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Abstract: With its outstanding performance and tracking speed, discriminative correlation filters
(DCF) have gained much attention in visual object tracking, where time-consuming correlation
operations can be efficiently computed utilizing the discrete Fourier transform (DFT) with symmetric
properties. Nevertheless, the inherent issues of boundary effects and filter degradation, as well as
occlusion and background clutter, degrade the tracking performance. In this work, we proposed an
augmented memory joint aberrance repressed correlation filter (AMRCF) for visual tracking. Based
on the background-aware correlation filter (BACF), we introduced adaptive spatial regularity to
mitigate the boundary effect. Several historical views and the current view are exploited to train the
model together as a way to reinforce the memory. Furthermore, aberrance repression regularization
was introduced to suppress response anomalies due to occlusion and deformation, while adopting
the dynamic updating strategy to reduce the impact of anomalies on the appearance model. Finally,
extensive experimental results over four well-known tracking benchmarks indicate that the proposed
AMRCF tracker achieved comparable tracking performance to most state-of-the-art (SOTA) trackers.

Keywords: visual object tracking; discriminative correlation filter; augmented memory; aberrance
repression

1. Introduction

Visual object tracking, as a fundamental task of computer vision and pattern recogni-
tion, is widely applied in biological vision, autonomous driving, video surveillance and
other fields. The task of visual tracking is to predict the spatial position and scale size of
an arbitrary target in a video or continuously associated image sequence given limited
information (i.e., initial target position and scale information). Due to the variable tracking
environment, the tracked object is easily suffered from various factors, such as illumina-
tion variation, deformation, partial/full occlusion, causing lost target and tracking failure.
Therefore, achieving stable and accurate tracking of an object under complex environments
is still a challenge.

Since Bolme [1] et al. first proposed the minimum output sum of the squared error
(MOSSE) tracker, which achieved promising accuracy and very fast speed (615 FPS) only
using the single-channel greyscale features, DCF-based tracking methods have become
a hot topic in visual tracking. By means of DFT with conjugate symmetry, the time-
consuming correlation operation can be efficiently solved in the frequency domain. Inspired
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by the MOSSE, CSK [2] creatively adopts circular shift instead of random sampling to
increase the training samples and introduced kernel functions to improve the computational
speed. While the CSK-based multi-channel kernel correlation filter (KCF) [3] achieved a
great improvement in tracking performance, the follow-up trackers have made significant
advancements over scale adaptation [4–6], feature representation and fusion scheme [7–9],
models innovation [10–12], etc., however, several inherent problems remain. First, the
training samples based on the periodic assumption are low-quality synthetic samples that
produce unwanted boundary effects, making the filter’s discriminatory power less than
optimal. Second, to accommodate the appearance changes, most trackers maintain and
update an appearance model frame by frame with a pre-determined fixed learning rate.
This ignores the appearance variations and lacks the integration of historical appearances
information, leading to model degradation and reducing its effectiveness. Third, in the
case of challenging scenarios such as partial/full occlusion and background clutter, the
object appearance changes drastically while the output confident maps become distorted,
i.e., response anomalies, which may cause the target drift and tracking failure.

To deal with the above challenges, the existing SOTA trackers mainly focus on two
aspects to improve tracking performance: (a) by imposing spatial or temporal regularization
constraints whilst constructing the model, and (b) by analysing the inherent information of
the confidence map to construct feedback loops to optimize the entire tracking framework.
Spatially regularized discriminative correlation filter (SRDCF) [13] introduces a spatial
regularization that penalizes the filter coefficients at the boundaries, allowing more energy
to be concentrated in the central region. CSR-DCF [14] distinguishes the foreground
from the background by colour segmentation in the search area, while the foreground
mask matrix is utilized to select the filter coefficients. A background-aware correlation
filter (BACF) [15] utilizes a binary mask matrix to crop real samples from the search
window and achieve the suppression of background information. However, it is not
reasonable to impose fixed constraints on the filter, which does not reflect well the changing
characteristics and appearance of the tracking target. Furthermore, by introducing temporal
consistency constraints [16–18], the aim is that the model does not over-change during
the tracking of the same target, thus mitigating the model’s degradation. Nevertheless,
the existence of non-ideal factors such as occlusion and background interference make
this assumption difficult to achieve. Since minimizing the impact of response anomalies,
on the one hand, Huang et al. [19] directly introduced a regularization constraint via
comparing the Euclidean distance between the current and the previous output response
maps to limit the response distortion. Meanwhile, many works [20–22] have developed
high-confidence updating strategies to construct feedback loops, which have effectively
improved the tracking performance. However, these trackers hardly exploit the intrinsic
information provided by different historical views, increasing the risk of model drift.

In this work, we proposed an augmented memory joint aberrance repressed correlation
filter (AMRCF) tracking method to address the above limitation. Based on the excellent
BACF tracker, we incorporate the adaptive spatial regularization constraint to mitigate the
boundary effects. To mitigate the model degradation, several historical views are selected
to train the filter model together with the current view, making the trained model adapt to
the new target appearance and remember the previous ones. To adapt with the complex
tracking environment, we introduce an aberrance repression regularization constraint to
limit the drastic response changes, and propose a high-confidence updating strategy to
optimize the overall tracking framework. The main contributions are summarized in the
following three-folds:

• The AMRCF method is presented by simultaneously introducing adaptive spatial regu-
larization, augmented memory regularization and aberrance repression regularization
into the DCF framework. Combined with a dynamic appearance model update strat-
egy, the overall tracking performance is improved in the case of partial/full occlusion,
deformation and background clutter.
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• Using the alternating direction method of multipliers (ADMM) [23] algorithm enables
the model closure solution to be efficiently calculated.

• The overlap success and distance precision scores on four extensive benchmarks
(i.e., OTB50, OTB100, TC128 and UAV123) verified that the proposed AMRCF has an
excellent tracking performance comparable to state-of-the-art (SOTA) trackers.

2. Related Works

In this section, we mainly review the three categories of DCF tracking methods that are
most relevant to our tracker, including the boundary effect-aware trackers, refined tracking
models and high-confident updating schemes.

Due to the periodic assumption of the training samples generated by circular shifting
not fully reflecting the sampling information, the tracking model is prone to over-fitting.
To overcome the unwanted boundary effects, there are two main improvement directions
for DCF. One is based on SRDCF, with the addition of spatial regularization, feature di-
mensionality reduction, feature interpolation and confidence map fusion [24–26]. Another
is to adopt the BACF strategy of labelling around the target region, performing spatial
feature restriction and adding constraint terms to the model [27–30]. Huang et al. [29]
proposed a background suppressed correlation filter (BSCF) that incorporates all global
background patches to enhance the tracking performance. ASRCF [31] incorporates SRDCF
and BACF by employing the adaptive spatial regularization term, with the model adap-
tively penalizing the filter coefficients in the event of occlusion. A context-aware correlation
filter CACF [32] takes into account global information, explicitly learning the background
information around the target. Zha et al. [33] proposed the semantic-aware spatial regu-
larization correlation filter by using spatial semantic maps to model regularization and
feature selection.

To minimize the negative impacts of the model degradation and other issues, DCF
has developed numerous improvements. The spatial–temporal regularized correlation
filter (STRCF) [16] incorporates a temporal regularity term to minimize overfitting and
reduce tracking failures due to target occlusion and distortion. Li et al. [34] proposed
the augmented memory for correlation filter (AMCF) for jointly training the model with
several frames of historical views and the current view to improve the stability of the model.
LADCF [35] incorporates temporal consistency constraints into the model for enhanced
tracker robustness and reduced model degradation. In recent work, many trackers incor-
porated spatial–temporal regularization [36–38], while the tracking performance has been
significantly improved. Yu et al. [36] proposed a second-order spatial–temporal correla-
tion filter (SSCF), which incorporates both the first-order and second-order data-fitting
terms into the DCF framework. Hu et al. [37] merged the context-aware model into the
STRCF tracker, thus expanding the target search domain and obtaining more discrimi-
native information.

The output response maps are well reflective of the target state. In order to make
better use of the information in the response maps, much work is performed in confidence
map evaluation [1,39] and model updating strategies [20–22,40,41]. Bolme et al. [1] pro-
posed the peak-to-sidelobe ratio (PSR) as the basis for the detection of confidence maps.
Wang et al. [39] proposed the average peak-to-correlation energy (APCE) to predict the
target state by comparing the change of APCE values for confidence maps. Fu et al. [20] pro-
posed to control the update to the tracker by verifying the consensus score. Gan et al. [21]
proposed a long-term correlation tracker, which can perform a long-term memory function
by activating an online random fern classifier for re-detection when the PSR value of the
confidence map is below a threshold. MUSTer [22] employs the Atkinson–Shiffrin memory
model, which is divided into a long-term memory module for key points and a short-term
memory module: when tracking fails or is obscured, the short-term module is updated.
Ma et al. [40] proposed the bidirectional incongruity-aware correlation filter (BiCF), which
predicts the tracking state by means of forward detection and backward relocation, and
obtains a more robust model by suppressing bidirectional incongruity errors. Liu et al. [41]
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proposed a long-term tracker with multiple features and saliency redetection (MSLT),
which consists of tracking-by-detection and redetection parts, and effectively improving
the performance of the model.

3. Proposed Method
3.1. Review the BACF Tracker

Unlike traditional KCF [3] tracker, the BACF tracker expands the detection region
and crops the real training samples using the binary mask matrix P. This allows BACF to
obtain more high-quality negative samples, which greatly mitigates the boundary effect
and achieves greater performance. The objective function of BACF is as follows:

ε(hc) =
1
2
‖yc −∑D

d=1 xd
c ∗
(

PThd
c

)
‖2

2 +
λ

2 ∑D
d=1 ‖h

d
c‖2

2 (1)

where the subscript c indicates the current frame; x ∈ RM×N×D denotes the D-dimensional
feature maps of size M× N extracted from the input image; and y ∈ RM×N is represented
as the ideal output of the filter. The feature maps x are correlated with the trained filter
h ∈ RM×N×D to obtain the final output ∑D

d=1 xd
c ∗ hd

c . λ is a regularization parameter.
Despite the good tracking performance of the BACF, there are still several issues that

need to be further addressed: (1) the traditional DCF tracker, which utilizes a fixed learning
rate to maintain and update the appearance model frame by frame, does not take into
account the current object state, which made it difficult to adapt the complex tracking
environment changes; (2) there is no reaction tactic to cope with anomalies and the fact
that tracking targets can be easily lost; and (3) further optimization can be made by dealing
with boundary effects.

3.2. Objective Function of AMRCF

Aiming at the weaknesses of the BACF tracker, we propose an augmented memory
joint aberrance repressed correlation filter (AMRCF) to improve in terms of model sta-
bility and accuracy. The overall workflow and framework of the proposed AMRCF are
represented in Figures 1 and 2. The proposed AMRCF tracker based on the BACF tracker,
introduces adaptive spatial regularization, augmented memory regularization and aber-
rance repression regularization to improve the overall tracking performance. Meanwhile,
combining the update strategy of the appearance model, AMRCF can adapt to the changing
tracking scenarios, and can then achieve more accurate and robust tracking results.
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The objective function ε(h) of AMRCF is as follows:

ε(h) =
1
2
‖yc −∑D

d=1 xd
c ×

(
PThd

c

)
‖2

2 +Rs +Rm +Ra (2)

where Rs, Rm and Ra denote the adaptive spatial regularization term, the augmented
memory regularization term and the aberrance repressed regularization term, respectively.

3.2.1. Adaptive Spatial Regularization

The SRDCF model introduces the spatial regularization constraint, which is a negative
Gaussian-shaped spatial weight vector, making it possible to have a strong response
around the centre of the tracked object. Nevertheless, the fixed regularity fails to reflect the
changing appearance of the target. Therefore, the proposed AMRCF introduced adaptive
spatial regularization that penalizes the filter coefficients at the unreliable parts while
approximating the spatial weights w to the a priori reference weights wr, preventing
model degradation.

Rs =
λ1

2 ∑D
d=1 ‖w� hd

c‖2
2 +

λ2

2
‖w− wr‖2

2 (3)

where λ1 and λ2 denote the regularization coefficients of the respective regularization terms.

3.2.2. Augmented Memory Regularization

Due to the frame-by-frame update strategy of the appearance model, the historical
view will be forgotten at an exponential rate as the number of iterations increases. The
model will focus more on the most recent views, which reduce the anti-interference capa-
bility of the model. In this work, we introduced an augmented memory regularization
constraint which utilized the perceptual hashing algorithm (PHA) [42] to select K-frame
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historical views with distinct differences and make them train the filter model together
with the current view for enhancing memory and mitigating model degradation:

Rm =
λ3

2

K

∑
k=1
‖yk −

D

∑
d=1

xd
k ×

(
PThd

c

)
‖2

2 (4)

where xd
k and yk denote the d-channel training sample of the k-th view in the memory

sequence and its ideal output, respectively. hc denotes the filter model of the current frame.
λ3 denotes the regularization coefficient. K indicates the capacity of the memory queue for
storing the history view.

PHA generated a unique “fingerprint” for each view by comparing the fingerprint
differences between the before and after frame views to decide whether to update and
maintain the memory queue.

The initial view is converted to grayscale and transformed to the frequency domain
using the discrete cosine transform (DCT). Only the low frequency region A ∈ RW×W . with
high energy density is retained. Then, each point hi,j is compared with the average of all
elements to obtain the hash matrix P:

pi,j =

 1, hi,j >
1

W2

W
∑

i=1

W
∑

j=1
hi,j

0, others
(5)

By XOR operation, the difference score S between the current frame Pc and the latest
view Pk in the memory queue is derived:

S =
1

W2

W

∑
i=1

W

∑
j=1

(
pc

ij ⊕ pk
ij

)
(6)

When the obtained score is greater than a certain threshold τ, indicating that there is a
significant difference between the current frame object and the latest frame in the memory
queue, then the memory queue will be updated according to the “first-in-first-out” principle.

3.2.3. Aberrance Repression Regularization

Ideally (i.e., without much change in the object appearance), the response of two
adjacent frames does not tend to change much. However, abrupt changes in appearance
caused by background clutter, target occlusion, etc., will cause response anomalies. As
aberration occur, the similarity between the output response maps M1 and M2 suddenly
drops, while the Euclidean distance between M1 and M2 will become larger. In this work,
we adopted aberrance-suppressed regularization to restrict the response variation, which
can effectively limit the response variation:

Ra =
λ4

2
‖

D

∑
d=1

xd
c−1 ×

(
PThd

c−1

)[
ψp,q

]
−

D

∑
d=1

xd
c ×

(
PThd

c

)
‖2

2 (7)

where p and q denote the difference in the peak position between the response maps and
the shift operation

[
ψp,q

]
to make the peak points of two response maps overlap each other.

λ4 denotes the regularization coefficient.

3.3. Optimization

Introducing auxiliary variables Ĝ = [ĝ1, ĝ2, . . . , ĝD](ĝd =
√

TFPThd, d = 1, 2, . . . , D),
(where the superscriptˆdenotes the discrete Fourier operator and F denotes the standard
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orthogonal matrix), which translated Equation (2) into the frequency domain representation
according to Parseval’s theorem:

E(H, Ĝ, w) = 1
2T ‖ŷc −

D
∑

d=1
x̂d

c � ĝd
c‖2

2 +
λ1
2

D
∑

d=1
‖w� hd

c‖2
2 +

λ2
2 ‖w− wr‖2

2

+ λ3
2T

K
∑

k=1

∥∥∥∥ ŷk −
D
∑

d=1
x̂d

k � ĝd
c‖2

2 +
λ4
2

∥∥∥∥Mc−1
[
ψp,q

]
−

D
∑

d=1
x̂d

c � ĝd
c‖2

2

(8)

where the output response of the (c − 1)-th frame is rewritten as Mc−1 = ∑D
d=1 xd

c−1 ×(
PThd

c−1

)
.

Rewrite Equation (8) using the augmented Lagrange multiplier method (ALM) as:

L(H, Ĝ, w, ζ̂) = E(H, Ĝ, w) + ζ̂T(ĝd
c −
√

TFPThd
c ) +

µ

2
‖ĝd

c −
√

TFPThd
c‖2

2 (9)

where the penalty factor µ and the matrix of auxiliary variables ζ̂T = [ζ̂1T , ζ̂2T , . . . , ζ̂DT ]
T

are introduced.
In order to obtain closed solutions, Equation (9) is solved in steps via ADMM, for

which we decompose it into three sub-problems to solve, and all three sub-problems have
closed solutions.

Subproblem h∗c+1: If Ĝ, w and ζ̂ are given, then h yields:

h∗c+1 =
(

Tµ + λ1wTw
)−1(√

TPFT ζ̂ + µ
√

TPFT ĝc

)
=

(
µIc +

λ1wTw
T

)−1

(ζ + µgc)

(10)

where ζ and g can be easily obtained via the Fourier inverse operation on ζ̂ and ĝc.{
ζ = 1√

T
PFT ζ̂

gc =
1√
T

PFT ĝc
(11)

Subproblem Ĝ∗: If given w, ζ̂ and h∗c+1, since each channel information is relatively
independent for the sample x̂d

c , the subproblem Ĝ∗ can be further split into d = {1, 2, . . . , D}
smaller problems, each of which can be denoted as:

Ĝ∗(d) = argmin
Ĝ∗(d)


1

2T ‖ŷc − x̂T
c ĝc‖2

2 +
λ3
2T

K
∑

k=1
‖ŷk − x̂T

k ĝc‖2
2

+ λ4
2 ‖Mc−1

[
ψp,q

]
− x̂T

c ĝc‖2
2

+ζ̂T
(

ĝc −
√

TFPThc

)
+ µ

2 ‖ĝd
c −
√

TFPThc‖2
2

 (12)

The closed solution of Ĝ∗(d) can be solved as:

Ĝ∗(d) =
[(

λ4 +
1
T

)
x̂c x̂c

T + λ3
T ∑K

k=1 x̂k x̂k
T + µ

]−1(
1
T x̂cŷc +

λ3
T ∑K

k=1 x̂k ŷk + λ4 x̂c Mc−1 − ζ̂ + µĥc

) (13)

Further reducing the computational effort by using the Sherman–Morrison formula,

i.e.,
(
uvT + A

)−1
= A−1 − A−1uvT A−1

1 + vT A−1u
(here u and v are two column vectors and uvT is
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a rank one matrix), here set u = vT = x̂c, A =
λ3

T ∑K
k=1 x̂k x̂k

T + µ, B = λ4 +
1
T . Ĝ∗(d) is

further derived as:

Ĝ∗(d) = 1
A

(
1
T x̂cŷc +

λ3
T ∑K

k=1 x̂k ŷk + λ4 x̂c Mc−1 − ζ̂ + µĥc

)
− x̂c

Ab

[
Ŝxx ŷc

T + λ4Ŝxc
T + λ3Ŝxx Mc−1 − Ŝxζ + µŜxh

] (14)

where b = A
B + x̂c

T x̂c, Ŝxx = x̂c
T x̂c, Ŝxc = x̂c

T ∑K
k=1 x̂k ŷk, Ŝxζ = x̂c

T ζ̂, Ŝxh = x̂c
T ĥc.

Subproblem w∗: If h is given, then w can be solved for:

w∗ =
(

λ1
D
∑

d=1
hd

c � hd
c + λ2 I

)−1

λ2wr

= λ2wr

λ1 ∑D
d=1 hd

c�hd
c+λ2 I

(15)

Update of Lagrange multipliers ζ̂: Updates to ζ̂ are made by:

ζ̂i+1 = ζ̂i + µ ∗
(

Ĝi+1 − ĥi+1

)
(16)

where the subscripts i and i + 1 denote the i-th and (i + 1)-th iterations, respectively. Ĝi+1
and ĥi+1 denote the subproblem solutions obtained in the i + 1-th iteration, respectively.
Here, the canonical constant µi+1 = min

(
µmax, βµi).

Complexity Analysis: Since each pixel is relatively independent, we need to solve the
D*MN subproblems, where D represents the number of channels. Since the subproblem G
requires the FFT and inverse FFT transformation in each iteration, so the computational
complexity is O(DMNlog(MN)). Meanwhile, the computational complexity of both subprob-
lems h and w is O(DMN). Therefore, the overall complexity of model is O(LDMNlog(MN))
when the number of iterations is L. It is worth remarking that ∑K

k=1 x̂k ŷk and ∑K
k=1 x̂k ŷk in

Equation (14) represent the actual view information stored in the memory queue, and are
constant terms that do not require additional computational resources.

3.4. Detection

To strengthen the effects of the reliable channels on the final response results, different
channels are assigned corresponding channel weights. The PSR value, as the evaluation
criterion for the confident map [1], is adopted as the reference for the performance repre-
sentation of the different channels, and the channel weights are determined and updated
as follows:

Cd
c+1 = (1− γ)Cd

c + γ
PSR

(
ĥd∗

c � x̂d
c

)
∑D

d=1 PSR
(

ĥd∗
c � x̂d

c

) (17)

where γ denotes the learning rate of the channel weights. PSR(·) = (max(R)−µ)
σ , R denotes

the output response map, µ and σ denote the mean and mean squared deviation of the
response map, respectively.

The final output response Rc can be derived as follows:

Rc = F−1

(
D

∑
d=1

Cd
c ĥd∗

c−1 � x̂d
c

)
(18)

where F−1 denotes the Fourier inverse operation. The individual channel output responses
are multiplied by the corresponding channel weights to the final output response map, and
the maximum point is the target position.
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3.5. Model Update

To adapt to the changing tracking environment, we use the maximum peak and APCE
values as a basis for determining the reliability of the output response. As shown in Figure 3,
ideally, the output response approximates a two-dimensional normal distribution with a
relatively flat response and prominent main peak, and the corresponding APCE values are
in the higher range. When anomalies occur such as occlusion, blurring, and illumination
variation, the output response map fluctuates dramatically and the maximum response
value decreases, while the APCE value will also decrease. Furthermore, the maximum
peak position may not be the target position. Therefore, the tracking results are considered
reliable when both the maximum peak and APCE values are above a certain ratio of the
respective historical averages, as shown in Figure 4.

Ft,max ≥ β1
1

t−1

t−1
∑

i=1
Fi,max

APCEt ≥ β2
1
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∑

i=1
APCEi

(19)

where Ft,max and APCEt denote the maximum peak value and average APCE value of the

output response map at frame t, respectively. APCE = |Fmax−Fmin |2

mean
(

∑w,h(Fw,h−Fmin)
2) , Fmax and

Fmin indicate the maximum and minimum value of the response map, respectively.
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Figure 3. Comparison between the baseline BACF tracker and the proposed AMRCF. Blue and green
boxes indicate the tracking results of the proposed and baseline, respectively. Since the tracked object
is occluded by the background, the target appearance changes drastically. The response map also
presents multiple peaks, and the APCE value and the maximum peak are extremely reduced.
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Figure 4. Figure (a) represents the maximum value with its threshold variation curve, and Figure
(b) represents the APCE value with its threshold variation curve. The target appearance is significantly
clearer when one of the APCE or maximum values are above the threshold (as the target pointed by the
green arrow). Additionally, when both are above the threshold, we consider the target results reliable.
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Depending on the object state, we selected different learning rates to maintain the
appearance model. Considering that the target may be in an unreliable state for a long time,
in this case, the learning rate should be further reduced. The learning rate is determined
as follows:

lrnew =


α− β ∗ lrold Reliable state

0.012 Unreliable state
0.003 ∗

(20)

where α and β are set to 0.0175 and 0.1, respectively, as empirical constants. ∗ indicates
the condition of “three consecutive frames judged to be unreliable state”. As the target
state changes from unreliable to reliable, the learning rate forms a small pulse and quickly
stabilizes to α

1+β .

The appearance model x̂c
model updates as follows:

x̂model
c+1 = (1− lrnew)x̂c

model + lrnew x̂c (21)

where x̂model
c and x̂model

c+1 represent the appearance model of the current frame and the next
frame, respectively.

The overall workflow of the proposed AMRCF algorithm is as follows (Algorithm 1):

Algorithm 1: Augmented memory joint aberrance repressed correlation filter (AMRCF)

Input: First frame state of the sequence (i.e., target position and scale information);
Output: Target position at frame t;

Initialize tracker model hyperparameters.
for t = 1: end do

Training
Extract multi-channel feature maps xd

t
Calculate the hash matrix pt
if t = 1 then

Initialize the FIFO memory sequence.
Initialize the channel weight model Cd

t = 1/D
Initialize the appearance model.

else
Calculate the score between pt and pt−1.
if score > τ then

Update the FIFO memory queue.
end if
Store the hash matrix pt.

end if
Optimize the filter model ht via Equations (10) and (14)–(16) for L iterations
Detecting
Crop multi-scale search regions centered at Pt with S scales based on the bounding box at
frame t + 1.
Extract multi-channel feature maps xd

t+1
Use Equation (18) to final response output map Rr, (r = 1, 2, . . . , S).
Estimate the target position Tt+1 and scale st+1 from the maximum value of the response maps.
Updating
Use Equation (17) to update the channel weight model Ct+1
Use Equation (20) to Calculate the learning rate lnew.
Use Equation (21) to update the appearance model.

end for

4. Experiments

In this section, we adopt the one-pass evaluation (OPE) criterion on four widely used
benchmark datasets (OTB50 [43], OTB100 [44], Temple-Color 128 [45] and UAV123 [46], re-
spectively, with 269 challenge image sequences over 220k images) to evaluate the proposed
algorithm and several SOTA trackers, including BACF [15], SRDCF [13], AutoTrack [47],
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STRCF [16], ARCF [19], ARCF_H [19], MUSTER [22], BiCF [40], fDSST [6], Staple [9],
LADCF_HC [35], AMCF [34], and ECO_HC [25]. The evaluation criteria include the over-
lap success rate (SR) and distance precision (DP), while the tracking speed is measured in
terms of frames per second (FPS).

4.1. Implementation Details

The experiments involved were conducted in the same configuration (CPU Intel i7-
7700 3.60 GHz 8.00 GB RAM and GPU NVIDIA GT730). For the reference tracker, the
model structure and parameters were obtained from publicly available sources without any
modifications. For the proposed AMRCF, the parameters are set as follows: The adaptive
spatial regularization coefficients are λ1 = 0.2, λ2 = 0.001, the augmented memory
regularization coefficient λ3 = 0.05, the aberrance repression regularization coefficient
λ4 = 0.233, the learning rate of the channel weight model γ = 0.018, the initial appearance
model learning rate is lrinit = 0.013, the length of the memory queue K = 5, the selection
threshold τ for the memory sequence is set to 0.5, and the reliability judgement conditions
of β1 and β2 are 0.3 and 0.6, respectively. We predict target placement using HOG, CN and
Grayscale features, with scale evaluation using only five scales of HOG features.

4.2. Evaluation of the OTB Benchmark
4.2.1. Overall Performance

The OTB benchmark dataset contains 50 and 100 annotated video sequences with
11 different challenge attributes, i.e., motion blur (MB), illumination variation (IV), out-
plane rotation (OPR), in-plane rotation (IPR), scale variation SV, deformation (DEF), fast
motion (FM), out-of-view (OV), occlusion (OCC), background clutter (BC) and low res-
olution (LR). The overall results are presented in Figures 5 and 6. It can be seen that
the performance of the proposed tracker is fully comparable to most good trackers. The
proposed AMRCF gained 88.9% and 84.5% scores for the success rate and DP on the OTB50
benchmark while gained 86.2% and 81.8% scores on the OTB100 benchmark. The proposed
AMRCF increased the success rate and DP by 5% and 3.7%, respectively, for OTB50; and by
4.6% and 5% for OTB100 compared to the baseline tracker BACF; while the proposed AM-
RCF increased the overlap success rate and DP results on the OTB100 benchmark dataset
by 8.6% and 9.9%, respectively, against the spatial regularization-based SRDCF tracker; by
9.6% and 9.7%, respectively, against the augmented memory-based AMCF tracker; and by
5.7% and 7.1%, respectively, against the aberrance repression-based ARCF tracker.
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The performance of the mainstream trackers on the OTB100 benchmark in terms
of accuracy and tracking speed in Table 1. The proposed AMRCF achieves excellent
performance in terms of success rate and accuracy. Although the proposed algorithm
greatly improves the accuracy of the basic tracker, it sacrifices the tracking speed due to the
large number of additional operations added to the baseline BACF.

Table 1. Accuracy and tracking speed performance of the top-8 trackers on the OTB100 benchmark.

Trackers STRCF ECO_HC LADCF_HC BACF ARCF AMCF SRDCF Ours

DP (%) 86.4 84.5 86.1 81.6 80.7 76.6 77.6 86.2
SR (%) 80.0 77.2 80.6 76.8 74.7 72.1 71.9 81.8

FPS 25.57 51.06 20.23 39.49 17.07 34.44 7.22 12.56

Note: The top and second ranked outcomes are shown with red and green.

4.2.2. Attribute Evaluation

To further demonstrate the tracking performance of the proposed AMRCF in the
complex real-world environment, Figure 7 shows the attribute-based experimental results
on the OTB100 benchmark. It is clear that most of the attribute-based results of our proposed
algorithm obtained the best performance compared to the SOTA trackers, especially in the
background clutter, motion blur, fast motion, where the success rate and distance precision
reached 85.7% and 85.9%, 80.9% and 82%, 77.5% and 82%, all ranking the best results,
while in the out-of-view, fast motion, illumination variation, in-plane-rotation also obtained
excellent performance.
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4.2.3. Qualitative Evaluation

To further demonstrate the superiority of the proposed AMRCF, Figure 8 shows the
results of a qualitative comparison between the AMRCF and seven SOTA trackers, includ-
ing STRCF, LADCF_HC, ECO_HC, ARCF, SRDCF, BACF and AMCF. The selected test
sequences are Soccer, Dragonbaby, Box, Bolt 2, Girl 2 and Basketball (from top to bottom),
where each sequence contains at least multiple challenging attributes, including OCC
(Soccer, Dragonbaby, Box, Girl 2 and Basketball), BC (Soccer, Box, Bolt 2 and Basketball),
FM (Soccer and Dragonbaby), MB (Soccer, Dragonbaby, Box and Girl 2), DEF (Bolt 2, Girl
2 and Basketball), etc. The results show that the proposed AMRCF was able to perform the
tracking task relatively well in a variety of scenarios. Significantly, the proposed tracker
demonstrates its superior performance in the “Soccer” sequence with a cluttered back-
ground or in the “Girl2” and “Box” sequences which are partially or completely obscured.
In the “Soccer” sequence, despite massive background interference, deformation and oc-
clusion problems in frames 100–200, AMRCF was still able to accomplish the subsequent
tracking task while most trackers lost the target. In frames 105–120 of the “Girl 2” sequence,
the target is lost due to full occlusion. However, when the target reappears in the 120-frame
view, AMRCF is still able to redetect and achieve stable tracking. Comparing the perfor-
mance of the baseline BACF tracker, this further validates that the improvements in model
structure and high-confidence updating strategy of the proposed tracker are not redundant.
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4.3. Evaluation of the TC128 Benchmark

In order to approximate real tracking scenes, unlike the OTB dataset which includes
25% grey scale sequences, the Temple Color benchmark collects 128 colour videos contain-
ing 27 object categories. An overview of the experimental results for the TC128 benchmark
is presented in Figure 9. The proposed AMRCF achieves excellent tracking performance
with the success rate and DP of 69.7% and 75.8%, respectively. Comparing the experimental
results of the baseline tracker BACF (whose success rate and DP are 61.3% and 65.3%,
respectively), the proposed AMRCF outperforms the performance by 8.4% and 11.2%,
respectively. In comparing with the SRDCF, ARCF and AMCF tracker, the performance of
the proposed method gains 9.5%, 5.6% and 9.2% in DP score.
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4.4. Evaluation of the UAV123 Benchmark

The UAV123 benchmark consists of 91 image sequences captured by low-altitude
UAVs. In contrast with the OTB100, the UAV123 has the challenges of a wide variation
of shooting angles, very long video sequences, small targets and targets that disappear
completely from the view for an extended time, which poses an even greater challenge
for the tracker. On the one hand, the tracker model needs to be robust and able to follow
the target again after complete occlusion, and on the other hand, the model needs to be
quickly updated to accommodate rapid changes in shooting angles. An overview of the
experimental results for the UAV123 benchmark is presented in Figure 10. As it can be
seen, the proposed AMRCF is ranked first in the success rate (58.4%) and third in DP (69%),
respectively. Compared to the baseline tracker, the proposed tracker is outperformed by
2.9% and 3% in terms of success rate and DP.
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Figure 11 shows the success plots for nine representative attributes on UAV123 bench-
mark, including Camera Motion (CM), Scale Variation (SV), Illumination Variation (IV),
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Aspect Ratio Change (ARC), Fast Motion (FM), Viewpoint Change (VC), Similar Object (SO),
Partial Occlusion (PO) and Out-of-View (OV). Compared with other SOTA trackers, the pro-
posed AMRCF performs remarkably well in these challenging attributes. Four of the nine
attribute results ranked first, including CM (58.1%), SV (54%), ARC (48.2%), FM (43.9%),
and the rest maintained the top three positions, slightly worse than the first, which proved
that AMRCF maintained a high tracking performance for dealing with various tracking
scenarios. This can also be attributed to the synergy of multiple regularization constraints
and the dynamic model update strategy, which greatly mitigates the boundary effects,
response distortions and filter degradation while providing a robust appearance model.
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4.5. Compared with Deep Feature-Based Trackers

In this section, we discuss the effectiveness of the proposed AMRCF by comparing
the deep feature-based tracking algorithms, including LADCF [35], DeepSTRCF [16], SRD-
CFdecon [48], SiamFC3s [49], SiamFC [49], DCFNet [50] and CFNet [51]. From Table 2, we
can see that our algorithm ranks third in terms of success rate and first in terms of preci-
sion on the OTB50 benchmark. In terms of tracking speed, however, we have a relatively
obvious advantage over deep feature-based algorithms. The attribute-based experimental
results, presented in Table 3, show that the proposed AMRCF achieves the excellent perfor-
mance in precision with other deep feature-based trackers under IV, OPR, DEF, MB, FM,
IPR, OV and BC challenge attributes, which further demonstrate the advantages of our
tracker architecture.
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Table 2. Accuracy and tracking speed performance of the deep learning trackers on the OTB50 benchmark.

Trackers LADCF DeepSTRCF SRDCFdecon SiamFC3s SiamFC DCFNet CFNet Ours

DP (%) 87.2 86.6 81.4 77.9 72.0 84.2 72.4 85.9
SR (%) 88.4 87.3 87.0 80.9 77.2 87.7 78.1 88.9

FPS 5.93 3.57 2.41 9.82 12.82 99.37 5.7 13.13

Note: The first, second and third ranked outcomes are shown in red, green and blue.

Table 3. Precision scores of AMRCF and deep feature-based trackers on the OTB50 benchmark.

IV OPR SV OCC DEF MB FM IPR OV BC LR

LADCF 79.0 87.6 84.9 89.8 87.3 74.8 79.2 81.5 79.4 81.4 55.4
DeepSTRCF 78.0 86.3 82.7 88.4 86.9 74.6 75.9 79.8 81.1 79.9 56.9
SRDCFdecon 81.8 85.8 83.3 86.1 84.2 79.0 78.3 80.6 78.5 84.6 52.7

SiamFC3s 70.9 78.8 79.6 80.2 74.3 69.8 72.3 74.3 78.0 73.2 65.9
SiamFC 67.6 74.7 77.3 68.0 70.1 52.5 66.9 71.7 64.3 72.3 48.9
DCFNet 82.7 86.7 88.3 87.0 83.4 74.3 77.4 83.9 80.3 82.8 64.2
CFNet 70.3 79.3 78.6 77.4 73.2 56.7 56.8 73.5 57.1 70.9 57.9
Ours 84.5 88.5 84.4 88.0 88.6 81.4 79.3 85.6 81.6 86.6 56.3

Note: The best results are shown in bold.

4.6. Ablation Studies and Effectiveness Discussion

In this section, we discuss the effectiveness of the different modules in the proposed the
AMRCF and compare them with the baseline BACF tracker. Moreover, AMRCF-AS adds
the adaptive spatial regularization module (AS) to the baseline BACF tracker. However,
AMRCF-AM, AMRCF-AR and AMRCF-CL add the augmented memory module (AM),
aberrance repression module (AR) and channel weight with learning rate update module
(CL) to the BACF, respectively. AMRCF-AS-AM and AMRCF-AS-AM-CL are obtained by
adding AM module and CL module to AMRCF-AS in turn. The AMRCF method is our
complete tracking framework, which incorporates all modules.

The overall ablation experimental results are presented in Table 4. It can be seen
that the original baseline BACF tracker achieves scores of 66.2% and 73.8% in the average
success and precision. Benefiting from the AS module, AMRCF-AS outperforms the
baseline in terms of the average accuracy and precision by 2.1% and 1.9%, respectively.
Meanwhile, AMRCF-AM also outperforms the baseline in terms of the average accuracy
and precision by 2.6% and 2.4%, respectively, which indicates that the selective recollection
of history views is effective for the overall tracker performance. For the average accuracy
and precision, AMRCF-AR increased by 3.2% and 3.1% while AMRCF-CL increased by
3.5% and 4.1%. The above experimental results all indicate the effectiveness of each module
for the tracking framework. Furthermore, the performance of the baseline BACF improves
with the introduction of key modules. Ultimately, the average success and precision scores
of the proposed AMRCF, which incorporates all modules, exceeded the baseline tracker by
3.9% and 3.8%, respectively.

Table 4. Overall evaluation performance on the OTB100 and UAV123 benchmarks with the progres-
sive addition of different modules on the baseline BACF tracker.

Trackers

OTB100 Benchmark UAV123 Benchmark Average

Success
(%)

Precision
(%)

Success
(%)

Precision
(%)

Success
(%)

Precision
(%)

BACF (Baseline) 76.8 81.6 55.5 66.0 66.2 73.8
AMRCF-AS 79.3 83.4 57.3 68.0 68.3 75.7
AMRCF-AM 79.4 84.0 58.1 68.3 68.8 76.2
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Table 4. Cont.

Trackers

OTB100 Benchmark UAV123 Benchmark Average

Success
(%)

Precision
(%)

Success
(%)

Precision
(%)

Success
(%)

Precision
(%)

AMRCF-CL 81.4 85.7 58.0 70.1 69.7 77.9
AMRCF-AR 81.5 85.4 57.3 68.3 69.4 76.9

AMRCF-AS-AM 80.7 85.5 58.3 68.6 69.5 77.1
AMRCF-AS-AM-CL 81.6 85.9 58.2 69.3 69.9 77.6

AMRCF 81.8 86.2 58.4 69.0 70.1 77.6
Note: The best results are shown in bold.

5. Conclusions

In this paper, based on the background-aware correlation filter, we proposed a novel
augmented memory joint aberrance repressed correlation filter (AMRCF) for visual track-
ing. By introducing different regularizers (adaptive spatial regularization, augmented
memory regularization and aberrance suppression regularization) and combining with a
high-confidence updating strategy, the adverse effects caused by boundary effects, model
degradation and response anomalies are effectively mitigated, making the trained model
adaptable to changing tracking scenarios. The ADMM algorithm is employed to reduce the
computational complexity during model optimization. In addition, extensive comparative
experiments on four well-known benchmarks indicate that the proposed AMRCF tracker
achieved a tracking performance comparable to 14 SOTA trackers, especially in environ-
ments such as background clutter, motion blur, out-of-view and fast motion. However, as
the proposed tracker cannot achieve real time in terms of tracking speed, subsequent work
will be carried out on increasing the speed of the tracker.
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