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Abstract: Achieving deep learning-based bearing fault diagnosis heavily relies on large labeled
training samples. However, in real industry applications, labeled data are scarce or even impossible
to obtain. In this study, we addressed a challenging few-shot bearing fault diagnosis problem with
few or no training labeled samples of novel categories. To tackle this problem, we considered a
semi-supervised prototype network based on few-shot bearing fault diagnosis with pseudo-labels.
The existing prototypical networks with pseudo-label methods train a pseudo label model to label
unlabeled samples using high-dimensional labeled data, which cannot eliminate the instability of
the pseudo-label model caused by dimensional labeled features. To mitigate this issue, we used
kernel principal component analysis to reduce the dimensions of and remove redundant information
from high-dimensional data. Specifically, we used the pseudo-label prediction algorithm with
probability distance to label unlabeled samples, aiming to improve the labeling accuracy. We applied
two well-known bearing data sets for the validation experiments with symmetry parameters. The
findings illustrated that the classification accuracy of the proposed method is higher than that of
other existing methods.

Keywords: few-shot learning; prototype networks; multi-kernel PCA; pseudo label

1. Introduction

Rotating machinery is an important component of smart manufactory, and its healthy
and stability operation are required to guarantee production. However, due to bearings
operating long term in harsh environments, then can easily fail, leading to disastrous
consequences [1,2]. To ensure the safety and efficiency of smart manufacturing, rolling
bearing fault diagnosis needs to be further studied, which has increasingly attracted
research attention [3,4].

Benefitting from the rapid development of computer and sensing technologies, indus-
try has entered the era of big data. Due to its big data learning ability, deep learning has
replaced shallow models and has been successfully applied in various fields [5–7]. With
continuous development and improvement, deep-learning models have been widely ap-
plied in the field of fault diagnosis. Gong et al. [8] use dan improved convolutional neural
network support vector machine (CNN-SVM) method to effectively identify incipient faults
in rotation machinery. Jiang et al. [9] explored a deep recurrent neural network (DRNN) to
automatically extract the features from input spectrum sequences. Cui et al. [10] proposed a
feature distance stack autoencoder (FD-SAE) for rolling bearing fault diagnosis to improve
the feature extraction ability and the convergence speed of the network. Zhang et al. [11]
combined an ensemble deep belief network and variation mode decomposition to improve
the accuracy and stability of the diagnosis of the health status of rotating machinery. These
existing methods, which are based on deep learning, can produce accurate results; however,
a large amount of labeled data are required to obtain an effective deep model. However,
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obtaining enough labeled samples in actual industrial applications is difficult and time-
consuming. Therefore, more effort is needed to apply few-shot learning to solving the
problems encountered in the practical application of deep-learning methods.

Few-shot learning, a technique of learning from a few labeled samples for automat-
ically classifying massive amounts unlabeled samples, has recently attracted attention.
Zhang et al. [12] proposed a few-shot learning approach for fault diagnosis under limited
data conditions based on CNNs and Siamese neural networks. Jiang et al. [13] embedded a
two-branch network into the prototype network, building a two-branch prototype network
fault diagnosis method to mitigate the few-shot samples classification issue. Xu et al. [14]
combined K-nearest neighbor with cosine distance to build a distribution discrepancy met-
ric and developed a deep convolutional nearest neighbor matching network for few-shot
learning. Wang et al. [15] developed a feature space metric-based meta-learning model
to overcome the challenge produced by few-shot learning problem under limited labeled
samples by adopting both individual sample information and similarity sample group
information. Xu et al. [16], based on approximation space and belief functions, design
edan few-shot learning method for fault diagnosis. They used the basic probability as-
signment calculation to build belief functions for diagnosis within sufficient information.
Although these existing few-shot learning fault diagnosis methods achieve encouraging
fault diagnosis performance in the conditions with few labeled samples, these existing
few-shot methods ignore the massive unlabeled data that exist in practical industrial appli-
cations, which may be used aspseudo-labels in combination with the few labeled samples
to effectively train deep-learning models.

Semi-supervised few-shot learning, as a promising method for labeled samples, is
increasingly receiving research attention. Tao et al. [17] designed a bearing defect diagnosis
model using pseudo-labels, which obtained representative features for classification from
unlabeled samples. Zhang et al. [18] used a Monte Carlo uncertainty threshold selection
strategy to increase the confidence of the pseudo-labels, then used a momentum prototype
network to obtain the feature space mapping using few labeled samples. Yong et al. [19]
used an encoder to extract features for training prototypes, then semi-supervised meta-
learning, which they optimized by a combinatorial learning optimizer to refine original
prototypes from unlabeled samples. Kai et al. [20] explored a pseudo-loss confidence metric
for task-unified confidence estimation through mapping the different pseudo-labels to
the same metric space using of the pseudo-loss. Di et al. [21] combined learner of latent
representations with cluster structures, and proposed a pseudo-label-guided collective ma-
trix factorization method for multi-view clustering. More recently, these semi-supervised
few-shot learning methods have been widely studied, and encouraging results have been
obtained. However, most of these existing methods focus on the confidence estimation
inference of pseudo-label learning, which suffers when samples in a single task are insuf-
ficient, and ignore the redundant information embedded into feature space, which can
cause errors in pseudo-label learning models, considerably decreasing the generalization
capability of a model.

In an effort to achieve the semi-supervised few-shot learning, and motivated by the
aforementioned analysis, and considering the influence of the redundant information in
high-dimensional feature space, we designed a kernel principal component analysis method
based on a semi-supervised prototypical network for fault diagnosis with pseudo-labels.
We used kernel principal component analysis to reduce the dimensions of the feature space,
which mitigates the effects of redundant information and results in a lightweight training
model. We used the pretrained model, whose parameters we obtained by training model
with these features through dimension reduction, to predict the labels of unlabeled data,
and we selected the reliable labels as the pseudo-labels. We sent the pseudo-labeled data to
the pretrained prototype networks to further fine tune the parameters to produce prototype
networks with strong generalization ability. Finally, we conducted comparison experiments
based on two well-known bearing datasets (Case Western Reserve University, CWRU) to
prove the effectiveness of our method.



Symmetry 2022, 14, 1489 3 of 14

The main highlights of the study are as follows:

(1) We used kernel principal component analysis to reduce the dimension of the feature
space, which avoid redundant information embedded in the feature space reducing
the generalization ability of the model;

(2) We used apseudo-label-prediction algorithm to generate labeled samples, aiming to
increase the labeled samples, which fully uses the unlabeled samples for training the
prototype networks to avoid overfitting;

(3) We adopted predicted pseudo-label data to fine tune the prototype network param-
eters, which can reduce the time required for adjusting the model parameters and
improves diagnostic accuracy.

2. Theoretical Background
2.1. Few-Shot Learning

Few-shot learning [22], which aims to learn about a new category from a small amount
of labeled data, has aroused increased interest in the pattern recognition community. This
technique has been extensively applied in artificial intelligence.

In the few-shot learning problem, all datasets are divided into three parts: the support set

S =
{(

xs
i , ys

i
)}ns

i=1

(
ns = C×N, xi ∈ RD), query set Q =

{(
xq

i , yq
i

)}nq

i=1

(
nq = 1×N, xi ∈ RD),

and test set T =
{(

xt
i , yt

i
)}nt

i=1, where the data of support and query sets are from the same
class, and the samples in the two sets are different. The sample categories of the test set
differ from those of the support set. xi ∈ RD denote the feature vector extracted from a
raw vibration signal; yi ∈ {1, 2, . . . , C} denotes the label of the dataset samples. In the
traditional method, the dataset is only divided into a training and a test set. Compared with
the traditional method, the support set S and query set Q are used to train the network,
and the test set T is used to evaluate the performance of the network, which improves
the stability and generalization of the model. If the support set contains N classes and K
samples, it can be described as an N-way K-shot problem. The process of few-shot learning
is illustrated in Figure 1.
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2.2. Prototypical Network

Prototypical networks [23,24] generalize new classes not included in the training set
given only a small number of examples of each new class. Metric-based few-shot learning
has been widely used in few-shot learning, producing impressive results. An embedding
function is obtained by a neural network through prototypical network learning; then,
samples are extracted into feature vectors. The mean vectors in each class are the prototype.
During classification, query samples are first transformed into feature vectors; the distance
from the vector to the prototypes represents the similarity to the class. Figure 2 describes
the working of the prototype networks.
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In few-shot learning, a support set of N labeled samples S = {(x1, y1), . . . (xn, yn)}
is given, where each xi ∈ RD is the dimensional feature vector D, and yi ∈ {1, . . . , K} is
the label of xi. Sk denotes k classes in the support set. Through an embedding function
fφRD → RM , prototype pk is computed as follows:

pk =
1
|Sk|∑(xi ,yi)∈Sk

fφ(xi)
(1)

During the classification, distance is calculated by the distance function d(·); the
probability that query point X belongs to class K can be expressed as:

Pφ(y = k|x) = log (
exp

(
−d
(

fφ(x), pk
))

∑k′ exp
(
−d
(

fφ(x), pk′
)) ) (2)

3. Proposed Method
3.1. KPAC

KPCA is a non-linear derivative of PCA that can be solved as an eigenvalue problem
of its kernel matrix [25]. Samples are non-linearly mapped into higher-dimensional feature
space F, and PCA is performed there.

Let sample x1, . . . , x N ∈ RD be mapped into φ(x1), . . . , φ(xn) ∈ F. The covariance
matrix C in the feature space F is given by:

C =
1
N

N

∑
k=1

φ(xk)φ(xk)
T (3)

where ∑N
k=1 φ(xk) = 0. Non-zero eigenvalues λ of te covariance matrix C can be calcu-

lated as:
λv = Cv (4)

where v denotes the corresponding eigenvector of F, which can also be written as:

v =
N

∑
k=1

αkφ(xk) (5)
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The problem is simplified to find the coefficient lk, which can be formulated as the
following eigenvalue problem by substituting Equations (3) and (5) into (4), which is
written as:

Kα = Nλα (6)

where K is a kernel matrix with size N × N, which can calculated as follows:

Kij =
(
φ(xi)·φ

(
xj
))

= k
(
xi, xj

)
(7)

k(·) denotes the kernel function, which is used to calculate the inner product of φ(xi)
and φ

(
xj
)
. In this study, we used the RBF kernel function:

k
(
xi, xj

)
= exp

(
−
‖ xi − xj ‖2

2σ2

)
(8)

where σ is set to 1/N. Let λl be the lth largest eigenvalue of K, and αl =
[
αl

1, . . . , αN
1

]
be

the corresponding eigenvector. An input sample x can be mapped onto the l th dimension
of KPCA space with coordinate value:

〈vl , φ(x)〉 =
N

∑
i=1

αl
ik(xi, x) (9)

The advantage of kernel principal component analysis is that only the kernel function
needs to be calculated in the original space; the nonlinear mapping function φ(x) does not
need to be known.

3.2. Metric and Query

In this study, we used the Euclidean distance to calculate the similarity of samples
through the feature vectors extracted from these samples. The distance can be repre-
sented as:

d f

(
pn, xq

i

)
=

√
‖ f (pn)− f

(
xq

i

)
‖ (10)

where pn denotes the prototype of class n, xq
i denotes the ith sample in query set, and f (·)

is the feature vector extracted from the raw vibration signal. The smaller the distance d f ,
the more similar the query data to this class. The probability of the sample from query set
xq

i belonging to class k can be described as:

P
(

y = k
∣∣∣xq

i

)
=

exp(−d( f (x), pn))

∑n exp(−d( f (x), pn))
(11)

In the process of pseudo-label learning, to retain samples with good classification
performance, we used the experimental data to verify that, after SoftMax function screening,
the samples whose probability value was greater than 0.7 had high classification accuracy.
The detailed experiment of probability P is illustrated in Figure 3.

Then, the loss function of the samples selected for the query set was designed as:

`loss = − log P(y = k
∣∣∣xq

i ) (12)
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3.3. Description of Proposed Method

In this study, we designed a kernel principal analysis based semi-supervised prototyp-
ical network (PSSPN). The whole algorithm is described in Algorithm 1.

Algorithm 1: PSSPNlearning strategy

Input: Labeled dataset DL, unlabeled dataset DU , number of fault classes N, support set Se with K
samples query set Qe with Q samples, feature extractor fϕ episode, and epoch.
Output: learnable parameter ϕ

1. Preprocess the raw data with KPCA
2. For each epoch, do:
3. Randomly sample N classes in dataset DL; each class has K samples THAT consist of

support set Se. Similarly, randomly sample Q samples to create query set Qe.
4. Obtain samples xS

i and xQ
i from support set Se and query set Qe, respectively, and generate

support feature set fϕ
(

xS
i
)

and query feature set fϕ

(
xQ

i

)
.

5. Generate prototype Pk by Equation (1).

6. Calculate the classification probability P
(

y = k
∣∣∣xq

i

)
by Equation (2).

7. Calculate the loss, and update parameter ϕ.
8. Use the model pretrained in steps 2–8 to predict the label of DU ; after selection, we obtain

the pseudo-labeled dataset Dpseudo.
9. Fine-tune parameter ϕ with datasets Dpseudo and DL.
10. End

Step (1)—Few-shot learning: the dimensions of the labeled data feature space are
reduced by KPCA. Then, feed this reduced-dimension feature space into the prototypical
network. Calculate the distance between samples in the query set and prototype. Then,
convert the similar distances into probability values using a SoftMax classifier. Calculate
the loss and update the parameters of the network. After iterating, the pretrained model
is obtained.
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Step (2)—Unlabeled samples data are preprocessed by KPCA: through the pretrained
model, obtain the predicted label of the unlabeled data. After selection, retain part of the
label, and then obtain the pseudo-labeled data.

Step (3)—Input the predicted pseudo-label samples to the labeled sample set to train
and fine-tune the relevant parameters of the prototypical network.

A detailed description of the workflow of the proposed method is provided in Figure 4.
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4. Results and Discussion

We used three methods, CNN, ProtoNet [24], and improved prototype network(IPN) [26],
for a comparison experiment to verify the validity of the proposed method. The feature ex-
tractors of CNN and ProtoNet have the same network structure. IPN uses L2 regularization
and a dropout layer, which help to address model overfitting problem. The architecture of
PSSPN is described in detail in Table 1. We use leaky ReLU as the activation function, and
α is 0.3. The network is optimized by the Adam optimizer, whose learning rate is 0.001. We
repeated the experiment 20 times to obtain the final accuracy. We used Tensorflow 2.0 to
conduct the experiment.
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Table 1. Feature extractor network description.

No. Layer Type Kernel
Size/Stride

Kernel
Number

Output Size
(Width × Depth) Padding

1 Conv1 3 × 1/1 × 1 16 256 × 16 same
2 Pool1 2 × 1/1 × 1 16 128 × 16 valid
3 Conv2 3 × 1/1 × 1 32 128 × 32 same
4 Pool2 2 × 1/1 × 1 32 64 × 64 valid
5 Conv3 3 × 1/1 × 1 64 32 × 64 same
6 Pool3 2 × 1/1 × 1 64 16 × 64 valid
7 Conv4 3 × 1/1 × 1 64 16 × 64 same
8 Pool4 2 × 1/1 × 1 64 6 × 64 valid
9 Conv5 3 × 1/1 × 1 64 6 × 64 same

10 Pool5 2 × 1/1 × 1 64 3 × 64 valid

4.1. Case Study on CWRU
4.1.1. Description of CWRU

In this study, we used the Case Western Reserve University (CWRU) bearing datasets [27],
which were collected under four different working conditions and loads (0, 1, 2, and 3 hp);
the motor worked at speeds of 1979, 1772, 1750, and 1730 rpm, respectively. Each working
condition had four bearing fault conditions: normal, ball fault, inner race fault, and outer
race fault. Each fault type contained three fault sizes: 0.007, 0.014, and 0.021 inches. We
provide details about the dataset in Table 2, which shows that there were 10 types in total.
For the detailed experimental platform, please refer to the related references.

Table 2. Bearing health states in CWRU dataset.

State Description Fault Size (Inches)

N Normal condition
RF Fault on roller 0.007, 0.014, 0.021
IF Fault on inner race 0.007, 0.014, 0.021
OF Fault on te out race 0.007, 0.014, 0.021

We generated all the training and testing samples using a sliding window. We set the
sliding window to 1024, and step length of the framing to 80. The detailed information
about the dataset used in the experiment is provided in Table 3.

Table 3. Information about dataset used in our experiments.

Fault Location None Ball Inner Race Outer Race Load

Fault Diameter (Inches)
Fault Labels

0 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.024
1 2 3 4 5 6 7 8 9 10

Dataset
Pretrain 500 500 500 500 500 500 500 500 500 500

1Unlabeled 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Test 200 200 200 200 200 200 200 200 200 200

4.1.2. Results Analysis

In this case, study, 1-shot and 5-shot experiment is conducted on the dataset descripted
as Table 3, all parameters of compared methods are mentioned above, and the experiment
result is listed in Table 4
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Table 4. The classification accuracy of methods based on CWRU.

Methods CWRU

1-Shot 5-Shot 10-Shot 15-Shot 30-Shot

CNN 18.88 ± 0.23 80.58 ± 0.38 80.36 ± 0.54 80.09 ± 0.07 80.32 ± 0.17
ProtoNet [24] 83.06 ± 0.77 89.80 ± 0.32 92.27 ± 0.23 99.81 ± 0.02 99.85 ± 0.01

IPN [28] 85.97 ± 0.43 89.97 ± 0.23 93.36 ± 0.31 99.59 ± 0.03 99.28 ± 0.05
ProtoNet+KPCA 85.12 ± 0.58 92.03 ± 0.23 95.88 ± 0.10 96.30 ± 0.13 96.26 ± 0.09
PSSPN (ours) 89.72 ± 0.38 94.65 ± 0.16 97.05 ± 0.07 95.92 ± 0.10 96.59 ± 0.07

Table 4 shows that the classification accuracies of the few-shot learning methods are
much higher than that of conventional CNN. For 1-, 5-, and 10-shot learning, the PSSPN
achieved 89.72%, 94.65%, and 97.05% accuracies, respectively, which are higher than those
of the other considered methods. The classification accuracy of ProtoNet with KPCA is
higher than that of ProtoNet. This finding showed that KPCA helps remove redundant
information, which cause errors in the model during training.

Figure 5 shows the confusion matrix for the five-shot classification accuracy result
of PSSPN. We found that the We generated accuracy of PSSPN was high for various
bearing fault types. However, for label 8, the classification accuracy was relatively low, and
several samples were categorized into label 9. The most probable reason for this is that
the difference between these two samples is small, which lead to misclassification. With
the increase in the number of training samples, the classification accuracy of the various
methods also increased, especially that of ProtoNet and IPN. The classification accuracy of
PSSPN was higher when the number of labeled training samples was small.
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Figure 6 illustrates the feature visualization produced for t-SNE. In CNN, the difference
in some classes was clear, but several features were indivisible. In ProtoNet and IPN,
different samples were successfully distinguished, but the result was messy. The results
produced by PSSPN were more clearly divided than that of the other considered methods,
though the boundaries of some samples were ambiguous. Possible reasons for this include
the amount of data being relatively small, and the model could not be further improved;
or the difference between the samples being small, and our model could not distinguish
this gap.

Symmetry 2022, 14, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 6. t-SNE visualization produced by different methods in this case study. 

4.2. Case Study on Petrochemical Dataset 
4.2.1. Petrochemical Dataset Introduction 

The petrochemical dataset(Guangdong Provincial Key Laboratory of Petrochemical 
Equipment Fault Diagnosis, Guangdong University of Petrochemical Technology, 
Maoming, China) [29,30] contains more noise and is related to industrial environments. 
We established a simulation platform to simulate the actual working environment of a 
petrochemical refinery and the power load of rotating machinery. The detailed infor-
mation of the platform used for data collection from the machinery is provided in Figure 
7. For more detailed information, please refer to the provided references. 

 
Figure 7. Platform of petrochemical motor. 

The fault types in the petrochemical dataset are as follows: (1) F0: gearwheels are 
missing teeth; (2)F1: gearwheels are missing teeth and the outer ring of the left-side 
bearing is worn; (3) F2: gearwheels are missing teeth and inner ring of the left-side bear-
ing is worn; (4) F3: gearwheels are missing teeth and the balls on the left-side bearing are 
missing; (5) F4: pinion and gearwheels are missing teeth; and (6) F5: object is in a normal 
state. The detailed information about the dataset we used in our experiments are pro-
vided in Table 5. 

  

Figure 6. t-SNE visualization produced by different methods in this case study.

4.2. Case Study on Petrochemical Dataset
4.2.1. Petrochemical Dataset Introduction

The petrochemical dataset(Guangdong Provincial Key Laboratory of Petrochemical
Equipment Fault Diagnosis, Guangdong University of Petrochemical Technology, Maoming,
China) [29,30] contains more noise and is related to industrial environments. We established
a simulation platform to simulate the actual working environment of a petrochemical
refinery and the power load of rotating machinery. The detailed information of the platform
used for data collection from the machinery is provided in Figure 7. For more detailed
information, please refer to the provided references.
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Figure 7. Platform of petrochemical motor.

The fault types in the petrochemical dataset are as follows: (1) F0: gearwheels are
missing teeth; (2) F1: gearwheels are missing teeth and the outer ring of the left-side bearing
is worn; (3) F2: gearwheels are missing teeth and inner ring of the left-side bearing is worn;
(4) F3: gearwheels are missing teeth and the balls on the left-side bearing are missing;
(5) F4: pinion and gearwheels are missing teeth; and (6) F5: object is in a normal state. The
detailed information about the dataset we used in our experiments are provided in Table 5.

Table 5. Description of petrochemical dataset.

Fault Location F0 F1 F2 F3 F4

Fault Label 0 1 2 3 4 5

Dataset
Pretrain 500 500 500 500 500 500

Unlabeled 1000 1000 1000 1000 1000 1000
Test 200 200 200 200 200 200

4.2.2. Six-Way Fault Classification

The petrochemical dataset has six fault classes, and each sample has 1024 sampling
points. In this case, study experiment, we chose 500 samples for training, and 1000 un-
labeled samples and 200 labeled samples for evaluation. Detailed dataset information is
listed in Table 5. The parameters of the model were the same as used for CWRU dataset. We
determined the classification accuracy of all considered methods, as provided in Table 6.

Table 6. Classification accuracy of all considered methods.

Method Petrochemical Dataset

1-Shot 5-Shot 10-Shot 15-Shot 30-Shot

CNN 41.46 ± 0.16 76.63 ± 0.41 92.84 ± 0.01 82.79 ± 0.14 91.78 ± 0.24
ProtoNet [24] 86.79 ± 0.53 94.07 ± 0.18 97.04 ± 0.06 97.56 ± 0.14 97.71 ± 0.29

IPN [28] 88.86 ± 2.20 89.12 ± 1.91 100 100 100
ProtoNet+KPCA 88.70 ± 0.38 95.35 ± 0.07 98.38 ± 0.07 98.30 ± 0.04 99.17 ± 0.20

PSSPN 89.61 ± 0.30 96.23 ± 0.06 97.77 ± 0.08 98.57 ± 0.04 97.30 ± 0.03

As shown in Table 6, compared with the other few-shot learning strategies, the lowest
classification accuracy was obtained by CNN. However, both ProtoNet and IPN achieved
accurate classification. In 10- and 30-shot, IPN reached 100% classification accuracy. Adding
KPCA, the accuracy of slightly ProtoNet improved. For of one- and five-shot learning,
PSSPN performed the best, showing that the model can deal with the situations when data
are scarce.

The confusion matrix of five-shot classification accuracy is shown in Figure 8. Many
samples were correctly classified, and the average classification accuracy was 96.2%.
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Figure 9 shows feature visualization via t-SNE, showing that CNN could not clearly
distinguish different fault classes. ProtoNet and IPN performed better thanCNN: the
distance between features of different classes was as large as possible and the features in
the same classes were close to each other. However, some features from different classes
were still close to each other. Our proposed method is relatively more accurate than the
others in t-SNE. In our method, different classes have well-defined boundaries.
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5. Conclusions

We presented a kernel principal component analysis method with a semi-supervised
prototype network (PSSPN) for few-shot bearing fault diagnosis. This method can be used
when few labeled samples are available and makes full use of the unlabeled data to train the
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model. KPCA is used for avoiding the dimensionality problem to improve the accuracy of
the classification results. We used pseudo-labeled data to fine-tune the pretrained model to
avoid the problem of model overfitting. We used two datasets to evaluate the performance
of the proposed method, and the results showed that compared with two other methods,
the classification accuracy of our proposed method is higher when few labeled samples are
available. In the future, we will improve the model to deal with data that are difficult to
distinguish and increase the accuracy of the classification result.
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