
Citation: Khajiyeva, L.A.; Andrianov,

I.V.; Sabirova, Y.F.; Kudaibergenov,

A.K. Analysis of Drill-String

Nonlinear Dynamics Using the

Lumped-Parameter Method.

Symmetry 2022, 14, 1495. https://

doi.org/10.3390/sym14071495

Academic Editor: Juan Luis García

Guirao

Received: 29 June 2022

Accepted: 19 July 2022

Published: 21 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Analysis of Drill-String Nonlinear Dynamics Using the
Lumped-Parameter Method
Lelya A. Khajiyeva 1, Igor V. Andrianov 2,*, Yuliya F. Sabirova 1 and Askar K. Kudaibergenov 1

1 Department of Mathematical and Computer Modelling, Al-Farabi Kazakh National University,
Almaty 050040, Kazakhstan; khadle@mail.ru (L.A.K.); juliasabirova23@gmail.com (Y.F.S.);
askarkud@gmail.com (A.K.K.)

2 Chair and Institute of General Mechanics, RWTH Aachen University, Eilfschornsteinstraße 18,
D-52062 Aachen, Germany

* Correspondence: igor.andrianov@gmail.com

Abstract: This work aims at studying the nonlinear dynamics of drill strings using the lumped-
parameter method (LPM). The study is based on the good consistency of the results of the test
problem where the model of the longitudinal vibrations of a horizontal drill string with a static
compressive load at the left end is considered. In this paper, this method is applied to discretize
linear and nonlinear models of the lateral vibrations of a vertical drill string under the effect of
a supersonic gas flow. The obtained results are verified with the previously published data. The
optimal number of the drill-string partitions is determined using the developed application, which
allows us to estimate the accuracy of the loaded data. The numerical solution of the model is obtained
using the fourth-order Runge–Kutta method. The optimization of the numerical algorithm using
parallel-programming tools is carried out, and the efficiency of the method is analyzed.
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1. Introduction

The need to improve the dynamic characteristics of industrial mechanisms and increase
their reliability makes the problem of machine dynamics, in particular, the equipment of the
oil and gas industry, one of the most relevant [1,2]. However, the technological complexity
and high nonlinearity of the investigated phenomena significantly complicate the modeling
process, which requires the introduction of certain simplifications and assumptions in
the models.

In the literature, the dynamic models based on the Euler–Bernoulli beam systems, such
as [3–5], Timoshenko beams [6,7] and the mathematical models of drill-string linear vibra-
tions developed by V.I. Gulyaev et al. [8,9], are widely presented. Nevertheless, the field of
application of linear models is rather limited, since the excessive idealization of the studied
phenomena allows only special cases to be included and the process might be described
inadequately. This explains the interest of many authors in the study of nonlinearity.

Several works are devoted to the modeling of nonlinear dynamic systems. V.I. Ero-
feev [10] reviewed the results of studies of nonlinear wave processes in rod systems and
concluded that it was necessary to use higher approximation theories that took into account
geometric and physical nonlinearities in order to avoid the accumulation of distortions that
significantly affected the wave fronts. In [11,12], mathematical models were presented in
nonlinear formulations and derived using the Ostrogradsky–Hamilton variation method;
in addition, the comparative analysis with classical linear models was carried out. In [11],
the case of the contact interaction between a drill string and borehole walls, based on the
Hertz contact law, was considered; in [12], the authors concluded that nonlinear models
were more stable in comparison with linear ones and that there was a significant differ-
ence in the dynamic characteristics of these models, which increased with the decrease in
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Young’s modulus and the increase in the acceleration. Q. Yan et al. [13] investigated the
nonlinear dynamics of a viscoelastic Timoshenko beam under parametric excitation caused
by external harmonic vibrations. To obtain a solution, the four-term Bubnov–Galerkin
method combined with Runge–Kutta time discretization was utilized. The analysis showed
the effect of the forced oscillation amplitude on the nonlinear dynamic response of the
beam. The vibration characteristics of the drill string during gas drilling were considered
by X.P. Chang et al. [14]. In [15], using an analytical model for predicting lateral vibrations,
the dynamic stability of the drill string was investigated, and the primary and secondary
instabilities were found using the Bolotin method. F. Bakhtiari-Nejad and A. Hossein-
zadeh [16] studied the dynamic stability of the coupled axial and torsional motion of the
drill string using the semi-discretization method.

To remove restrictions on the performance of drilling operations, composite drill
strings and high-tech rotors with complex dynamic characteristics have been developed
in recent years. Amongst the works devoted to this topic, it is worth noting the work of
M. Mohammadzadeh et al. [17], where the authors investigated fully coupled nonlinear
vibrations of a composite drill string consisting of orthotropic layers using the Lagrangian
approach and the finite element method and conducted a comparative analysis on a steel
drill string.

In [18,19], the authors studied the nonlinear spatial vibrations of a drill string in gas
and liquid flows. In view of the poorly studied nonlinear problems of mechanism dynamics,
including drill strings, the search and application of the most effective modeling methods
are of scientific and practical interest. Amongst modern approaches, one of the most
widespread method is the Ostrogradsky–Hamilton variation method used for deriving
models based on the V.V. Novozhilov nonlinear theory of finite deformations [11], the
Euler–Bernoulli beam theory and the von Kármán nonlinear strain theory [12]; the Bubnov–
Galerkin method is mainly utilized before implementing the numerical solution [12–15].

The purpose of this work is the application of the lumped-parameter method (LPM)
for solving drilling problems and the assessment of its effectiveness. The essence of the
LPM is to reduce the continuity equation to its discrete analogue by approximating the
spatial components, that is, each link is represented as a one-dimensional bar element
divided into a finite number of point masses. It is worth noting that for any section, there is
a concentration of mass on the neutral axis at the midpoint of the section length, which in
total means that the mass conservation law holds. In this paper, the attention is focused
on the mathematical side of the issue of the drill string discretization using the LPM and
solving the problems of numerical implementation for the system of multiple nonlinear
equations to improve the accuracy of the solution.

The LPM was first utilized by J.P. Sadler in the 1970s to study the dynamics of nonlinear
elastic multi-link mechanisms [20]. The work was further expanded in [21–23]. The LPM
is a special case of the finite element method, according to which the dimension of the
system decreases, and the basic equation reduces to the system of ODEs. This method is
widely used in structural mechanics when modeling flat crank mechanisms [24–26] and
is most justified when studying the dynamics of structures made of dissimilar materials,
complicated by non-uniform loading and for nonlinear systems with variable structure.

The study of the LPM effectiveness starts with solving a test problem where longitudi-
nal vibrations of a horizontal drill string with a static compressive load at the left end are
considered. The model of the horizontal drill-string vibrations is based on that from the
work of [27]. T.G. Ritto et al. [28,29] investigated the influence of stochastic processes on the
dynamics of a drilling rig when modeling the horizontal drill-string motion. This problem
was successfully solved using the lumped-parameter method in [30]. Their research study
was expanded by the authors of the current work (see Appendix A). The good consistency
of the obtained results of the test problem with the previously published data is the main
reason for the continuation of using the LPM for solving drilling problems.

In this paper, the lateral vibrations of a vertical drill string taking into account the
influence of the environmental factors are considered. The study of lateral vibrations is
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of great interest, since this type of vibrations is more destructive in nature in comparison
with axial and torsional ones and may cause equipment breakdown and accidents while
drilling [31].

2. Mathematical Model

Consider a drill string under the action of an external load transmitted from a drilling
rig when interacting with the environment in the process of shallow drilling. The sketch of
the drill string modeled as an elastic rod rotating around the x-axis with angular speed Ω
and being under the action of an axial compressive load N(x, t) is shown in Figure 1.

Figure 1. The sketch of a drill string.

The nonlinear mathematical model of lateral vibrations of the vertical drill string
under the action of a gas flow moving at supersonic speed is under consideration (see [19]
for more details):

ρA ∂2u
∂t2 + EI ∂4u

∂x4 − ρI ∂4u
∂t2∂x2 +

∂
∂x

(
N(x, t) ∂u

∂x

)
− EA

1−ν
∂

∂x

(
∂u
∂x

)3
− ρAΩ2u

−hP0κ

(
M ∂u

∂x − κ+1
4 M2

(
∂u
∂x

)2
+ κ+1

12 M3
(

∂u
∂x

)3
)
= 0,

(1)

where u(x, t) is the lateral displacement of the drill string, ρ is the density of the drill-string
material, A is the cross-section area, E is Young’s modulus, I is the inertia moment of
the drill-string cross-section, N(x, t) is the axial compressive load, ν is Poisson’s ratio,
Ω is the angular speed of rotation of the drill string, κ is the polytropic exponent, M is
the Mach number, P0 is the pressure of the unperturbed gas flow and h is the drill-string
wall thickness.

The reason for studying plane vibrations of the drill string in the paper is the fact
that the nature of the drill string spatial vibrations is similar for both spatial displacement
components with slight difference in their vibration periods and maximum amplitudes as
obtained in [32].

The boundary conditions corresponding to the simply supported rod are represented
as follows:

u(x, t) = 0, EI ∂2u(x,t)
∂x2 = 0 for x = 0,

u(x, t) = 0, EI ∂2u(x,t)
∂x2 = 0 for x = L,

(2)

where L is the drill-string length.
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The initial conditions are given by:

u(x, t) = 0 (0 ≤ x ≤ L),
∂u(x,t)

∂t = C1 (0 < x < L) for t = 0,
(3)

where C1 is a constant determining the displacement speed of the drill-string cross-section
at the initial moment of time from the initial position.

The geometrically linear model of the drill-string lateral vibrations is also considered to
study the need for the application of the nonlinear model, as well as to analyze the behavior
of the LPM for various systems describing the drilling processes. For the geometrically

linear model, nonlinear term − EA
1−ν

∂
∂x

(
∂u
∂x

)3
is taken to be zero, but the nonlinearity from

the gas flow term is preserved, i.e.,:

ρA ∂2u
∂t2 + EI ∂4u

∂x4 − ρI ∂4u
∂t2∂x2 +

∂
∂x

(
N(x, t) ∂u

∂x

)
− ρAΩ2u

−hP0κ

(
M ∂u

∂x − κ+1
4 M2

(
∂u
∂x

)2
+ κ+1

12 M3
(

∂u
∂x

)3
)
= 0

(4)

with boundary and initial conditions (2) and (3).

3. Model Discretization by LPM

The lumped-parameter method (LPM) is applied to find the numerical solution of
models (1) and (4) with conditions (2) and (3). The drill string modeled as a one-dimensional
rod element is split into a finite number of line segments of length 2l = L

N−1 , where N is
the number of partition points. Then, the considered equation of motion and boundary
conditions are approximated with respect to the spatial variable using discrete formulas.

The following metric in spatial and time variables is introduced to make the system
dimensionless (sign ∼ is further omitted):

u = Lũ, x = Lx̃, t =
t̃
l
, c =

√
E

ρL2 . (5)

Substituting (5) in (1)–(3) and assuming axial load N(x, t) to be constant, namely,
N(x, t) = N, we obtain the nonlinear model of the drill-string vibrations in dimension-
less variables:

ρALc2 ∂2u
∂t2 + EI

L3
∂4u
∂x4 −

ρIc2

L
∂4u

∂t2∂x2 + N ∂2u
∂x2 − 3EA

(1−ν)L

(
∂u
∂x

)2
∂2u
∂x2 − ρAΩ2Lu

−hP0κ

(
M ∂u

∂x − κ+1
4 M2

(
∂u
∂x

)2
+ κ+1

12 M3
(

∂u
∂x

)3
)
= 0

(6)

with boundary conditions:

u(x, t) = 0, EI
L

∂2u(x,t)
∂x2 = 0 for x = 0,

u(x, t) = 0, EI
L

∂2u(x,t)
∂x2 = 0 for x = 1.

(7)

The initial conditions are defined as:

u(x, t) = 0 (0 ≤ x ≤ 1),
∂u(x,t)

∂t = C1
Lc (0 < x < 1) for t = 0.

(8)

The geometrically linear model of the drill-string lateral vibrations takes the form:

ρALc2 ∂2u
∂t2 + EI

L3
∂4u
∂x4 −

ρIc2

L
∂4u

∂t2∂x2 + N ∂2u
∂x2 − ρAΩ2Lu

−hP0κ

(
M ∂u

∂x − κ+1
4 M2

(
∂u
∂x

)2
+ κ+1

12 M3
(

∂u
∂x

)3
)
= 0,

(9)
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where the boundary and initial conditions are given in forms (7) and (8), respectively.
The impact of the drill string own weight considered as a function of its position in the

axial load was studied in [32]. Buckling in the drill string bottom part, where the weight
attained its maximum value, with a significant rise in the vibration amplitude was revealed.

After discretizing system (6)–(8) with respect to spatial variables on a regular grid,
we have:

ρALc2
(

∂2u
∂t2

)
j
+ EI

L3

( uj−2−4uj−1+6uj−4uj+1+uj+2

∆x4

)
− ρIc2

∆x2L

((
∂2u
∂t2

)
j+1

− 2
(

∂2u
∂t2

)
j
+
(

∂2u
∂t2

)
j−1

)
+N

( uj−1−2uj+uj+1
∆x2

)
− 3EA

(1−ν)L

( uj+1−uj−1
2∆x

)2( uj−1−2uj+uj+1
∆x2

)
− ρAΩ2Luj

−hP0κ

(
M
( uj+1−uj−1

2∆x

)
− κ+1

4 M2
( uj+1−uj−1

2∆x

)2
+ κ+1

12 M3
( uj+1−uj−1

2∆x

)3
)
= 0,

j = 2, . . . , N − 3,

(10)

u0 = 0, uN−1 = 0, (11)

EI
L

u0 − 2u1 + u2

∆x2 = 0,
EI
L

uN−3 − 2uN−2 + uN−1

∆x2 = 0, (12)

t = 0 : u = 0,
∂u
∂t

=
C1

Lc
. (13)

where N is the number of the drill-string partitions,∆x is the spatial step (∆x = L
N−1 ) and

uj = u(xj, t).
Accelerations at points j = 1 and j = N − 2 are found from boundary conditions (12)

and are defined as:
∂2un

1
∂t2 =

un
2−2un

1
∆t2 ,

∂2un
N−2

∂t2 =
un

N−3−2un
N−2

∆t2 .
(14)

The nonlinear model of the vertical drill-string vibrations takes the form:

j = 0 :
(

∂2u
∂t2

)
0
= 0, j = 1 :

(
∂2u
∂t2

)
1
= Lc2 u2 − 2u1

∆t2 , (15)

j = 2, N − 3 : ρALc2
(

∂2u
∂t2

)
j
+ EI

L3

( uj−2−4uj−1+6uj−4uj+1+uj+2

∆x4

)
− ρIc2

∆x2L

((
∂2u
∂t2

)
j+1

− 2
(

∂2u
∂t2

)
j
+
(

∂2u
∂t2

)
j−1

)
+ N

( uj−1−2uj+uj+1
∆x2

)
− 3EA

(1−ν)L

( uj+1−uj−1
2∆x

)2( uj−1−2uj+uj+1
∆x2

)
− ρAΩ2Luj

−hP0κ

(
M
( uj+1−uj−1

2∆x

)
− κ+1

4 M2
( uj+1−uj−1

2∆x

)2
+ κ+1

12 M3
( uj+1−uj−1

2∆x

)3
)
= 0,

(16)

j = N − 2 :
(

∂2u
∂t2

)
N−2

= Lc2 uN−3 − 2uN−2

∆t2 , j = N − 1 :
(

∂2u
∂t2

)
N−1

= 0 (17)

with boundary conditions:

u0 = 0, uN−1 = 0,
EI
L

u0−2u1+u2
∆x2 = 0, EI

L
uN−3−2uN−2+uN−1

∆x2 = 0
(18)

and initial conditions:
t = 0 : u = 0,

∂u
∂t

=
C1

Lc
. (19)
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To find a solution to the system of equations (15)–(19), we apply the Runge–Kutta
method with the use of Gaussian elimination. Then, from the system:

1 0 0 0 0 . . . 0 0 0 0 0
0 1 0 0 0 . . . 0 0 0 0 0
0 a b a 0 . . . 0 0 0 0 0
0 0 a b a . . . 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . a b a 0 0
0 0 0 0 0 . . . 0 a b a 0
0 0 0 0 0 . . . 0 0 0 1 0
0 0 0 0 0 . . . 0 0 0 0 1





z0
z1
. . .
. . .
zj
. . .
. . .

zN−2
zN−1


=



f0
f1

. . .

. . .
f j

. . .

. . .
fN−2
fN−1


(20)

where a = − ρIc2

∆x2L , b = ρc2L
(

A + 2I
∆x2L2

)
, z is the acceleration vector and f is the right-hand

side vector, the following system is obtained:

1 0 0 0 0 . . . 0 0 0 0 0
0 1 0 0 0 . . . 0 0 0 0 0
0 0 1 0 0 . . . 0 0 0 0 0
0 0 0 1 0 . . . 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . 0 1 0 0 0
0 0 0 0 0 . . . 0 0 1 0 0
0 0 0 0 0 . . . 0 0 0 1 0
0 0 0 0 0 . . . 0 0 0 0 1





z0
z1
. . .
. . .
zj
. . .
. . .

zN−2
zN−1


=



k0 f0
k1 f1
. . .
. . .
k j f j
. . .
. . .

kN−2 fN−2
kN−1 fN−1


(21)

where k j are the coefficients determined from the algebraic transformations.
Finally, taking into account the effect of a supersonic gas flow, we have the following

discrete nonlinear model of the drill-string lateral vibrations:

j = 0 :
(

∂2u
∂t2

)
0
= 0, j = 1 :

(
∂2u
∂t2

)
1
= k1Lc2 u2−2u1

∆t2 ,

j = 2, N − 3 :
(

∂2u
∂t2

)
j
= k j

[
− EI

L3

( uj−2−4uj−1+6uj−4uj+1+uj+2

∆x4

)
−N

( uj−1−2uj+uj+1
∆x2

)
+ 3EA

(1−ν)L

( uj+1−uj−1
2∆x

)2( uj−1−2uj+uj+1
∆x2

)
+ ρAΩ2Luj

+hP0κ

(
M
( uj+1−uj−1

2∆x

)
− κ+1

4 M2
( uj+1−uj−1

2∆x

)2
+ κ+1

12 M3
( uj+1−uj−1

2∆x

)3
)]

,

j = N − 2 :
(

∂2u
∂t2

)
N−2

= kN−2Lc2 uN−3−2uN−2
∆t2 , j = N − 1 :

(
∂2u
∂t2

)
N−1

= 0.

(22)

with boundary and initial conditions (18) and (19), respectively.
The geometrically linear model of the drill-string vibrations after similar discretization

and transformations is written as:

j = 0 :
(

∂2u
∂t2

)
0
= 0, j = 1 :

(
∂2u
∂t2

)
1
= k1Lc2 u2−2u1

∆t2 ,

j = 2, N − 3 :
(

∂2u
∂t2

)
j
= k j

[
− EI

L3

( uj−2−4uj−1+6uj−4uj+1+uj+2

∆x4

)
−N

( uj−1−2uj+uj+1
∆x2

)
+ ρAΩ2Luj

+hP0κ

(
M
( uj+1−uj−1

2∆x

)
− κ+1

4 M2
( uj+1−uj−1

2∆x

)2
+ κ+1

12 M3
( uj+1−uj−1

2∆x

)3
)]

,

j = N − 2 :
(

∂2u
∂t2

)
N−2

= kN−2Lc2 uN−3−2uN−2
∆t2 , j = N − 1 :

(
∂2u
∂t2

)
N−1

= 0.

(23)
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Thus, using the LPM, the considered models of drill-string lateral vibrations (1) and
(4) are reduced to discrete systems of second-order ODEs (22) and (23).

4. Numerical Results and Verification

The obtained models of the vertical drill-string lateral vibrations, presented as discrete
systems of second-order ODEs with respect to displacements, are solved numerically using
the fourth-order Runge–Kutta method in the C++ programming language. The developed
program is sufficiently optimized and enables the implementation of Gaussian elimination
described in the previous section, as well as allowing systems of equations with an arbitrary
right-hand side to be solved. This implies a further application of the program for solving
more complex problems of drill-string vibrations, accounting for a variable structure of the
research object.

The values of physical and geometrical parameters of the drill string and the external
loads are taken in accordance with those in [19]: E = 2.1 × 1011Pa, ρ = 7800 kg/m3,
I = 6.84 × 10−5 m4, d1 = 0.12 m (inner diameter), d2 = 0.2 m (outer diameter), ν = 0.28,
P0 = 1.013 × 103Pa, N = 2.2 × 103 N, M = 2.5, κ = 1.4, A = 2.01 × 10−2m2, h = 0.04 m,
L = 100 m, fsta = 5500 N, F0 = 550 N.

The models in linear (23) and nonlinear (22) formulations are investigated for different
values of the angular speed of rotation starting from Ω = 0.083 rad/s to Ω = 0.33 rad/s, as
well as at different numbers of the drill-string partitions. Taking into account the nature of
lateral vibrations that reach their maximum in the middle of the rod and gradually dampen
towards the ends, the vibrations of the drill string are studied in section x = 0.49L.

To assess the justification for the use of the applied method, the research results are
verified with those previously known in the literature. In this work, we compare them
with the results of [19] for the plane case, where the Bubnov–Galerkin method and the
numerical stiffness-switching method were utilized to find the solution; the programming
implementation was carried out in the Wolfram Mathematica package.

Figures 2–5 show the results of the comparative analysis of the drill-string lateral
displacements obtained in [19] (a) and in the current work (b) for various values of angular
speed of rotation Ω for the linear and nonlinear cases.

Figure 2. Verification of the obtained results for the drill-string lateral displacements at Ω = 0.083 rad/s.
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Figure 3. Verification of the obtained results for the drill-string lateral displacements at Ω = 0.167 rad/s.

Figure 4. Verification of the obtained results for the drill-string lateral displacements at Ω = 0.25 rad/s.

In Figures 2, 3 and 5, the thin solid black line shows the results for the linear model (b)
and the dashed line those for the linear one (a) in the time interval t = 140 s. The thick solid
line represents the data on the nonlinear model (b) and the dash-dotted line the results
for the nonlinear one (a). In Figure 4, the nonlinear models (a) and (b) coincide; therefore,
the red solid line of (b) is chosen. Figures 2–4 are constructed at N = 101, ∆t = 5 × 10−5s,
for the nonlinear model and N = 1001, ∆t = 10−5s, for the linear one. In Figure 5, the
parameters for both the models are N = 101, ∆t = 5 × 10−5s.
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Figure 5. Verification of the obtained results for the drill-string lateral displacements at Ω = 0.33 rad/s.

The graphs illustrate that the amplitude and period of the drill-string vibrations
obtained by solving the nonlinear model are lower than those of its geometrically linear
analogue for the considered values of angular speed Ω. Noteworthy is that at the angular
speeds of rotation Ω = 0.083 rad/s and Ω = 0.167 rad/s, the amplitude of the nonlinear
vibrations is slightly less than the amplitude for the linear case (Figures 2 and 3), whereas
the increase in the value of Ω results in the significant change in the vibration amplitude.
At Ω = 0.25 rad/s, the double increase in the geometrically linear vibration amplitude
is observed (Figure 4). At Ω = 0.33 rad/s, the drill-string vibrations calculated with the
linear model rise sharply, while the nonlinear oscillatory process remains stable (Figure 5).
It shows the importance of using nonlinear models for solving drilling problems, since they
are more accurate and resistant to changes in parameters than linear ones.

Figures 2 and 3 demonstrate the good consistency in the results of the current work (b)
with sample data (a); namely, in the time interval up to 60 s, the solution curves almost coin-
cide; then, over time, minor deviations can be distinguished. As can be seen from Figure 4,
the differences in the results of (a) and (b) for the linear model are clearly distinguishable
for lower values of angular speed when the same number of partitions in space is taken,
while the results on the nonlinear model over the entire time interval coincide.

It is worth noting that for the convergence of the linear model, much more spatial
partition points are required. As it is mentioned above, to calculate the nonlinear model in
Figures 2–4, the parameters N = 101, ∆t = 5× 10−5s were taken, while for the linear model,
the number of points was increased 10 times to N = 1001, and the time step was chosen
to be equal to ∆t = 10−5s. In Figure 5, in view of the unlimited growth of the oscillation
amplitude and the divergence of the linear model as a whole, the same parameter values
were taken for both the models, namely, N = 101, ∆t = 5 × 10−5s. For this reason, the
differences in the results of the linear model (a) and (b) are clearly noticeable. It also
confirms the better convergence and greater stability of the nonlinear models compared
with the linear ones, which require a smaller number of partition points in space when using
the lumped-parameter method and, as a consequence, less time spent on the numerical
implementation that plays an important role in the modeling process.

Thus, the good consistency of the obtained results with previously published data
is demonstrated. It confirms the feasibility of using the lumped-parameter method in
drilling problems for rod-element vibrations and justifies its further application for solving
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mathematical models of lateral vibrations in structures complicated by a variable equipment
structure where there is no possibility to use well-known approaches.

5. Application of Parallel Programming

A small time step, the need to use a large number of partitions for the linear models
and, as a result, a large number of iterations serve as the reasons for conducting the
next stage of the study consisting in the optimization of the program code using parallel-
programming tools.

The parallelization of the C++ code is here implemented using the Open Multi-
Processing (OpenMP) library. The use of this library allows developing an algorithm
working sequentially and in parallel, and it is one of the most popular parallel program-
ming technologies used for shared memory computers [33]. Moreover, the OpenMP
technology is quite effective to parallelize one-dimensional problems.

To analyze the advantages of using parallel programming, the spent time resources
and the optimal number of threads, the program code was tested on linear model of lateral
vibrations (23) with angular rotation speed Ω = 0.167 rad/s for various values of partition
nodes and time step ∆t in the interval t = 60 s.

The test results are shown in Table 1. The table rows include the nodes, the number
of iterations, the time step and the code-implementation time depending on the number
of threads used. The computation time for one thread is highlighted in red, i.e., the im-
plementation of the program without parallelization. The cells containing the shortest
implementation time are highlighted in yellow. As can be seen from the table, the use of a
large number of computation threads gives much worse results than those without paral-
lelization for 11 partition points, which is understandable for arrays with a small number
of elements (11–31). However, when the number of partition points equals or exceeds 51,
the use of a large number of threads up to 12 gives a considerable time gain compared with
using one thread. It can also be seen that the utilization of two threads is quite optimal
for the minimum number of partition points (11). When we split the rod into 31 and 51
parts, the optimal number of threads is 3; for more than one hundred partition points, the
optimal number of threads is 4 in accordance with the spent implementation time.

Table 1. Program implementation time depending on the number of threads, iterations, partitions
and the time step.

Number
of Points

Iterations
(mln)

Time Step
(s)

Implementation Time Depending on the Number of Threads (s)

1 2 3 4 5 6 7 8 9 10 11 12
11 0.6 0.0001 8.6 6.6 8.2 9.2 14.3 18.5 20.7 21.3 23.3 27.4 29.3 30
31 0.6 0.0001 28.2 17.5 16.9 19.3 23.9 25.8 27.2 27.9 31.4 35.2 36 36.4
51 0.6 0.0001 47.6 28 22.5 23.2 34.1 32.9 33.4 33.1 38 40.9 42.2 42.8

101 1.2 0.00005 205.3 109.5 81.5 75.9 103.7 98.8 97.1 92.8 109.6 108.9 109.4 110.4
201 1.2 0.00005 388.1 215.3 158 140.9 190.5 176.3 172.6 150.9 189.2 187 191.8 184.9
401 1.2 0.00005 814.7 424.7 314.8 267.8 372.5 316 292.1 262.7 326.8 312.5 301.1 286.3

The justification of the use of parallel programming is also analyzed. The estimation of
the acceleration coefficient of the code implementation time is performed when the optimal
number of threads is utilized (Table 2).

Table 2. Analysis of the code implementation time using parallel-programming tools.

Number of Points Implementation Time for
1 Thread (s) Optimal Time (s) Optimal Number

of Threads Acceleration Coefficient

11 8.6 6.6 2 1.3
31 28.2 16.9 3 1.66
51 47.6 22.5 3 2.12

101 205.3 75.9 4 2.71
201 388.1 140.9 4 2.76
401 814.7 267.8 4 3.04
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Table 2 shows the values of the program acceleration coefficient using the OpenMP
library for the different number of partition points and demonstrates the advantages of
using parallel programming. When the low number of points (11) is used, the program
implementation time decreases by 1.3 times; then, when increasing the number of partitions
to 401, we can observe a more-than-threefold decrease in the computation time, namely, the
time needed for program completion reduces from 13.6 to 4.5 min. It clearly demonstrates
the importance of using parallel programming when solving the considered nonlinear
model of the drill-string lateral vibrations. The acceleration coefficient depending on the
different number of partition points is shown in Figure 6.

Figure 6. Acceleration coefficient for the different numbers of partition points.

6. Analysis of System Discrete Partitioning

The next stage of the research study is to study how the accuracy of the obtained
results depends on the number of partition points. When the number of points increases,
the computation accuracy logically rises; however, the program implementation time also
grows. This raises the question on the justification of the used computational costs and
necessitates the analysis on the optimal number of the drill-string partitions from the
“implementation time—computational accuracy” viewpoint.

To estimate the computation error, the results of [19] for the plane case are taken.
The accuracy is estimated by comparing the sample data with the obtained results. For
algebraic verification, the WPF Application developed by the authors of the current work
in the C# language is utilized. The window application compares the loaded file data at
the closest time points and calculates the computation error (maximum error and standard
deviation). The results of the drill-string lateral displacements for angular speed of rotation
Ω = 0.167 rad/s are taken as comparative data.

Table 3 shows the results of comparing the obtained data of the linear model with
the results for the plane case of [19]. The table includes the computation time and error
indicators (standard deviation and maximum error) depending on the number of nodes.
It is shown that the error is quite high when the minimum number of partitions (11) is
considered; however, as the number of points rises, the values of both error indicators
decrease, and the implementation time increases. It is worth noting that due to the use of
parallel programming, the time spent on the code implementation significantly reduces,
which allows the data to be computed and tested with a large number of partitions and a
sufficiently small time step.
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Table 3. Error estimation for the linear model of the drill-string vibrations at Ω = 0.167 rad/s.

Number of Points Max Error (mm) Standard Deviation (mm) Implementation Time (s)

11 90.37 42.28 137.63
51 55.29 27.00 595.95

101 31.86 16.11 1089.97
201 20.71 9.89 1948.62
301 16.51 7.73 3027.72
401 14.31 6.66 3087.12
501 12.78 6.02 3763.93
601 11.68 5.58 4564.72
701 11.21 5.27 5284.03
801 10.87 5.04 7820.47
901 10.59 4.86 8594.73
1001 10.37 4.72 9233.07

As can be seen from Table 3, for the number of partitions equal to 51, the maximum
error and standard deviation decreased by 1.6 times compared with the case with 11 parti-
tions with the same number of iterations, while the time spent on computation increased
by 4.3 times (from 2.3 to 9.9 min). When 101 points are considered, the maximum error
decreases by 2.83 times, and the standard deviation by 2.62 times, and the computation
time increases to 18 min compared with the case with 11 points with the same time step.
For a large number of partitions, we can observe minor changes in the error indicators.
The standard deviation at 1001 points changes by 3 mm and 1.3 mm compared with the
cases with 301 and 501 points and the maximum error by 6.1 mm and 2.4 mm, respectively,
while the implementation time increases by 3 and 2.45 times. Starting from the value of
401 partitions, the change in the standard deviation does not exceed 0.63 mm. It follows
that using a large number of partition points is impractical from the point of view of
“implementation time—computational accuracy”.

Figures 7 and 8 demonstrate the dependence of the error indicators on the number of
partition points for the linear and nonlinear models. The bar graph reflects the standard
deviation, and the point curve shows the program implementation time. According to
the constructed graphs, the optimal number of partition points from the point of view of
“implementation time—computational accuracy” is 300–400, whereas numbers of partitions
over 700 can be ignored, since they only give a slight improvement of the error indicators
and, at the same time, a significant increase in the implementation time.

Figure 7. Influence of the number of the drill-string partitions on the error and implementation time
(linear model).
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Figure 8. Influence of the number of the drill-string partitions on the error and implementation time
(nonlinear model).

A better convergence of the nonlinear model than that of the linear one requires the
estimation of the nonlinear-model computation error. The error indicators of the nonlinear
model depending on the number of nodes are shown in Table 4. The trend presented in
Table 3 does not change. With an increase in the number of partitions, the error indicators
decrease, and the implementation time increases; however, starting from a particular
number of points (201–301), the improvement of the error indicators is not equivalent to
the increase in the implementation time, which implies the use of a large number of nodes
to be impractical. The optimal number of partitions for the nonlinear model is considered
to equal 201 from the “implementation time—error indicators” viewpoint, which is two
times lower than the optimal number of partitions needed for its linear analogue. It also
confirms the better convergence of the nonlinear model compared with the linear one.

Table 4. Error estimation for the nonlinear model of the drill-string vibrations at Ω = 0.167 rad/s.

Number of Points Max Error (mm) Standard Deviation (mm) Implementation Time (s)

11 76.99 36.06 150.40
51 16.07 8.41 632.07

101 10.07 5.73 971.52
201 8.67 4.65 1958.70
301 7.95 4.32 2499.00
401 7.43 4.16 3638.00
501 7.35 4.06 4964.20
601 7.30 4.01 6064.00
701 7.26 3.97 6650.70
801 7.23 3.94 8825.60
901 7.21 3.91 10,165.00
1001 7.20 3.89 11,729.00

The convergence of the obtained curves for the drill-string lateral displacements with
the sample data depending on the number of partition points is shown in Figure 9 for the
linear model and in Figure 10 for the nonlinear one. Different types and colors of curves
correspond to the results for the different numbers of points. As the graphs show, the
increase in the number of the drill string partition points results in a higher convergence
of the research results to the sample data obtained using the Bubnov–Galerkin method.
Moreover, the use of the LPM allows not only more accurate estimating the overall picture
of the drill string oscillatory process without using additional approximation functions, but
also studying each segment of the drill string in detail.
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Figure 9. Drill-string vibrations for different numbers of partitions for the linear model at
Ω = 0.167 rad/s.

Figure 10. Drill-string vibrations for different numbers of partitions for the nonlinear model at
Ω = 0.167 rad/s.

7. Conclusions

In this paper, the effectiveness of the lumped-parameter method (LPM) in solving
nonlinear problems of drill-string vibrations is studied. A good consistency of the results
of the test problem related to the longitudinal vibrations of a horizontal drill string with
a static compressive load at the end with the results of other authors is obtained. The
discretization of the nonlinear model of the lateral vibrations of a vertical rotating drill
string in a supersonic gas flow using the LPM shows the better convergence and stability
of the solution of the nonlinear model compared with its linear analogue. Moreover, the
comparative analysis of the results with those obtained using the Bubnov-Galerkin method
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demonstrates the great consistency between them when increasing the number of the drill
string partition points.

The conducted analysis of the optimal number of drill-string partitions reveals that in
the case of the nonlinear model, the number of partitions of 200 is quite sufficient from the
“implementation time—computational accuracy” viewpoint and is almost two times less
than the preferable number of partition points needed for obtaining adequate results using
the linear model (300–400 points).

The developed program for solving the discrete models allows the solution to the
problems to be found with various numbers of partition points and affecting loads. It gives
the possibility to use the constructed algorithm when solving more complex problems with
heterogeneous structures of the research object. The performed optimization of the numeri-
cal algorithm using parallel programming indicates the effectiveness of its application due
to the great number of partitions that leads to the increase in the solution accuracy.

The research results also show that LPM may be further effectively utilized for study-
ing the dynamics of nonlinear systems with variable structure when there is no possibility
to use other mathematical approaches.
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Appendix A

A horizontal drill string under the influence of a static compressive load at the left end,
friction forces, a variable harmonic force and gravitational forces, as well as the reaction
force of the rock on the drill, is considered as an object of the study. The mathematical
model of the drill-string longitudinal vibrations was based on that of [27], which was also
studied by [30].

The equation of motion of the drill string with length L in the general form [27] is:

ρA ∂2u(x,t)
∂t2 − EA ∂2u(x,t)

∂x2 = fsta(x, t) + fhar(x, t)

+ fbit(
.
u(x, t)) + f f ric(

.
u(x, t)) + fmass(

..
u(x, t)),

(A1)

where u(x, t) is the longitudinal displacement of the drill string, ρ is the material density, A
is the cross-section area and E is Young’s modulus. The right-hand side of (A1) contains
the forces acting on the drill string. The sketch of the acting forces can be found in [27].

The lumped-parameter method (LPM) is applied to obtain a numerical solution
of Equation (A1). According to this method, the drill string is represented as a one-
dimensional rod element divided into a finite number of line segments of length 2l = L

N−1 ,
where N is the number of partition points. Then, the equation and boundary conditions
are approximated with respect to the spatial variable using discrete formulas:
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∂2u1
∂t2 − 1

3l2 (2u0 − 3u1 + u2) = − µg
Lc2 sgn(

.
u1) f or j = 1,

∂2uj
∂t2 − 1

4l2 (uj−1 − 2uj + uj+1) = − µg
Lc2 sgn(

.
uj) f or j = 2, N − 2,

∂2uN−1
∂t2 − 1

3l2 (uN−2 − 3uN−1 + 2uN) = − µg
Lc2 sgn(

.
uN) f or j = N − 1,

(A2)

The boundary conditions take the following form:

x = 0 : u1 − u0 = − lFsta
EA

x = 1 : ∂2uN
∂t2 + (ρA)L

mbit

(uN−uN−1)
l = F0

mbit Lc2 sin
(

ω f
l t
)
+ 1

mbit Lc2 fbit(Lc
.
uN)

(A3)

The graphs presented below show the good consistency between the obtained result
and those of [27,30], which confirms the correctness of the chosen approach for solving
drilling problems.

Figure A1. Verification of the obtained result for the drill-string longitudinal displacements [27,30].

Figure A2. Verification of the obtained result for the bit speed [27,30].
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