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Abstract: The topics studied in the geometric function theory of one variable functions are connected
with the concept of Symmetry because for some special cases the analytic functions map the open
unit disk onto a symmetric domain. Thus, if all the coefficients of the Taylor expansion at the origin
are real numbers, then the image of the open unit disk is a symmetric domain with respect to the
real axis. In this paper, we formulate the g-differential operator associated with the g-Raina function
using quantum calculus, that is the so-called Jacksons” calculus. We establish a new subclass of
analytic functions in the unit disk by using this newly developed operator. The theory of differential
subordination inspired our approach; therefore, we geometrically explore the most popular properties
of this new operator: subordination properties, coefficient bounds, and the Fekete-Szeg6 problem. As
special cases, we highlight certain well-known corollaries of our primary findings.

Keywords: quantum calculus; analytic function; subordination and superordination; differential
subordination; univalent function; differential operator; convolution (Hadamard) product; fractional
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1. Introduction and Preliminaries

Quantum calculus (QC) is a subject of mathematical analysis and its applications are
relevant in mathematics and physics. The functions of g-differentiation and g-integration
were first defined and enhanced by Jackson [1,2]. Then, Ismail et al. [3] adopted the concept
of g-calculus (0 < g < 1) into geometric function theory. Researchers are now using the
QC to introduce and develop new Ma-Minda type of subclasses of functions. Based on
the concept of g-derivatives, Seoudy and Aouf [4] defined one type of quantum starlike
function subclass. Zainab et al. [5] used recently a unique method to introduce and develop
useful g-stalikeness criteria, and Samir et al. [6] investigated many types of g-starlike
functions that are dominated by 2D-]Julia set.

QC is also used to generalize a variety of differential and integral operators, including
special functions (see [7-11]). Noor and Razzaque, for example, defined a g-differential
operator based on the g-Mittag-Leffler function [11]. Tang et al. studied significant proper-
ties of the g-starlike functions [12], Karthikeyan et al. [13] investigated the g-higher order
derivatives, and Riaz et al. [14] formulated interesting results for the g-starlike functions of
negative order.

Many other studies are introduced in the field of geometric function theory including
the Mittag—Leffler function and its generalizations (see [15-19]).
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The topics studied in the geometric function theory of one variable functions are
connected with the concept of Symmetry because for some special cases, the analytic
functions map the open unit disk onto a symmetric domain. Thus, if all the coefficients of
the Taylor expansion at the origin are real numbers, then the image of the open unit disk is
a symmetric domain with respect to the real axis. Moreover, if the function is an odd one,
then the image of D is a symmetric domain with respect to the origin. In this paper, we
investigate how the g-Raina’s function can be utilized to expand a differential operator in
the open unit disk.

For two functions & and g analytic in I, we say that the function h is subordinate to
g, written h(z) < g(z), if there exists a Schwarz function w, which is analytic in D with
w(0) =0and |w(z)| < 1,z € D, such that h(z) = g(w(z)) for all z € D. In particular, if the
function g is univalent in D, then we have the following equivalence relation (cf., e.g., [20],
see also [21])

h(z) < g(z) < h(0) < g(0) and h(D) C g(D).

Let us define the normalized class A of analytic functions as follows:
h(z) =z+ Zanzn,zeﬂ), (1)
n=2

where the set D := {z € C: |z| < 1} represents the open unit disk in the complex plane C.

The convolution (or Hadamard) product of the functions h(z) =z+ Y a,z" and v(z) =
n=2

z+ OZO‘, by z" of A is defined by (see [22])

n=2

(h*v)(z) =z+ Y _ anbyz", z € D.
n=2

Moreover, denote by S* the class of starlike functions, and by C the class of convex
functions in D is normalized with the conditions given by (1), that are h(0) = #'(0) —1 = 0.
Moreover, let

P = {l 1(z) =1+ hz+hz=®+..., Rel(z) >0, z e]D}
denote the well-known class of Carathéodory functions (see [23,24]).

Definition 1 ([1]). The Jackson derivative of a function h is defined by

(3, )h(z) = ’w ge(01).

Therefore, since

_ Lk
3, () = 11_’2 1, ke Ny = NU {0},

if the function & has the form (1) it follows that

(0g) h(z) =1+ i an [n]gz" 7,

where
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Moreover, note that

0,x=0, i 0,) h(z) = H'(z),
gk qg{z(q) (z) =1(z)

if x € Cis a constant.
If t € C, then the g-shifted factorial (see [1]) is given by the formula

7—1

() == ]‘[(1 - qft), TeN={12..}, (tq)o=1 2)

j=0

From (2), the g-shifted gamma function could be formulated as follows:

Tt+0(1—q)" (D)ot =)

. _ =
W= I @9
where
=00
and .
(t:9)00 = q(l — qjt).
j=

Special functions include some improper integrals and the outputs of many different
types of differential equations. As a result, most integral sets include descriptions of
special functions, and these special functions include the most basic integrals and the
integral representation of special functions. Because differential operators are important in
both physics and mathematics, the theory of special functions is tightly linked to various
mathematical physics topics [25]. To begin, we’ll look at the Mittag-Leffler function, which
is a well-known special function.

Definition 2 ([26]). The power series that determines the Raina’s function is defined by

M)
WZ ,ZED,

Mfu,b (Z) = Z 1—'
n=0
where a,b € CwithRea > 0,Reb > 0, and {M(n)}, ., is a bounded sequence of arbitrary real
or complex numbers.

Remark 1. 1. If we take M(n) = 1 for all n > 0, then the above definition leads us to the
Mittag—Leffler function
Zn

F, = —,z€D;
a,b(z) r;)r(m’l-f—b) z

2. For the special case a = 1, b = 1, and M(n) = (a)<'::)(b)", where (k) represents the
n
Pochhammer symbol, the function of the Definition 2 reduces to the Gaussian hypergeometric

function

2Fi(a,b;c;z) = i (@)u(b)n  z

(O Tt 1) z € D.

Assuming that M(0) # 0, define the function y([F, ; to be the normalized function
obtained from z 7, ;(z) by

MEFap(z) = M) (2Fap(z) =2+ ) MO (a(n - 1)b+ ) Z", zeD. 3)
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Note thatif M(n) = (n+1)"",r > 0, witha = 0 and b = 1, the operator (3) is the
Séldagean integral operator of order r (see [27]).

In the present article, first we will give a generalization of the normalized function
IF, » by using the g-gamma function, in order to be the g-Raina function, as follows:

g MFap(2) =z + Z ®,(a,b,M,q)z", z €D,
n=2

where
M(n—1)T,(b)

Pulab, M, q) = MO, (a(n—1) + 1)’ @)

and Rea > 0, Reb > 0, M(0) # 0.
In view of the quantum operator d;, we introduce the following g-Raina differential
operator MA]; : A — Aby

>
=)
—
S
N
<>
=
=
—
N
-
|

h(z) * g mFap(2),

MmAL(a,b)h(z) = 20, (MAg(a,b)h(z)),
MB3(a,0)(z) = i (a,b) (it (e, b)(2)), ®)

MA@, b)h(z) = pAl(a,b) (MA’;’l(a,b)h(z)), heA keN, k>2.
Using the above definition, it follows that if 1 € A has the form (1), then

M1 — 1), (b)
(0)T,(a(n —q1) To)

n

MAg(a,b)h(z) =z+ i[ﬂ]g v

=z+ Z [n]]t;@?l(ar b/ M/ q)anzn, z e D,
n=2

where ®,,(a,b, M, q) is given by (4) and
k
()% == ([n];)", k € Ny.

Note that, if 2 = 0 and M(n —1) = 1 for all n > 1, we obtain the Siligean g-
differential operator defined in [28]. Moreover, if M(n —1) = 1 for all n > 1, we obtain
the g-differential operator of [11]. With the aid of the g-differential operator defined by (5),
we will define and study some new classes of analytic functions in the open unit disk.

Definition 3. Let define by pj , the convex analytic function in D as follows:

14z g
1—2' fi=0,
pip(z) = 01U 0) Fj=1
UZ(]/@)/ 1fo <J< 1,
Os(j,p), ifj>1,
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where o € C\ {0}, and the following functions are defined by (see [29])

4 L 2p 1+v2\\°
6107, 0)(2) =1+ 25 (105 (172 ) )
Ua(j,p)(z) =1+ —p sinh p arccos(j) arctanh(v/z) |,
. B o o . m )/ g
Os(j, 0)(z) =1+ -7 + 71 Sm(ZR(t) /0 i)
— !
where 1(z) = 12_\\22, t € (0,1), is chosen such that t = cosh(iﬁié?), where R(t) is the

Legendre’s complete elliptic integral of the first kind and R'(t) is the complementary integral of
R(t), where (R'(t))* = 1 — (R(t))*.

Definition 4. The function h € A is called to be in the class j — Sr];,p(”/ b) if and only if

20, ( MmA(a, b)h(z))
b o) e

where (see also [29,30])
Pj,p(z):1+P12+P222+...,ZE]D), (6)

is defined in the Definition 3.

Definition 5. The function h € A is called in the class j — Sk(a,b) if h € j — Sf]‘,gj(a, b) and
qg—1".

Lemma 1 ([31]). Let G(z) = Y. gnz" be a univalent convex function in D satisfying the inequal-
n=0
ity

H(z) = i hyz" < G(z).
n=0

Then, |hy,| < |g1] forall n > 1.

Lemma 2 ([32]). Let P(z) =1+ Y pnz" be analytic in D satisfying the condition Re P(z) > 0,

n=1
z € . Then,
‘p2 — ]kp%‘ <2max{1;|2k — 1|}, k € C.

2. Subordination and Coefficient Upper Bounds for the Class j — S,’;, o(a,b)

We start our first subordination result for the functions of the class j — 8;"@ (a,b) when
q — 17, as follows:

Theorem 1. If h is in the class j — S¥(a, b), then

MAs(a,b)h(z) < zexp (/OZ pj’p(w(x)mld)(),
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where w is a Schwarz function satisfying w(0) = 0 and |w(z)| < 1, z € D. Furthermore, for

|z| := 0 < 1 we have
1pje(0) —1 >
< ———"—dop ).
= eXp(/o o

1o: (—o) —1 AX(a,b)h(z
exp(/ Pj,p( 0) dg)<‘M q( )h(z)
Jo 0 z
Proof. If z = 0, the results in theorem are satisfied by defination of the subordination
relation.
Ifz € Dand z # 0, since i € j — 85 (a, b), then

(850 0E) 1 i) -1
MA@, b)h(z)  z z

where w is a Schwarz function satisfying w(0) = 0 and |w(z)| < 1,z € D.
Integrating both sides of the above relation it follows that

Z0: —1
MAg(a,b)h(z) < zexp (/ p]’p(X)d)(),
0 X
which is equivalent to
Ak (a,b)h(z z20i,(x)—1
M q( )h(z) <exp</ 0j,0(X) dX)-
z 0 X

Since
0j,0(—0lz]) <Re(pj,(w(z0))) < pjelelz]),
this yields

1 pjp(—olz]) -1 1 Re(pjp(w(zg))) —1 1pjelelz]) -1
DR 2T do < ! do < = do.
e R Y A

Combining the above inequalities we obtain

k
/1(%(—Q|z)—1dgglog/\4Aq(a,b)h(z) S/lpw(gzn_ld@
0 Q z 0 ¢
and this leads to
1p,,(—0) —1 MDE(a,b)h(z) 1pjple) =1
N N <) < - .
exp ( /0 . dQ) < " =P (/0 0 dQ>

O

The previous theorem represents a generalization of some earlier results, as we can
see in the next two special cases:

Corollary 1 ([11], Theorem 6). If M(n) =1 foralln > 1, then

Ag(a, b)h(z) := 1A5(a,b)h(z) < zexp (/OZ pj’g)())?_ldx),
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where w is a Schwarz function satisfying w(0) = 0 and |w(z)| < 1, z € D. Furthermore, for

|z| :== 0 < 1 we have
AX(a,b)h(z 10, 1
g(a,b)h(z) <exp(/0 Pw(i)) de)-

z

1 . — —_
P],p( 0)—1 )
e T do) <
exp (/0 o o) <
Corollary 2 ([33], Theorem 3.1). If M(n) =1foralln > landa =0,b =1, then
z p',J(X) -1
AZ(O,l)h(z) < zexp (/0 %d}( ,

where w is a Schwarz function satisfying w(0) = 0and |w(z)| < 1, z € D. Furthermore, for

|z| :== 0 < 1 we have
1. —
p],g)(@) 1 )
< " do .
< exp </0 o 0

5 )—1
exp</ i (= dQ> <

The following theorem glves us an upper bound for the Taylor coefficients of the
functions from the class j — (a b):

AF(0,1)h(2)
z

Theorem 2. If h belongs to the class j — S o(a,b), then

lp1]
2]k®s(a,b, M, q)([2], — 1)’

o1l (= o1l
S Tk 0, b, M, ) ([l — 1) H(” i) s

where pq is defined by (6).

las| <

Proof. Letting
20, ( MAg(a,b)h(z))
MAE(a,b)h(z)

=:P(z), z€D,

where P(z) =1+ Z pnz", this brings that

n=1

e}

Z ()5 @, (a,b, M, q)a,z" = (z—i—

Mg

()5 ®n(a, berﬂl)“"Zn> (1 + i PnZ">

n=1

Il
N

n

MS

=) pnz" Z pnz"
n=0

— :2

<I>n(a b, M, q)anz".

From the comparison of the coefficients of z" of the above equality we obtain

n]k+ a ay = [n]k a a S gk MG =1)T(b) aj -
1§ b M, ) = ol b M.+ L i o=y £ P

Accordingly, we obtain

e MG = 1DTy(b)
[n]lt;([n]q - 1)q)”<a/ b' M' q)”” = ]; U]]‘;M(O)l‘q(a(] _ql) + b) aj Pn—jr
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and a calculation implies that

) 1 o M-Il
= G (rly — D) @ala, b, M) & D Q)T G — 1)+ 5 P

In view of Lemma 1, since |p,| < |p1|, we obtain

4 o1 ek MG =1)Tg(b) .
ol < G Ty = 1) @ta b, M) 259 M (G- 1) 8) "
For n = 2 we have

|612‘ < |pl‘ M(j_l)FQ(b)

Lo
25 (12l —1)@s(0,b, M) MO G- 1) +5)

_ |1
[2]5®(a,b, M, q)([2]; — 1)’

while if n = 3, then

1]
5] < G M, B =T (L Aoz b Mol

Combining the last two inequalities we obtain

ol o1
5= Gl (a, b, M,q) (8], ~ 1) (” Plaalort 1.0 <[21’é¢2<“fb'M'q>([2]q ‘1)>>

_ o1 lo1]
~ [Blkds(a,b, M, q)([3]; - 1) <1 - 2]4 - 1>.

Suppose that for a fixed j > 2 the next inequality is valid:

| [ = eal )
J'SU1sd>j<a,b,M,q><U]q—1)5(“U+11q—1>' =3

|a

Hence, we have

, lo1] ' |o1] lo1] lo1]
e S @ (o b M) (1 1)y~ 1) (”mq—ﬁ[3]q—1<”[z]q—1)+'“

N o1l ﬁ(1+ o1l ))
15 @i b, M) ([l = 1) 3\ [+ 1y =1

- o1l ﬁ<1+ o1l )
= E (@b, M) [l -1 5\ [+ -1/

which, according to the mathematical induction, completes our proof. [

Remark 2. The results in Theorem 2, are sharp for the following functions which are belonging to
the class j — S,;‘,p(a, b):

- o1 2
&) =2 Gy a, b, M) (]~ 1)
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1
Y:=%¥(a,bM,q) = 5 1-=—-p

and

n

[f(”uﬂﬁlq'—l))ﬂ "3

]

- lo1]
flz)=z+ ({n]g%(a, b, M,q)([n]y —1)

where p1 is defined by (6).

The next two special cases of this theorem were previously obtained by different
authors:

Corollary 3 ([11], Theorem 8). If M(n) =1 foralln > 1, then

o1
ja| < :
2= 2Jka(a,b,1,9) (120 — 1)
A ( A )
ay| < 1+—"——), n>3
S Gata b, L Gy 0 LI g, =1
with py given by (6).

Corollary 4 ([33], Theorem 3.2). If M(n) =1foralln > landa =0,b =1, then

|a2| < |P1|
~ [2f02(0,1,1,) (12— 1)
. lo1] = |o1] "
) S G, 0,1, 1, ) )y — 1) L) (14 gt =) 2

where p1 was given by (6).

3. Fekete-Szeg6 Problem for the Class j — S;‘,p(u, b)

First, we will give an estimate for the well-known Fekete-Szeg6 functional for the
classj — S,’;,p(a, b).

Theorem 3. Ifh € j — Sk

g0(a,b), then

a3 — pad| < 1] 1L;2¥ — 1]},
| 3 l)b 2| = 2[3]§®3(‘1/b/qu)([3]q_1) max{ | |}

where p € C, and

o | EHE
20(a,b, M, ) ([25(2)y - 1)

P R
with py and py defined by (6).

Proof. From the condition /1 € j — S¥

40 (a,b) we have

20, ( MmAk(a, b)h(z))
MDA (a,b)h(z)

= pjp(w(2)),

where w is a Schwarz functions satisfies w(0) = 0 and |w(z)| < 1,z € D.
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Let p € P be a function defined by

1+ w(z)

_ 2
—717(0(2) 1+piz+pz-+...,z€D,

p(2)
which implies

2
w(z)zpzlqu;(pszl)zer..., zeD,

and

2 2
Pj,p(a)(z)) =1+ %24— <p24}ﬂ1 + 5 p2 — % 01 224+...,z€D.
Therefore, we obtain
20, ( mb(a, b)h(z))
MmAOE(a,b)h(z)

+<[3]’,;<D3(a,b,/\/l,q)([2}q —1)az — ([2]5@2(61,17,/\/(,0]))2([2}‘7 - 1)a%)22 +...,z€D,

=1+ [2]5®@(a,b, M, q)([2]; — 1) apz

thus the initial coefficients can be determined as follows:

P1p1
2[2]kda(a,b, M, q) ([2], — 1)

- 1 pip2 | Pi o}
= [3]5@3(11,17,/\/[,(1)([3]‘7_1) < 122 +41<P2_Pl+ {2]q1_1>>

2 1 o2 PI( 4
o ‘””2‘[3}s<1>3<a,b,M,q><[3}q—1>< 2 *4("2 ‘”mq—1>>’

ap; =

—y P1P1 i
2[2]§@a(a,b, M, q) (12l -1) )

A simple computation yields

P1
2BJ5s(a, b, M, q) (Bl — 1)

as — lpa% = (p2— ‘PP%),

where Y is given by (7) and i € C. Hence, in view of Lemma 2 we obtain the desired
result. [J

The above theorem generalizes some previous results, as we can observe in the next
two particular cases:

Corollary 5 ([11], Theorem 10). Ifh € j — Sk

0.0(a,b) with M(n) =1 forall n > 1, then

lo1] ¢
3= yad] < max{l7 ¥ =1,
2= 2[3]kds(a,b,1,9) (3] — 1)

where p € C, and

@;:W(a,bll,q)zl 1-f2_ 4 1 BI5([Bl; — 1)
2 2<I>2(a,b,1,q)([2]g([2}q _ 1))2

o Pt

with py and py given by (6).
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Corollary 6 ([33], Theorem 3.3). Ifh € j — Sk

400, 1) with M(n) =1foralln > 1and a =0,
b =1, then

lo1] ¥ _
|a3 - IPQZ‘ 2[3]]q<q>3(0, 1, 1, q)<[3]q — 1) max{l, |2‘Y 1|}’

where € C, and

¥:=%(0,1,1,9) :% 1——1—p1

with py and py defined by (6).

The last result deals with a sufficient condition for the coefficients of a function h € A
to be in the class j — (a b).

Theorem 4. Let h € A be of the form (1). If
Y (([nlg = 1) i+ 1) + |gl) [@n(a, b, M, g) | [n]glan| < [p],

thenh € j — S,’;p( b).

Proof. Obviously, we have

zaq(MA{;(a,b)h(z)) e zaq(mA{;(a,b)h(z)) — mbE(a,b)h(z)
mA’g(a,b)h(z) N mA’{;(a,b)h(z)
Y (g — 1) (s @ b, M, )anz”| X [([n]y — 1) () @ (b, M, )l
_ n=2 - S n=2 - L zc ]D/
z+ ngz[n]’,;d)n(a, b, M, q)a,z" 1— n§2|[n]§<1>n(a, b, M, q)l|ax|

and from the assumption of the theorem

1—2‘ CDnab./\/lq‘|an|>O

n=

Since

i zﬁq(MA’;(a,b)h(zD . " 1 z5q(MA§(a,b)h(z)) .
o\ wmbk@bn )| e\ mbk@bne)

_ zaq(mAg(a,b)h(z)) IRRE zﬁq(mAg(a,b)h(z)) B
= el MDA (a,b)h(z) ‘p M~k (a, b)h(z)
a1 zaq(mAg(a,b)h(z)) R zaq(MAg(a,b)h(z)) — Mg, b)h(z)
el mAE(a,b)h(z) )| gl M~k (a,b)h(z)
Y. |([nlg — 1) [n)f @u(a, b, M, q)]ax|
<11 = Z ! <1,zeD,
I\ 1= Tt @ula, b, M)l

we obtainh € j — (a b). O



Symmetry 2022, 14, 1518

12 0f13

References

This theorem generalizes other previously obtained results, which we can observe in
the next two special cases. Thus, taking in the above theorem M (n) = 1foralln > 1, and
M(n) =1foralln > 1witha =0, b = 1, we obtain the next special cases, respectively:

Corollary 7 ([11], Theorem 12). Let h € A be of the form (1). If

[e9)

Zz(([n]q ~1)(j+1) + [p]) |®u(a,b,1,9)|[n]5lan| < [pl,

then ( )
z0y Ag(a, b)h(z)
o gy i)

Thatish € j — S,’;,p(a,b), when M(n) =1 foralln > 1.

Corollary 8 ([33], Theorem 3.4). Let h € A be of the form (1). If

fz(([n]q—mm) + 1o @4 (0,1,1, ) [n]Elan] < [0,

then
29, (Ag(o, 1)h(z))
AE(0,1)h(z) < Pj(2)-

Thatish € j — Sf;,p(o,l), when M(n) =1 foralln > 1.

4. Conclusions

In light of Jackson’s calculus, Raina’s function in D is expanded. The proposed g-
differential operator was applied to the normalized subclass, and the geometric behavior
of the operator is investigated using differential inequalities. For more recent efforts
(see [11,33]), some generalizations are provided, and finally, Theorem 4 gives the sufficient
condition for a function to belong to this class. We also gave an estimate for the Fekete—
Szeg6 functional for these newly defined classes of functions.
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