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1. Introduction

The Banach contraction principle (abbreviated as BCP in the sequel) is a simple but
very natural and foundational result of metric fixed point theory, which asserts that every
contraction self-mapping defined on a complete metric space admits a unique fixed point.
A very early and noted generalization of BCP is essentially due to Browder [1], which
utilizes a function ψ : [0,+∞) → [0,+∞) satisfying ψ(t) < t for each t > 0, wherein ψ is
often referred as a control function intended to generalize the term αρ(p, q), (where α ∈ [0, 1)
and ρ is a metric). While doing so, Browder [1] called a self map T defined on a metric
space (M, ρ) to be a nonlinear contraction if ρ(Tp, Tq) ≤ ψ(ρ(p, q)) for all p, q ∈ M,
where ψ is hypothesized to be increasing and right continuous. Thereafter, many authors
generalized the Browder fixed point theorem by slightly altering the properties of underlying
control functions ψ (e.g., Boyd–Wong [2] and Matkowski [3]). Recall that the class of control

functions of Boyd and Wong [2] is described as “Ω =
{

ψ : [0,+∞) → [0,+∞) : ψ(t) <

t for each t > 0 and lim sup
r→t+

ψ(r) < t for each t > 0
}

”. Analogously, Matkowski [3] called

a function ψ : [0,+∞) −→ [0,+∞) to be a comparison function if ψ is increasing and
lim

n→+∞
ψn(t) = 0 for all t > 0. Additionally, Matkowski [4] further observed that every

comparison function remains a control function. These two classes of nonlinear contractions
have been studied extensively in recent years, and by now, there exists considerable literature
on such classes of contractions. For more details on metric fixed point theory, one is referred
to [5–7].

In the last two decades, the most significant generalizations/extensions of BCP (cf. [8])
have been established by numerous researchers, namely, Ran and Reurings [9], and Nieto
and Rodríguez-Loṕez [10], to ordered metric spaces. Later, Agarwal et al. [11] extended the
results of Ran and Reurings [9] and Nieto and Rodríguez-Loṕez via nonlinear contractions,
which was later refined by O’Regan and Petruşel [12]. Thereafter, Alam and Imdad [13]
derived an analogue of BCP employing an amorphous binary relation, which was further
enriched by Alam et al. [14] and Arif et al. [15].
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In 1996, Kada et al. [16] discovered the new idea of W-distance on a metric space
and utilized the same to prove some fixed point results. Thereafter, many authors im-
proved/generalized the classical BCP using W-distances; see the references [17–19]. In 2009,
Razani et al. [20] proved a variant of the classical result under ϕ-ψ-contractions via
W-distance, which deduces several results of Branciari [21] and Banach [8], etc., under suitable
considerations on ϕ and ψ. Most recently, Senapati and Dey [22] obtained a relation-theoretic
version of the classical result using an amorphous binary relation involving W-distance.

The intent of this article is to introduce relatively a weaker contractive condition and
utilize the same to prove relation-theoretic fixed point theorems for a self-mapping on a met-
ric space equipped with a W-distance and a symmetric locally T-transitive binary relation.
Thereafter, we furnish an example which illustrates our results. Additionally, some known
related results are noted as consequences of our newly furnished results. Finally, as an
application of one of our furnished results, an existence theorem for the nonlinear integral
type contractive condition is discussed.

2. Preliminaries

For a subsetR ofM2 (whereM is a nonempty set) is called a binary relation onM.
In fact, we often write (p, q) ∈ R in place of pRq. Additionally, the termR|E refers to the
restriction ofR to E andR|E defined asR∩ E2, where E ⊆M.

To have a precise and self-contained presentation, we borrow the following notions
and terms utilized by various mathematicians in their respective investigations.

LetM be a nonempty set andR be a binary relation defined on it. ThenR is called

• “Amorphous”;
• “Universal” ifR =M2;
• “Empty” ifR = ∅;
• “Reflexive” if (p, p) ∈ R for all p ∈ M;
• “Symmetric” if (p, q) ∈ R implies (q, p) ∈ R;
• “Antisymmetric” if (p, q) ∈ R and (q, p) ∈ R imply p = q;
• “Transitive” if (p, q) ∈ R and (q, z) ∈ R imply (p, z) ∈ R;
• “Complete” if (p, q) ∈ R or (q, p) ∈ R for all p, q ∈ M;
• “Partial order” ifR is “reflexive”, “antisymmetric” and “transitive”.

Throughout this manuscript, N stands for the set of natural numbers, N0 for the set of
whole numbers (i.e., N0 := N ∪ {0}) and R for the set of real numbers. Additionally, we
writeR for a binary relation in place of nonempty binary relation.

We adopt the related notions and results, which are needed in our present context.
Inspired by partial order relation (�) found in Turinici [23,24], Alam Imdad [13] intro-
duced the following relatively weaker notions.

Definition 1 ([13]). Let (M, ρ) be a metric space andR be a binary relation defined on it, then

(i) Any p and q inM are said to be R-comparative if either (p, q) ∈ R or (q, p) ∈ R. We
denote it by [p, q] ∈ R.

(ii) A sequence {pn} ⊂ M is calledR-preserving if (pn, pn+1) ∈ R for all n ∈ N0.
(iii) R is called T-closed if for any p, q ∈ M, (p, q) ∈ R ⇒ (Tp, Tq) ∈ R.

(iv) R is called ρ-self-closed, if for any R-preserving sequence {pn} such that pn
ρ−→ p, there

exists a subsequence {pnk} of {pn} with [pnk , p] ∈ R for all k ∈ N0.

Definition 2 ([25]). Let T, R be a self-mapping and binary relation respectively defined on a
nonempty setM. Then

(i) R is called T-transitive if for any p, q, z ∈ M, (Tp, Tq), (Tq, Tz) ∈ R ⇒ (Tp, Tz) ∈ R.
(ii) R is called locally transitive if for each R-preserving sequence {pn} ⊂ M (with range

E = {pn : n ∈ N}),R|E is transitive.
(iii) R is called locally T-transitive if for eachR-preserving sequence {pn} ⊂ T(M) (with range

E = {pn : n ∈ N}),R|E is transitive.
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The following result shows the idea of a class of locally T-transitivity binary relations
being relatively larger than other variants of transitivity:

Proposition 1 ([25]). Let T, R be a self-mapping and binary relation respectively defined on a
metric space (M, ρ). Then

(i) R is T-transitive⇔R|T(M) is transitive,
(ii) R is locally T-transitive⇔R|T(M) is locally transitive,
(iii) R is transitive⇒R is locally transitive⇒R is locally T-transitive,
(iv) R is transitive⇒R is T-transitive⇒R is locally T-transitive.

Definition 3 ([26]). LetM be a nonempty set andR be a binary relation defined on it, then the
dual relation or transpose or inverse ofR, denoted byR−1, is defined byR−1 = {(p, q) ∈ M2 :
(q, p) ∈ R}, whereas the symmetric closure ofR (denoted byRs) is defined to be the setR∪R−1

(i.e.,Rs := R∪R−1).

Proposition 2 ([13]). LetM be a nonempty set andR be a binary relation defined on it,

(p, q) ∈ Rs ⇐⇒ [p, q] ∈ R.

Proposition 3 ([25]). Let T, R be a self-mapping and binary relation, respectively defined on a
nonempty setM. If R is T-closed, then for all n ∈ N0, R is also Tn-closed, where Tn denotes
nth-iterate of T.

Definition 4 ([27]). LetR be a binary relation defined on a nonempty setM. We say that (M, ρ)
isR-complete if everyR-preserving Cauchy sequence inM converges.

Definition 5 ([27]). Let T,R be a self-mapping and binary relation respectively defined on a metric
space (M, ρ), p ∈ M. Then T is called R-continuous atM if for any R-preserving sequence
{pn} such that pn

ρ−→ p, we have T(pn)
ρ−→ T(p). Moreover, T is called R-continuous if it is

R-continuous at each point of the underlying spaceM.

Definition 6 ([28]). LetM be a nonempty set andR be a binary relation defined on it. If E is part
ofM, then E is called R-directed if for each p, q ∈ E, there exists z ∈ M such that (p, z) ∈ R
and (q, z) ∈ R.

Given M be a nonempty set and R be a binary relation defined on it, we use the
following notations:

(i) F(T):=the set of all fixed points of T,
(ii) M(T,R) := {p ∈ M : (p, Tp) ∈ R}.
(iii) M[T,R] := {p ∈ M : (p, Tp) and (Tp, p) ∈ R}.

A variant of BCP under amorphous binary relation is contained in [13]:

Theorem 1 ([13]). Let (M, ρ) be a metric space endowed with a binary relation R. If T is a
self-mapping onM such that the following conditions are satisfied:

(i) (M, ρ) isR-complete,
(ii) R is T-closed,
(iii) M(T,R) is nonempty,
(iv) Either T isR-continuous orR is ρ-self-closed,
(v) There exists α ∈ [0, 1) such that

ρ(Tp, Tq) ≤ αρ(p, q) for all p, q ∈ M with (p, q) ∈ R,

then F(T) 6= ∅. Moreover, ifM isRs-directed, then F(T) is singleton.

Kada et al. [16] introduced the following notion.
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Definition 7 ([16]). We say that a function ω : M×M→ [0,+∞) is called W-distance on a
metric space (M, ρ) if the following properties are satisfied:

(p1) : For any p, q, z ∈ M, ω(p, z) ≤ ω(p, q) + ω(q, z)
(p2) : If for any p ∈ M and qn → q inM, then ω(p, q) ≤ lim infn ω(p, qn) (i.e., ω is lower

semi continuous in its second argument),
(p3) : For each ε > 0, there exists δ > 0 such that ω(z, p) ≤ δ and ω(z, q) ≤ δ implies that

ω(p, q) ≤ ε.

Remark 1. Notice that W-distance is not symmetric, which can be described later by the use of
an example.

The following family of mappings is given by Razani et al. [20].
Let ζ be the class of all continuous functions ϕ : [0,+∞) → [0,+∞) satisfying the

following properties:

(ζ1) : ϕ is increasing,
(ζ2) : ϕ(t) > 0 for all t > 0.

Lemma 1. If ϕ is a member of ζ such that lim
n→+∞

ϕ(an) = 0, then lim
n→+∞

an = 0.

Proof. Suppose, on the contrary, that there exist ε > 0 and {nk} for all k ∈ N such that

ank ≥ ε > 0

according to (ζ1), and making the limit superior as k→ 0, on both sides, we have

lim sup
k→+∞

ϕ(ank ) ≥ ϕ(ε) > 0,

which is a contradiction, thus lim
n→+∞

an = 0.

The following lemmas are required in the proof of the main results.

Lemma 2 ([16]). Let ω be a W-distance on a metric space (M, ρ). If {pn} is a sequence inM such
that limn→+∞ ω(pn, p) = limn→+∞ ω(pn, q), then p = q. In particular if ω(z, p) = ω(z, q) =
0, then p = q.

Remark 2. As ω(u, v) = ω(v, u) = 0 and ω(u, u) ≤ ω(u, v) + ω(v, u) = 0, implies that
ω(u, u) = 0 and due to Lemma 2, we have u = v.

Lemma 3 ([16]). Let ω be a W-distance defined on a metric space (M, ρ). We say that {pn} is a
Cauchy sequence inM, if for each ε > 0 there exists Nε in N such that m > n > Nε implies that
ω(pn, pm) < ε (or limm,n→+∞ ω(pn, pm) = 0).

The following notion was introduced by Senapati and Dey [22].

Definition 8. LetR be a binary relation defined on a metric space (M, ρ). We say that a mapping
f : M → R ∪ {−∞,+∞} is R-lower semi continuous (or, in short, R-LSC ) at p inM if for
everyR-preserving sequence {pn} converging toM, we have lim infn→+∞ f (pn) ≥ f (p).

A variant of BCP under a W-distance and amorphous binary relation is contained in [22]:

Theorem 2 ([22]). Let T be a self-mapping defined on a metric space (M, ρ), wherein (M, ρ)
equipped with a binary relation R and a W-distance ω. Let ω be R-lower semi-continuous in
its second argument and Z an R-complete subspace ofM with T(M) ⊂ Z. Assume that the
conditions (ii), (iii) and (iv) of Theorem 1 along with the following condition holds:
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(v) There exists α ∈ [0, 1) such that

ω(Tp, Tq) ≤ αω(p, q) for all p, q ∈ M with (p, q) ∈ R.

Then F(T) 6= ∅. Moreover, if T(M) isRs-directed, then F(T) is singleton.

The attempted improvements in our results are based on the following motivations,
which are as follows:

• To extend linear contractions due to Senapati and Dey ([22], Theorems 2.1 and 2.2) to
nonlinear contractions on a metric space endowed via W-distances and symmetric
binary relations.

• To give an example which demonstrate the utility of our presented results herein.
• To discuss several sharpened versions of our main results by considering suitable

assumptions.
• To utilize our results and obtain a result for the integral type contractive condition in

relational metric space involving W-distance.

3. Main Results

Before presenting our main theorems, firstly, we refine the class of control functions,
which is indicated in Razani et al. [20]. Let ϑ be the collection of all mappings ψ : [0,+∞)→
[0,+∞) satisfying the following conditions:

(ϑ1) : ψ is increasing,
(ϑ2) : lim supr→t+ ψ(r) < t,
(ϑ3) : ψ(t) < t for all t > 0.

Now, we propose two suitable properties of a member ψ lies in ϑ.

Lemma 4. Let ψ be in ϑ, then lim
n→+∞

ψn(t) = 0 for each t > 0.

Proof. For each 0 < t, in view of (ϑ1), we have that {ψn(t)} is a decreasing sequence of
non-negative numbers, and thus there exists ε ≥ 0 such that

lim
n→+∞

ψn(t) = ε+. (1)

Let, if possible, ε > 0, and we set γ := lim sup
n→+∞

ψn(t). Clearly, γ ≥ ε In view of (1),

ε = lim
n→+∞

ψn(t) = lim sup
n→+∞

ψn(t) = lim sup
γ→ε+

ψ(ε) < ε, which is impossible, hence

lim
n→+∞

ψn(t) = 0 for each t > 0.

Proposition 4. If ψ is in ϑ, then ψ(0) = 0.

Proof. Suppose on contrary that ψ(0) = t for some t > 0. As 0 < t and according to (ϑ1),
we have ψ(0) ≤ ψ(t) and also, utilizing (ϑ3), it allows that t = ψ(0) ≤ ψ(t) < t, which is
impossible, hence ψ(0) = 0.

Now, we are equipped to prove an existence result under ϕ-ψ-contractions employing
binary relation via the W-distance.

Theorem 3. Let T be a self-mapping defined on a metric space (M, ρ), wherein (M, ρ) equipped
with a symmetric locally T-transitive binary relation R and a W-distance ω. Let ω be R-lower
semi-continuous in its second argument. Assume that the conditions (i), (ii), (iii) and (iv) of
Theorem 1 along with the following condition holds:

(v) There exist ϕ ∈ ζ and ψ ∈ ϑ such that
ϕ(ω(Tp, Tq)) ≤ ψ(ϕ(ω(p, q))) for all p, q ∈ M with (p, q) ∈ R.
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Then F(T) 6= ∅.

Proof. AsM(T,R) 6= ∅. Let p0 ∈ M(T,R). Construct a sequence {pn} with an initial
point p0, that is

pn = Tn(p0) for all n ∈ N0. (2)

As (p0, Tp0) ∈ R, using T isR-closed and Proposition 3, we get

(Tn p0, Tn+1 p0) ∈ R

so that
(pn, pn+1) ∈ R for all n ∈ N0. (3)

Thus, the sequence {pn} isR-preserving. Due to symmetry ofR, we have

(pn+1, pn) ∈ R for all n ∈ N0. (4)

Applying the contractivity condition (v) to (3) and (ϑ1), we deduce, for all n ∈ N0

ϕ(ω(pn, pn+1)) ≤ ψ(ϕ(ω(pn−1, pn)))

≤ ψ2(ϕ(ω(pn−2, pn−1)))

≤ · · ·
≤ ψn(ϕ(ω(p0, p1))).

Making n→ +∞, and employing Lemma 4, we get lim
n→+∞

ϕ(ω(pn, pn+1)) = 0. Using

this fact and in lieu of Lemma 1, we have

lim
n→+∞

ω(pn, pn+1) = 0. (5)

Now, if (pn, pn+1) ∈ R so (pn+1, pn) ∈ R for all n ∈ N0 (due to symmetric property
ofR). Similarly, we have

lim
n→+∞

ω(pn+1, pn) = 0. (6)

We claim that {pn} is a Cauchy sequence. Suppose on the contrary that {pn} is
not Cauchy. Then there exist two subsequences {pmk}, {pnk} of {pn} and ε > 0 with
k ≤ mk < nk such that

ω(pmk , pnk ) ≥ ε. (7)

Using (7), there exists k0 ∈ N such that mk > k0, which implies that

ω(pmk , pmk+1) < ε. (8)

If mk > k0, and in view of (7) and (8), nk 6= mk+1, we can choose nk as a minimal
index such that ω(pmk , pnk ) ≥ ε but ω(pmk , ppk ) < ε for pk ∈ {mk+1, mk+2, · · · , nk−1}.
Now, using (5), we have

ε ≤ ω(pmk , pnk )

≤ ω(pmk , pnk−1) + ω(pnk−1 , pnk )

< ε + ω(pnk−1 , pnk )→ ε+ (as k→ +∞).
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Letting k→ +∞, we have limk→+∞ ω(pmk , pnk ) = ε+. Therefore, for any {kr}+∞
r=1 such

that ω(pmkr
, pnkr

) tends to ε+. Denote δkr := ϕ(ω(pmkr
, pnkr

)) for all r ∈ N, and utilizing
this fact and the continuity of ϕ, we have

δkr → ϕ(ε)+ as r→ +∞. (9)

If γ := lim supk→+∞ ω(pmk+1 , pnk+1) ≥ ε, then there exists {kr}+∞
r=1 such that

ω(pmkr+1 , pnkr+1)→ γ ≥ ε as r→ +∞.

Employing locally T-transitivity ofR and (3), we have (pmkr+1 , pnkr+1) ∈ R for all r ∈ N.
Now, employing continuity and increasing property of ϕ, (ϑ2), contractive condition (v)
and (9), we obtain

ϕ(ε) ≤ ϕ(γ) = lim
r→+∞

ϕ(ω(pmkr+1 , pnkr+1))

≤ lim
r→+∞

ψϕ(ω(pmkr
, pnkr

))

= lim sup
δkr→ϕ(ε)+

ψ(δkr ) < ϕ(ε) (as ϕ(ε) > 0, for all ε > 0),

which is a contradiction and hence lim sup
k→+∞

ω(pmk+1 , pnk+1) < ε. Now, we have

ε ≤ ω(pmk , pnk )

≤ ω(pmk , pmk+1) + ω(pmk+1 , pnk+1) + ω(pnk+1 , pnk ).

Making the limit k→ +∞, in the above in-equation besides using (5) and (6), we obtain

ε ≤ lim
k→+∞

ω(pmk , pnk )

≤ lim
k→+∞

ω(pmk , pmk+1) + lim sup
k→+∞

ω(pmk+1 , pnk+1) + lim
k→+∞

ω(pnk+1 , pnk ) < ε,

which is again a contradiction. Hence, we conclude that

lim
m,n→+∞

ω(pm, pn) = 0. (10)

In lieu of Lemma 3, {pn} is a Cauchy sequence inM, which isR-preserving by virtue
of (M, ρ) being R-complete. We now demonstrate that p is fixed on T. To accomplish

this, firstly assume that T is R-continuous. Since {pn} is R-preserving with pn
ρ−→ p,

implies that pn+1 = T(pn)
ρ−→ T(p) (R-continuity of T). Due to the limit’s uniqueness,

we obtain T(p) = p, that is F(T) 6= ∅. Alternately, suppose that R is ρ-self-closed.

Since {pn} isR-preserving such that pn
ρ−→ p, then there is a subsequence {pnk} of {pn}

with [pnk , p] ∈ R, for all k ∈ N0 (the ρ-self-closedness of R). Utilizing the assumption

(v), [pnk , p] ∈ R with pnk

ρ−→ p, Proposition 4 and (ϑ3), (either ϕ(ω(pnk , p)) is zero or
nonzero)), we have

ϕ(ω(pnk+1 , Tp)) ≤ ψϕ(ω(pnk , p)) ≤ ϕ(ω(pnk , p)) for all k ∈ N. (11)

Considering (10), for each ε > 0 there exists Kε with n > Kε such that ω(pKε , pn) < ε.

As pn
ρ−→ p and ω(p, .) isR-lower semi continuous, we have

ω(pKε , p) ≤ lim inf
k→+∞

ω(pKε , pn) ≤ ε.
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Thus ω(pKε , p) ≤ ε. Set ε = 1
k and Kε = nk, we have

lim
k→+∞

ω(pnk , p) = 0. (12)

Letting k → +∞ in (11), using the continuity of ϕ and using (12), we have
lim

k→+∞
ω(pnk+1 , Tp) = 0. according to this fact and (4), we have

ω(pnk , Tp) ≤ ω(pnk , pnk+1) + ω(pnk+1 , Tp)→ 0 (as k→ +∞),

so that

lim
k→+∞

ω(pnk , Tp) = 0. (13)

Making use of (12), (13) and Lemma 2, we have T(p) = p. Hence, p is a fixed point
of T.

Combining Proposition 1 and Theorem 3, we deduce the following corollary.

Corollary 1. Theorem 3 remains valid if locally, the T-transitivity ofR is replaced by any one of
the following hypotheses besides assuming the rest of the hypotheses:

(i) R is transitive;
(ii) R is T-transitive;
(iii) R is locally transitive.

4. Uniqueness Result

Now, in regard of Theorem 3, we state and prove the following uniqueness theorem.

Theorem 4. If in the hypotheses of Theorem 3, the assumption R-directedness of T(M) or
R-completeness of T(M) is added, then F(T) is singleton.

Proof. Firstly assume that the R-directedness of T(M). In lieu of Theorem 3, we have
F(T) 6= ∅. Let l, m ∈ F(T), we need to show that l = m. As l, m ∈ F(T) ⊆ T(M), there
exists z ∈ M, such that (l, z) and (m, z) ∈ R. SinceR is T-closed and in view of Proposition 3
and symmetry of R (for all n ∈ N0), we have (Tn(z), Tn(l)) ∈ R and (Tn(z), Tn(m)) ∈ R.
Applying the contractive condition (v) to (Tn(z), Tn(l)) ∈ R, we have

ϕ(ω(Tn(z), l)) ≤ ψ(ϕ(ω(Tn−1(z), l)))

≤ ψ2(ϕ(ω(Tn−2(z), l)))

≤ · · ·
≤ ψn(ϕ(ω(z, l))).

Due to Lemma 4, we obtain lim
n→+∞

ϕ(ω(Tn(z), l)) = 0 and in lieu of Lemma 1, we have

lim
n→+∞

ω(Tn(z), l)) = 0. (14)

Similarly, we can obtain

lim
n→+∞

ω(Tn(z), m)) = 0. (15)

Hence, due to Lemma 2, (14) and (15), we have

l = m.
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Secondly, assume that R|T(M) is complete. Then for any l, m ∈ T(M), (l, m) ∈ R
or (m, l) ∈ R; therefore, (l, m), (m, l) ∈ R (symmetry of R). Now, using the contractive
condition (v) to (l, m) ∈ R, we have

ϕ(ω(m, l)) ≤ ψϕ(ω(m, l)) < ϕ(ω(m, l)).

Thus ϕ(ω(m, l)) = 0, (as ϕ(t) > 0, for all t > 0) implies that ω(m, l) = 0. Similarly,
ω(l, m) = 0. By Remark 2 we have l = m. Thus, in both the assumptions ofR|T(M), F(T)
is a singleton.

Remark 3. Observe that the requirement of the symmetry of a binary relation is not necessary if
conditionM(T,R) (utilized in the assumption (iii)) is replaced byM[T,R] in Theorem 4.

5. Illustrative Example

Finally, we furnish an example to validate the utility of Theorems 3 and 4 over corre-
sponding earlier known results.

Example 1. LetM = { 1
n : n ∈ N} ∪ {0}. For each p, q inM, define a metric ρ by

ρ(p, q) =
{

p + q, p 6= q
0, p = q,

and define ω by ω(p, q) = q. It can be easily seen that w is a W-distance on (M, ρ). OnM, define
a self-mapping T by T(p) = p

2p+1 for all p ∈ M and also ϕ, ψ : [0,+∞)→ [0,+∞) by ϕ(t) = t
and ψ(t) = t

t+1 for all t ∈ [0,+∞). Clearly, ϕ ∈ ζ and ψ ∈ ϑ. LetR := {(p, q) ∈ M2 : p− q >

0 or q− p < 0} be symmetric closure of a binary relation B := {(p, q) ∈ M2 : p− q < 0},
which is a locally T-transitive. It is easy to verify thatR is T-closed,M(T,R) 6= ∅ and (M, ρ)
isR-complete. Now, for each (p, q) ∈ R

ϕ(ω(Tp, Tq)) = Tq =
q

2q + 1
≤ q

q + 1
= ψ(ϕ(ω(p, q))).

Thus remaining assumptions of Theorem 4 can be easily verified. Observe that p = 0, is the
unique fixed point of T.

Notice that,M(T,R) 6= ∅, T is R-continuous and R is T-closed. However, sufficiently
small positive ε > 0, choose q = ε and p = 0. Now, (p, q) = (0, ε) ∈ R,

ω(Tp, Tq) = ω(T0, Tε) = Tq =
ε

2ε + 1
≤ αε = αω(p, q)).

Therefore, α ≥ 1
2ε+1 as ε was very small, ε tends to zero, implies that α ≥ 1, which is a

contradiction. Thus contraction condition of Theorem 2 of Senapati and Dey [22] does not work for
the present example.

Incidentally, also, for (p, q) = (0, ε) ∈ B,

ρ(Tp, Tq) = ρ(T0, Tε) = Tε =
ε

2ε + 1
≤ αε = αρ(p, q)).

Same as above, we obtain a contradiction (that is α ≥ 1). Thus contractive condition of
Theorem 1 of Alam and Imdad [13] does not work for the present example under the metrical
consideration.

Now, we deduce some special cases from our main result (that is, Theorem 4).

(i) On setting Z = M, ϕ(t) = t and ψ(t) = αt (α ∈ [0, 1)) in Theorem 4, we obtain
Theorem 2 due to Senapati and Dey [22](without utilizing the symmetric property
and locally T-transitivity ofR).
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(ii) On setting ω = ρ, ϕ(t) = t and ψ(t) = αt (α ∈ [0, 1)) in Theorem 4, we obtain
Theorem 1 due to Alam and Imdad [13] (without utilizing the symmetry and locally
T-transitivity ofR).

(iii) On setting ω = ρ, ϕ(t) = t and ψ ∈ ϑ (condition (ϑ2) is replaced by a continuous
control function or a upper semi continuous control function) in Theorem 4, we obtain
a Corollary 1 contained in [14].

(iv) On setting ω = ρ, ϕ(t) = t and ψ ∈ ϑ (without using condition (ϑ1)) in Theorem 4,
we obtain Theorem 4 contained in [15].

(v) Choosing R = M2 (the universal relation) and ψ in ϑ in Theorem 4 (wherein (ϑ2)
is replaced by upper semi-continuous from the right), the main theorem of Razani
et al. [20] is deduced.

(vi) On takingR =M2, (the universal relation), ω = ρ, ϕ(t) = t and ψ(t) = αt (α ∈ [0, 1))
in Theorem 4, we deduce the classical Banach fixed point theorem.

(vii) “ChoosingR =M2, (universal relation), ϕ(t) =
∫ ε

0 θ(t)dt and ψ(t) = αt (α ∈ [0, 1)),
where θ : [0,+∞) → [0,+∞) is Lebesgue-integrable mapping, which is summable
and

∫ ε
0 θ(t)dt > 0 for each ε > 0. Clearly, ϕ ∈ ζ and ψ ∈ ϑ. Henceforth in view of

preceding hypotheses, the main theorem of Branciari [21] can be deduced”.

6. An Application

As an application of Theorem 3, we prove a result under ϕ-ψ type integral contraction
in a metric space equipped with binary relation via W-distance. Suppose C be the set of
mappings µ : [0,+∞)→ [0,+∞) satisfying the following:

(I) Consider a mapping µ on each compact subset of [0,+∞) along with Lebesgue-
integrablilty of µ,

(II)
∫ ε

0 µ(t)dt > 0 for allε > 0.

Theorem 5. Let (M, ρ) be a metric space endowed with a binary relationR, whereR is a symmet-
ric and locally T-transitive. Let ω be a W-distance on (M, ρ), which isR-lower semicontinuous in
its second arguments. Let T be a self-mapping onM such that the following condition is satisfied:
For every p, q ∈ M with (p, q) ∈ R and µ ∈ C such that

ϕ(ω(Tp, Tq)) ≤
∫ γ◦ϕ(ω(p,q))

0
µ(t)dt, (16)

where ϕ ∈ ζ and γ ∈ ϑ. Further, if the assumptions, (i)-(iv) of Theorem 3 are satisfied, then T has
a fixed point.

Proof. Consider a mapping Γ : [0,+∞)→ [0,+∞) defined by Γ(s) =
∫ s

0 µ(t)dt, then Γ is a
continuous increasing function. Therefore, (16) can be written as

ϕ(ω(Tp, Tq)) ≤ (Γ ◦ γ) ◦ ϕ(ω(p, q)).

Clearly, Γ ◦ γ is increasing due to the composition of the two increasing functions
namely: Γ and γ and (Γ ◦ γ)(t) < t, for each t > 0 (due to increasingness of Γ ◦ γ and using
the fact that limn→∞(Γ ◦ γ)n(t) = 0, for each t > 0). Now, we need to show that Γ ◦ γ verify
the property of ϑ2. Let {tn} be a sequence in [0, ∞) such that tn is decreasing with tn → t+

as n→ ∞. Then

lim sup
tn→t+

(Γ ◦ γ)(tn) = Γ
(

lim sup
tn→t+

ϕ(tn)
)

≤ (Γ ◦ ϕ)(t) < t.

Thus, Γ ◦ γ ∈ ϑ. This ends the proof.
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12. O’Regan, D.; Petruşel, A. Fixed point theorems for generalized contractions in ordered metric spaces. J. Math. Anal. Appl. 2008, 341,

1241–1252. [CrossRef]
13. Alam, A.; Imdad, M. Relation-theoretic contraction principle. J. Fixed Point Theory Appl. 2015, 17, 693–702. [CrossRef]
14. Alam, A.; Arif, M.; Imdad, M. Metrical fixed point theorems via locally finitely T-transitive binary relations under certain control

functions. Miskolc Math. Notes 2019, 20, 59–73. [CrossRef]
15. Arif, M.; Imdad, M.; Alam, A. Fixed point theorems under locally T-transitive binary relations employing Matkowski contractions.

Miskolc Math. Notes 2022, 23, 71–83. [CrossRef]
16. Kada, O.; Suzuki, T.; Takahashi, W. Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math.

Jpn. 1996, 44, 381–591.
17. Suzuki, T. Generalized distance and existence theorems in complete metric spaces. J. Math. Anal. Appl. 2001, 253, 400–458.

[CrossRef]
18. Künzi, H.P.A. Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric

topology. In Handbook of the History of General Topology; Springer: Dordrecht, The Netherlands, 2001; pp. 853–968.
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