0, sin u2 = 0},

A := X×U2,

X := {x : [0, 1]→ R | x is absolutely continuous on [0, 1]},

U2 := {u : [0, 1]→ R2 | u is essentially bounded on [0, 1]}.

For this event, the data of the nonparametric problem are given by T = [0, 1], m = 2,
p = 1, q = 2, `(·) = x2(·), L(t, x, u) = 1

2 (u1 + u2)
2 + u1, g(t, x, u) = u1 + u2 + x3, Υ1 = 0,

B = R,R = {(t, x, u) ∈ T ×R×R2 | − 1
2 x2 − u1 ≤ 0, sin u2 = 0} and n = 1. Observe that

φ1(t, x, u) = − 1
2 x2 − u1 and φ2(t, x, u) = sin u2.
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We have that the functions L, g, φ = (φ1, φ2) and their first and second derivatives
with respect to x and u are continuous on T ×R×R2. Additionally, the function ` is C2

in R.
Moreover, as one readily verifies, the process (x̂, û) ≡ (0, 0, 0) is admissible of

P(`,L, g, Υ1, B,R, n). Let Ψ : R → R be defined by Ψ(b) := b. Clearly, Ψ is C2 in R
and B ⊂ Ψ(R). The connected parametric problem designated by P(γ, Γ, C, f , ξ1, Ψ, R, s)
has the next data; γ = ` ◦ Ψ, Γ = L, C = Ψ−1(B), f = g, ξ1 = Υ1, Ψ the function given
above, R = R and s = n.

Observe that, if we set â := 0, then ẑâ = (x̂, û, â) ≡ (0, 0, 0, 0) is admissible of
P(γ, Γ, C, f , ξ1, Ψ, R, n). Moreover, i(·, x̂(·), û(·)) ≡ {1} is constant on T . Let ω ≡ 0,
ν1 ≡ 1, ν2 ≡ 0 and observe that (ω, ν) ∈ X ×U2, νσ ≥ 0 and νσ(t)ϕσ(t, x̂(t), û(t)) = 0
(t ∈ T , σ = 1). Recall that ϕ = φ.

Now,

H(t, x, u, ω, ν) = ωu1 + ωu2 + ωx3 − 1
2 (u1 + u2)

2 − u1 +
1
2 ν1x2 + ν1u1 − ν2 sin u2,

and observe that
Hx(t, x, u, ω, ν) = 3ωx2 + ν1x,

Hu(t, x, u, ω, ν) = (ω− u1 − u2 − 1 + ν1, ω− u1 − u2 − ν2 cos u2).

Consequently,

ω̇(t) = −Hx(t, x̂(t), û(t), ω(t), ν(t)) (a.e. in T ) and Hu(t, x̂(t), û(t), ω(t), ν(t)) = (0, 0) (t ∈ T )

and hence (x̂, û, ω, ν) satisfies the first order sufficiency conditions of Corollary 1. Since
Ψ(b) = b (b ∈ R), we have that γ(b) = b2 (b ∈ R). Then,

γ′(â) + Ψ′(â)ω(1) = 0

and then condition (i) of Corollary 1 is satisfied. Moreover, one can verify that

ω(1)Ψ′′(â; h) = 0 for all h ∈ R

and hence condition (ii) of Corollary 1 is fulfilled.
Now, for all (t, x, u) ∈ T ×R×R2,

H(t, x, u, ω(t), ν(t)) = − 1
2 (u1 + u2)

2 + 1
2 x2

and hence, for all t ∈ T ,

Huu(t, x̂(t), û(t), ω(t), ν(t)) =
(
−1 −1
−1 −1

)
≤ 0

implying that (x̂, û, ω, ν) verifies condition (iii) of Corollary 1.
Additionally, note that, for all t ∈ T ,

fx(t, x̂(t), û(t)) = 0 and fu(t, x̂(t), û(t)) = (1, 1),

ϕx(t, x̂(t), û(t)) =
(

0
0

)
and ϕu(t, x̂(t), û(t)) =

(
−1 0
0 1

)
.

Therefore, Y(ẑâ) is given by all wα ∈ X× L2(T ; R2)×R verifying
ẏ(t) = v1(t) + v2(t) (a.e. in T ).
y(0) = 0, y(1) = α.
−v1(t) ≤ 0, v2(t) = 0 (a.e. in T ).
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In addition, observe that, for all (t, x, u) ∈ T ×R×R2,

F (t, x, u) = 1
2 (u1 + u2)

2 − 1
2 x2

and, for all t ∈ T ,

Fxx(t, x̂(t), û(t)) = −1, Fxu(t, x̂(t), û(t)) = (0, 0), Fuu(t, x̂(t), û(t)) =
(

1 1
1 1

)
.

Thus, for all wα ∈ Y(ẑâ),

J′′(ẑâ; wα) = 2α2 +
∫ 1

0
{(v1(t) + v2(t))2 − y2(t)}dt = 2α2 +

∫ 1

0
{ẏ2(t)− y2(t)}dt.

Hence,
J′′(ẑâ; wα) > 0

for all wα ∈ Y(ẑâ), wα 6≡ (0, 0, 0, 0), and then condition (iv) of Corollary 1 is verified.
Now, note that, if za is admissible, for all t ∈ T ,

E(t, x(t), û(t), u(t)) = 1
2 (u1(t) + u2(t))2.

Therefore, if za is admissible,∫ 1

0
E(t, x(t), û(t), u(t))dt =

∫ 1

0

1
2 (u1(t) + u2(t))2dt ≥

∫ 1

0
L(u(t)− û(t))dt = D(u− û).

Thus, condition (v) of Corollary 1 is verified for any ε > 0 and δ = 1. By Corollary 1,
(x̂, û) is a weak minimum of P(`,L, g, Υ1, B,R, n).

4. Supplementary Lemmas

Now, we enunciate three supplementary lemmas which are going to be fundamental
in proving Theorem 1. These lemmas are direct consequences of Lemmas 3.1–3.3 of [23].

If (Σn) is a sequence of measurable functions and Σ is a measurable function, we shall

designate uniform convergence of (Σn) to Σ by Σn
u−→ Σ. Similarly, strong convergence in

Lp by Σn
Lp
−→ Σ and weak convergence by Σn

Lp
⇀ Σ.

In the next three lemmas, we suppose that û ∈ L1(T ; Rm) is given and a sequence (uq)
in L1(T; Rm) such that

lim
q→∞
D(uq − û) = 0 and dq := [2D(uq − û)]1/2 > 0 (q ∈ N).

For all q ∈ N, define

vq :=
uq − û

dq
.

Lemma 2. For some v̂ ∈ L2(T ; Rm) and some subsequence of (uq) (without relabeling), vq
L1
⇀ v̂

on T .

Lemma 3. Let Aq ∈ L∞(T ; Rn×n) and Bq ∈ L∞(T ; Rn×m) be matrix-valued functions for which
we have the existence of some constants m0, m1 > 0 such that ‖Aq‖∞ ≤ m0, ‖Bq‖∞ ≤ m1
(q ∈ N), and for all q ∈ N indicate by yq the solution of the initial value problem

ẏ(t) = Aq(t)y(t) + Bq(t)vq(t) (a.e. in T ), y(t1) = 0.

Then, there exist ζ ∈ L2(T ; Rn) and a subsequence (without relabeling), such that ẏq
L1
⇀ ζ on

T , and hence, if ŷ(t) :=
∫ t

t1
ζ(τ)dτ (t ∈ T ), then yq

u−→ ŷ on T .
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Lemma 4. Suppose uq
L∞
−→ û on T , let Φq, Φ ∈ L∞(T ; Rm×m); suppose that Φq

L∞
−→ Φ on T ,

Φ(t) ≥ 0 (a.e. in T ) and let v̂ be the function given in Lemma 2. Then,

lim inf
q→∞

∫ t2

t1

v∗q(t)Φq(t)vq(t)dt ≥
∫ t2

t1

v̂∗(t)Φ(t)v̂(t)dt.

5. Proof of Theorem 1

The proof of Theorem 1 will be divided into two Lemmas. In Lemmas 5 and 6 below,
we shall suppose that all the hypotheses of Theorem 1 are verified. Before stating the
lemmas, let us present some definitions.

Note first that, given x = (x1, . . . , xn)∗ in Rn and a = (a1, . . . , as)∗ in Rs, if we set xi,
aj in Rn+s by xi := (x1, . . . , xn, 0, . . . , 0)∗ and aj := (0, . . . , 0, a1, . . . , as)∗, then

xi + aj = (x1, . . . , xn, a1, . . . , as)
∗ =

(
x
a

)
∈ Rn+s.

Define F̃ : T ×Rn+s ×Rm → R by

F̃ (t, ξ, u) :=
γ(ξn+1, . . . , ξn+s)

t2 − t1
+F (t, ξ1, . . . , ξn, u).

Observe that the Weierstrass function Ẽ : T ×Rn+s ×Rm ×Rm → R of F̃ is given by

Ẽ(t, ξ, u, v) := F̃ (t, ξ, v)− F̃ (t, ξ, u)− F̃u(t, ξ, u)(v− u).

It is not difficult to see that, for all (t, x, u, v) ∈ T ×Rn ×Rm ×Rm and all a in Rs,

Ẽ(t, xi + aj, u, v) = E(t, x, u, v).

Set

J̃(za) := ω∗(t2)x(t2)−ω∗(t1)x(t1) +
∫ t2

t1

F̃ (t, x(t)i + aj, u(t))dt.

As one readily verifies, J(za) = J̃(za) for all za in A, and

J̃(za) = J̃(ẑâ) + J̃′(ẑâ; za − ẑâ) + K̃(ẑâ; za) + Ẽ(ẑâ; za) (1)

where

Ẽ(ẑâ; za) :=
∫ t2

t1

Ẽ(t, x(t)i + aj, û(t), u(t))dt,

K̃(ẑâ; za) :=
∫ t2

t1

{M̃(t, x(t)i + aj) + [u∗(t)− û∗(t)]Ñ (t, x(t)i + aj)}dt,

J̃′(ẑâ; za − ẑâ) := ω∗(t2)[x(t2)− x̂(t2)]−ω∗(t1)[x(t1)− x̂(t1)]

+
∫ t2

t1

{F̃ξ(t, x̂(t)i + âj, û(t))([x(t)− x̂(t)]i + [a− â]j)

+F̃u(t, x̂(t)i + âj, û(t))(u(t)− û(t))}dt,

and M̃, Ñ are defined by

M̃(t, xi + aj) := F̃ (t, xi + aj, û(t))− F̃ (t, x̂(t)i + âj, û(t))

−F̃ξ(t, x̂(t)i + âj, û(t))([x− x̂(t)]i + [a− â]j),
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Ñ (t, xi + aj) := F̃ ∗u (t, xi + aj, û(t))− F̃ ∗u (t, x̂(t)i + âj, û(t)).

By Taylor’s theorem,

M̃(t, xi + aj) = 1
2 ([x

∗ − x̂∗(t)]i + [a∗ − â∗]j)P̃(t, xi + aj)([x− x̂(t)]i + [a− â]j), (2a)

Ñ (t, xi + aj) = Q̃(t, xi + aj)([x− x̂(t)]i + [a− â]j), (2b),

where

P̃(t, xi + aj) := 2
∫ 1

0
(1− θ)F̃ξξ(t, [x̂(t) + θ(x− x̂(t))]i + [â + θ(a− â)]j, û(t))dθ,

Q̃(t, xi + aj) :=
∫ 1

0
F̃uξ(t, [x̂(t) + θ(x− x̂(t))]i + [â + θ(a− â)]j, û(t))dθ.

Lemma 5. If the deduction of Theorem 1 is false, then we have the existence of a subsequence (zq
aq)

of admissible processes such that

lim
q→∞
D(uq − û) = 0 and dq := [2D(uq − û)]1/2 > 0 (q ∈ N).

Proof. If the deduction of Theorem 1 is false, then, for all ρ1, ρ2 > 0, there exists an
admissible process za such that

‖za − ẑâ‖ < ρ1 and I(za) < I(ẑâ) + ρ2 min{|a− â|2,D(u− û)}. (3)

Since
νσ(t) ≥ 0 (σ ∈ P, a.e. in T ),

if za is admissible, then I(za) ≥ J(za). Additionally, as

νσ(t)ϕσ(t, x̂(t), û(t)) = 0 (σ ∈ P, a.e. in T )

then I(ẑâ) = J(ẑâ). Thus, (3) implies that, for ρ1, ρ2 > 0, we have the existence of za
admissible such that

‖za − ẑâ‖ < ρ1 and J(za) < J(ẑâ) + ρ2 min{|a− â|2,D(u− û)}.

Therefore, if the deduction of Theorem 1 is false, then, for all q ∈ N, we have the
existence of a sequence of admissible processes (zq

aq) such that

‖zq
aq − ẑâ‖ < min{ε, 1/q}, J(zq

aq)− J(ẑâ) < min
{ |aq − â|2

q
,
D(uq − û)

q

}
. (4)

The first relation in (4) assures that

lim
q→∞
D(uq − û) = 0.

Moreover, as (zq
aq) is a sequence of admissible processes, we see that D(uq − û) = 0 if

and only if zq = ẑ. Hence, the second relation of (4) implies that

D(uq − û) = 0 =⇒ aq 6= â.

Assume that D(uq − û) = 0 for infinitely many q’s. We have

0 = xq(t2)− x̂(t2) = Ψ(aq)−Ψ(â) =
∫ 1

0
Ψ′(â + θ[aq − â])(aq − â)dθ, (5)

0 = Ψ(aq)−Ψ(â) = Ψ′(â)(aq − â) +
∫ 1

0
(1− θ)Ψ′′(â + θ[aq − â]; aq − â)dθ. (6)
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If we designate by (aq, â) the line segment in Rs joining the points aq and â, by the
second relation of (4), by hypothesis (i) of Theorem (1), by (6), and the mean value theorem,
we have the existence of Θq ∈ (aq, â) such that

0 > J(ẑaq)− J(ẑâ)

= γ(aq)− γ(â)

= γ′(â)(aq − â) + 1
2 (aq − â)∗γ′′(Θq)(aq − â)

= −ω∗(t2)Ψ′(â)(aq − â) + 1
2 (aq − â)∗γ′′(Θq)(aq − â) (7)

=
∫ 1

0
(1− θ)ω∗(t2)Ψ′′(â + θ[aq − â]; aq − â)dθ + 1

2 (aq − â)∗γ′′(Θq)(aq − â).

Select an adequately subsequence of ((aq − â)/|aq − â|), such that

lim
q→∞

aq − â
|aq − â| = α̂ (8)

for some α̂ ∈ Rs satisfying |α̂| = 1. By (5),

Ψ′(â)α̂ = 0.

By (7) and (8) and hypothesis (ii) of Theorem 1, we see that

0 ≥ 1
2 ω∗(t2)Ψ′′(â; α̂) + 1

2 α̂∗γ′′(â)α̂ ≥ 1
2 α̂∗γ′′(â)α̂ = 1

2 J′′(ẑâ; 0α̂)

contradicting (iv) of Theorem 1. Consequently, we may suppose that, for all q ∈ N,

dq = [2D(uq − û)]1/2 > 0.

Lemma 6. If the deduction of Theorem 1 is false, then condition (iv) of Theorem 1 is false.

Proof. Let (zq
aq) be the sequence of admissible processes provided in Lemma 5. Hence,

lim
q→∞
D(uq − û) = 0 and dq = [2D(uq − û)]1/q > 0 (q ∈ N).

Case(1): First, assume that the sequence ((aq − â)/dq) is bounded in Rs. For all
q ∈ N, set

yq :=
xq − x̂

dq
, vq :=

uq − û
dq

, vq := yqi +
aq − â

dq
j.

By Lemma 2, there exist v̂ ∈ L2(T ; Rm) and a subsequence of (zq
aq) (without relabeling)

such that vq
L1
⇀ v̂ on T . We have, for all q ∈ N, that

ẏq(t) = Aq(t)yq(t) + Bq(t)vq(t) (a.e. in T ), yq(t1) = 0,

where

Aq(t) :=
∫ 1

0
fx(t, x̂(t) + θ[xq(t)− x̂(t)], û(t) + θ[uq(t)− û(t)])dθ,

Bq(t) :=
∫ 1

0
fu(t, x̂(t) + θ[xq(t)− x̂(t)], û(t) + θ[uq(t)− û(t)])dθ.

We obtain the existence of m0, m1 > 0 such that ‖Aq‖∞ ≤ m0, ‖Bq‖∞ ≤ m1 (q ∈ N).
By Lemma 3, there exist ζ ∈ L2(T ; Rn) and some subsequence of (zq

aq) (we do not relabel)

such that, if for all t ∈ T , ŷ(t) :=
∫ t

t1
ζ(τ)dτ, then
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yq
u−→ ŷ on T . (9)

As the sequence ((aq − â)/dq) is bounded in Rs, then we can suppose that there exists
some α̂ ∈ Rs such that

lim
q→∞

aq − â
dq

= α̂. (10)

First, we shall show that
ŷ(t2) = Ψ′(â)α̂. (11)

Note that, we have, for all q ∈ N, that

yq(t2) =
∫ 1

0
Ψ′(â + θ[aq − â])

(aq − â)
dq

dθ. (12)

By (9), (10), and (12), as one readily verifies, (11) holds. Now, we claim that

J′′(ẑâ; ŵα̂) ≤ 0 and ŵα̂ = (ŷ, v̂, α̂) 6≡ (0, 0, 0). (13)

In order to prove it, note that, by (2), (9), and (10),

M̃(·, xq(·)i + aqj)
d2

q
= 1

2 v∗q (·)P̃(·, xq(·)i + aqj)vq(·)
L∞
−→

1
2 [ŷ
∗(·)i + α̂∗j]F̃ξξ(·, x̂(·)i + âj, û(·))[ŷ(·)i + α̂j],

Ñ (·, xq(·)i + aqj)
dq

= Q̃(·, xq(·)i + aqj)vq(·)
L∞
−→ F̃uξ(·, x̂(·)i + âj, û(·))[ŷ(·)i + α̂j]

both on T . This fact together with Lemma 2 implies that

lim
q→∞

K̃(ẑâ; zq
aq)

d2
q

=
1
2

∫ t2

t1

{[ŷ∗(t)i + α̂∗j]F̃ξξ(t, x̂(t)i + α̂j, û(t))[ŷ(t)i + α̂j]

+2v̂∗(t)F̃uξ(t, x̂(t)i + α̂j, û(t))[ŷ(t)i + α̂j]}dt. (14)

As (x̂, û, ω, ν) satisfies the first order sufficient conditions

ω̇(t) = −H∗x(t, x̂(t), û(t), ω(t), ν(t)) (a.e. in T ), H∗u(t, x̂(t), û(t), ω(t), ν(t)) = 0 (t ∈ T ),

and, by condition (i) of Theorem 1, we obtain

lim
q→∞

J̃′(ẑâ; zq
aq − ẑâ)

d2
q

= lim
q→∞

1
d2

q
[ω∗(t2)(xq(t2)− x̂(t2)) + γ′(â)(aq − â)]

= lim
q→∞

1
d2

q
[ω∗(t2)(Ψ(aq)−Ψ(â))−ω∗(t2)Ψ′(â)(aq − â)]

= lim
q→∞

1
d2

q
ω∗(t2)(Ψ(aq)−Ψ(â)−Ψ′(â)(aq − â)) (15)

= lim
q→∞

1
d2

q

∫ 1

0
ω∗(t2)(1− θ)Ψ′′(â + θ[aq − â]; aq − â)dθ

= 1
2 ω∗(t2)Ψ′′(â; α̂).
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Then, by (1), the fact that

J(zq
aq)− J(ẑâ) < min

{ |aq − â|2

q
,
D(uq − û)

q

}
,

Equation (15) and hypothesis (ii) of Theorem 1,

0 ≥ lim
q→∞

K̃(ẑâ; zq
aq)

d2
q

+ lim inf
q→∞

Ẽ(ẑâ; zq
aq)

d2
q

. (16)

Now, we have, for all t ∈ T and q ∈ N, that

1
d2

q
Ẽ(t, xq(t)i + aqj, û(t), uq(t)) = 1

2 v∗q(t)Φq(t)vq(t),

where

Φq(t) := 2
∫ 1

0
(1− θ)F̃uu(t, xq(t)i + aqj, û(t) + θ[uq(t)− û(t)])dθ.

We have
Φq(·)

L∞
−→ Φ(·) := F̃uu(·, x̂(·)i + âj, û(·)) on T .

By condition (iii) of Theorem 1, we have

F̃uu(t, x̂(t)i + âj, û(t)) = Φ(t) ≥ 0 (a.e. in T ). (17)

By the fact that

‖zq
aq − ẑâ‖ <

1
q

,

uq
L∞
−→ û on T . Keeping this in mind, by (17) and Lemma 4,

lim inf
q→∞

Ẽ(ẑâ; zq
aq)

d2
q

= lim inf
q→∞

1
d2

q

∫ t2

t1

Ẽ(t, xq(t)i + aqj, û(t), uq(t))dt

=
1
2

lim inf
q→∞

∫ t2

t1

v∗q(t)Φq(t)vq(t)dt ≥ 1
2

∫ t2

t1

v̂∗(t)Φ(t)v̂(t)dt. (18)

By (16) and (18), we have

0 ≥
∫ t2

t1

{v̂∗(t)F̃uu(t, x̂(t)i + âj, û(t))v̂(t) + 2v̂∗(t)F̃uξ(t, x̂(t)i + âj, û(t))[ŷ(t)i + α̂j]

+[ŷ∗(t)i + α̂∗j]F̃ξξ(t, x̂(t)i + âj, û(t))[ŷ(t)i + α̂j]}dt

= α̂∗γ′′(â)α̂ +
∫ t2

t1

{v̂∗(t)Fuu(t, x̂(t), û(t))v̂(t) + 2v̂∗(t)Fux(t, x̂(t), û(t))ŷ(t)

+ŷ∗(t)Fxx(t, x̂(t), û(t))ŷ(t)}dt

= α̂∗γ′′(â)α̂ +
∫ t2

t1

2Ω(t, x̂(t), û(t); ŷ(t), v̂(t))dt = J′′(ẑâ; ŵα̂).

Now, let us prove that ŵα̂ 6≡ (0, 0, 0). By (16) and hypothesis (v) of Theorem 1, we have

0 ≥ lim
q→∞

K̃(ẑâ; zq
aq)

d2
q

+ lim inf
q→∞

δ

d2
q
D(uq − û) = lim

q→∞

K̃(ẑâ; zq
aq)

d2
q

+
δ

2
.

Keeping this in mind together with (14), if we assume that ŵα̂ ≡ (0, 0, 0), then δ would
be nonpositive, which is a contradiction, and this proves (13). Now, let us show that
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d
dt

ŷ(t) = fx(t, x̂(t), û(t))ŷ(t) + fu(t, x̂(t), û(t))v̂(t) (a.e. in T ). (19)

In fact, since

Aq(·)
L∞
−→ fx(·, x̂(·), û(·)), Bq(·)

L∞
−→ fu(·, x̂(·), û(·)), yq

u−→ ŷ, vq
L1
⇀ v̂

all on T , we see that

ẏq(·)
L1
⇀ fx(·, x̂(·), û(·))ŷ(·) + fu(·, x̂(·), û(·))v̂(·) on T .

By Lemma 3, ẏq
L1
⇀ ζ = dŷ

dt on T . Consequently, (19) is fulfilled. Additionally, we
claim that

i. ϕσx(t, x̂(t), û(t))ŷ(t) + ϕσu(t, x̂(t), û(t))v̂(t) ≤ 0 (a.e. in T , σ ∈ i(t, x̂(t), û(t))).
ii. ϕςx(t, x̂(t), û(t))ŷ(t) + ϕςu(t, x̂(t), û(t))v̂(t) = 0 (a.e. in T , ς ∈ Q).

As one readily verifies, (i) and (ii) above follows if one copies the proofs from (13) to
(15) of [24].

Hence, from (11), (19), (i) and (ii), above, we see that ŵα̂ ∈ Y(ẑâ). This fact combined
with (13) contradict condition (iv) of Theorem 1.

Case (2): Now, suppose that the sequence ((aq − â)/dq) is not bounded. Then,

lim
q→∞

∣∣∣∣ aq − â
dq

∣∣∣∣ = +∞. (20)

Select an adequately subsequence of ((aq − â)/|aq − â|) (without relabeling), and
α̃ ∈ Rs satisfying |α̃| = 1, such that

lim
q→∞

aq − â
|aq − â| = α̃. (21)

For all q ∈ N and t ∈ T , set

ṽ(t) :=
xq(t)− x̂(t)
|aq − â| i +

aq − â
|aq − â| j.

By Lemma 2 and (20),

xq(·)− x̂(·)
|aq − â| = yq(·) ·

dq

|aq − â|
u−→ ŷ(·) · 0 = 0 on T . (22)

For all q ∈ N, we have

xq(t2)− x̂(t2)

|aq − â| =
∫ 1

0
Ψ′(â + θ[aq − â])

(
aq − â
|aq − â|

)
dθ. (23)

By (21)–(23),
Ψ′(â)α̃ = 0. (24)

Now, by (2), (21), and (22),

M̃(·, xq(·)i + aqj)
|aq − â|2 = 1

2 ṽ∗q (·)P̃(·, xq(·)i + aqj)ṽq(·)

L∞
−→ 1

2 0∗α̃F̃ξξ(·, x̂(·)i + âj, û(·))0α̃ =
α̃∗γ′′(â)α̃
2(t2 − t1)

,
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Ñ (·, xq(·)i + aqj)
|aq − â| = Q̃(·, xq(·)i + aqj)ṽq(·)

L∞
−→ F̃uξ(·, x̂(·)i + âj, û(·))0α̃ = 0

both on T . Combined this fact with Lemma 2, this implies that

lim
q→∞

K̃(ẑâ; zq
aq)

|aq − â|2 = 1
2 α̃∗γ′′(â)α̃ + lim

q→∞

∫ t2

t1

dq

|aq − â| · v
∗
q(t)
Ñ (t, xq(t)i + aqj)

|aq − â| dt (25)

= 1
2 α̃∗γ′′(â)α̃.

As in (15), we have

lim
q→∞

J̃′(ẑâ; zq
aq − ẑâ)

|aq − â|2 = 1
2 ω∗(t2)Ψ′′(â; α̃). (26)

In addition, by (1), (4), and (26) and condition (ii) of Theorem 1,

0 ≥ lim
q→∞

K̃(ẑâ; zq
aq)

|aq − â|2 + lim inf
q→∞

Ẽ(ẑâ; zq
aq)

|aq − â|2 . (27)

Hence, as Ẽ(ẑâ; zq
aq) ≥ 0 (q ∈ N), by (25) and (27),

0 ≥ 1
2 α̃∗γ′′(â)α̃ = 1

2 J′′(ẑâ; 0α̃). (28)

Accordingly, (24) and (28) contradict condition (iv) of Theorem 1.

6. Discussion Part

Let us point out that our hypotheses try to respect the property that the first and second
order sufficient conditions are closely related to the necessary conditions for optimality. For
instance, the sufficient conditions

ω̇(t) = −H∗x(t, x̂(t), û(t), ω(t), ν(t)) (a.e. in T ), H∗u(t, x̂(t), û(t), ω(t), ν(t)) = 0 (t ∈ T ),

are the Pontryagin maximum principle in normal form. On the other hand, a cone of critical
directions that we strengthen in the article is the following:

Y(ẑâ) :=


ẏ(t) = fx(t, x(t), u(t))y(t) + fu(t, x(t), u(t))v(t) (a.e. in T ).
y(t1) = 0, y(t2) = Ψ′(a)α.
ϕσx(t, x(t), u(t))y(t) + ϕσu(t, x(t), u(t))v(t) ≤ 0 a.e. in T , σ ∈ i(t, x(t), u(t))) with νσ(t) = 0.
ϕςx(t, x(t), u(t))y(t) + ϕςu(t, x(t), u(t))v(t) = 0 a.e. in T , ς ∈ P with νς(t) > 0 or ς ∈ Q.

Here, condition (iv) of Theorem 1 and Corollary 1 asks for

J′′(ẑâ; wα) > 0 for all wα ∈ Y(ẑâ), wα 6≡ (0, 0, 0),

that is, the positivity of the second variation on Y(ẑâ), which can be considered as a
strengthening of the second order necessary condition

J′′(ẑâ; wα) ≥ 0 for all wα ∈ Y(ẑâ).

Additionally, condition (i),

γ′∗(â) + Ψ′∗(â)ω(t2) = 0,
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is the classical transversality condition. It is well-known that the transversality condition is
a necessary condition for a weak minimum of problem P(γ, Γ, C, f , ξ1, Ψ, R, s). As explained
in the article, condition (iii),

Huu(t, x̂(t), û(t), ω(t), ν(t)) ≤ 0 (a.e. in T ),

is a similar version of the Legendre–Clebsch necessary condition. It is not the necessary
condition of Legendre–Clebsch because the former is less restrictive, that is,

Huu(t, x̂(t), û(t), ω(t), ν(t))

must be less or equal than zero almost everywhere on T , but only in a subset related with
the kernel of the linear transformation ϕu(t, x̂(t), û(t)). In the fixed-endpoints problem of
calculus of variations, it is well-known that, if x̂ is a smooth nonsingular extremal satisfying
Legendre necessary condition, then, for some ε > 0,

E(t, x, ẋ, u) > 0 for (t, x, ẋ, u) ∈ T(x̂, ε), u 6= ẋ,

is a sufficient condition for a weak minimum. Here,

T(x̂, ε) := {(t, x, ẋ, u) ∈ T ×Rn ×Rn ×Rn | |x− x̂(t)| < ε, |ẋ− (d/dt)x̂(t)| < ε}.

In fact, as one can be seen in [10], the above condition implies that

E(t, x, ẋ, u) ≥ δL(u− ẋ) for (t, x, ẋ, u) ∈ T(x̂, ε) (29)

for some δ, ε > 0. Then, (29) implies that for some δ, ε > 0,∫ t2

t1

E(t, x(t), (d/dt)x̂(t), ẋ(t))dt ≥ δ
∫ t2

t1

L(ẋ(t)− (d/dt)x̂(t))dt = δD(ẋ− (d/dt)x̂), (30)

whenever x is such that ‖x− x̂‖1 < ε, where

‖x‖1 := ‖x‖∞ + ‖ẋ‖∞.

It is worth to say that (30) gave us the inspiration to obtain the sufficient condition (v)
of Theorem 1 and Corollary 1. Condition (ii) arises from the properties of the algorithm
established to prove Theorem 1. In summary, our goal consists of providing an alternate
model of sufficiency. Even though we do not necessarily obtain no gap hypotheses between
necessary and sufficient conditions for optimality, we follow a classical way of obtaining
sufficient conditions by strengthening the necessary ones. Finally, in [25], one could find
an experimental application involving an economic model of population growth. More
precisely, in [25], an application concerning a model for a one sector economy taking into
consideration population growth is presented. In the proposed economic model, it is shown
that the only factor decreasing the capital per worker is the inclusion of additional workers
to the economy, and the only factor increasing the economy is the rate of production. The
presence of nonlinear time-state-control mixed constraints plays a crucial role in that model,
see [25], for details. For comparison reasons, it is worthwhile mentioning some of the
bibliography studying necessary and sufficient conditions involving mixed constraints.
Some relevant works we found convenient for that issue are the following [26–36].

7. Conclusions

In this article, we derive sufficiency conditions for weak minima in optimal control
problems of Bolza in the parametric as well as in the nonparametric forms. These prob-
lems include nonlinear dynamics, a fixed initial end-point, a variable final end-point, and
nonlinear mixed time-state-control constraints involving inequalities and equalities. In
the nonparametric optimal control problem, the final end-point is not only variable, but
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also completely free, in the sense that it must not be confined to a parametrization, but it
only must be contained in the image of a twice continuously differentiable manifold. Due
to the fact that the left end-point is fixed, we were able to make a relaxation, in the sense
that we arrived essentially to the same conclusions, but we made weaker assumptions.
This relaxation is relative to some recently published works whose initial left end-point
is not necessarily fixed. The algorithm used to prove the main theorem of the paper is
independent of some classical concepts such as the Hamilton–Jacobi theory, the verification
of bounded solutions of certain matrix Riccati equations, or extended notions of the con-
jugate points theory. Finally, in the parametric problem, we were able to present how the
deviation between optimal costs and admissible costs is estimated by quadratic functions,
in particular, the square of the norm of the classical Banach space of integrable functions in
the deviation mentioned above, is a fundamental component.
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