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Abstract: The goal of this study is to provide analytical and numerical assessments to a fluid flow
based on an Eyring–Powell viscosity term and a Darcy–Forchheimer law in a porous media. The
analysis provides results about regularity, existence and uniqueness of solutions. Travelling wave
solutions are explored, supported by the Geometric Perturbation Theory to build profiles in the
proximity of the equation critical points. Finally, a numerical routine is provided as a baseline for the
validity of the analytical approach presented for low Reynolds numbers typical in a porous medium.
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1. Introduction

Transport processes in porous media are typically given in several applications: me-
chanics, electrochemistry, metallurgic and geophysics, to cite some. In 1856, Darcy [1]
provided a mathematical relation to study the fluid dynamics involved in porous media,
particularly, water flows in sand beds.

The flow of a fluid in a porous medium typically occurs under low Reynolds numbers
due to the interstitial structure of these kind of media. To increase the Reynolds numbers, it
is required to enlarge the values of pressure gradients in the medium, i.e., to account for a
steep pressure distribution. This fact improves turbulent mechanisms in the fluid, making
the Darcy‘s law vague. Consequently, and to increase modelling accuracy in the mentioned
circumstances, first Forchheimer in 1901 [2], and later Jaeger in 1956 [3], proposed empirical
relations between the velocity and the hydraulic gradient in a turbulent flow. Currently,
other modelling strategies are available. For example, in [4], analytical and numerical
solutions were provided to model in shallow water. To this end, the (G′/G)−expansion
method was considered to obtain solutions to the classical Gardner equation, modified
Korteweg–de Vries equation, and generalized Korteweg–de Vries equation. Afterward, the
numerical approach allowed us to compare with the analytical findings.

Based on the studies in [2,3], the Darcy’s law was renamed as Darcy–Forchheimer’s
principle by Mustak in [5] and Ward in [6]. Note that the mentioned formulations were
considered for Newtonian fluids. Nonetheless, the Darcy–Forchheimer‘s law has been
employed for non-Newtonian fluids as well (the reader is referred to [7–10] and references
there for a wider scope).

There exist plenty of non-Newtonian fluids in the literature, but particularly, we focus
our analysis on the Eyring–Powell fluid flow. This model allows us to describe the shear
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stress and the associated viscosity based on the kinetic theory of liquids. This underlying
theory is robust enough to provide a kinematic condition describing the viscosity terms.
In addition, and as it will be described afterwards in the governing equation, the fluid is
assumed to flow in a porous medium given by a Darcy–Forchheimer law in independent
term. A similar hybrid Eyring–Powell and Darcy–Forchheimer flow has been explored
in [11] to model a fluid in a stratified stretching sheet embedded in a porous medium. In
this mentioned study, numerical solutions, supported by a Chebyshev spectral method, are
obtained to the set of non-linear equations describing the flow under study.

The Eyring–Powell fluid model has been considered to model flow profiles in mag-
netohydrodynamics (MHD). Akbar [12] studied solutions for a two dimensional MHD
fluid. In addition, Hina [13] analysed a MHD Eyring–Powell fluid with heat transfer.
Later, Bhatti et al. [14] considered a permeable stretching surface for an MHD flow and
made an analysis involving heat transfer. Finally, the reader is referred to the set of pa-
pers [15–20] for further analysis related with Eyring–Powell fluids. Note that other kinds
of non-homogeneous diffusion (not supported by the Eyring–Powell conceptions) have
been considered in [21] for a Darcy–Forchheimer flow.

As it will be described, the present study provides travelling wave solutions. In this
regard, and in the search of analytical profiles to non-Newtonian fluids, the studies [22–24]
provide important achievements. In our case, the convergence and stability results in
the travelling wave profiles are provided by a Geometric Perturbation approach and
are validated by a numerical exercise using the module bvp4c in Matlab. Note that the
numerical approach and the use of the function bvp4c have been previously employed in
fluid modelling. In [25], the authors provided a modelling analysis about the impact of
thermophoretic particle deposition and magnetic dipole in the flow of a Maxwell liquid
over a stretching sheet. To this end, they used a numerical scheme based on a Runge–
Kutta–Fehlberg 45 (RKF 45) process with shooting technique in ODEs. The authors in [26]
employed the bvp4c function to solve a bioconvection flow of Sisko nanofluid confined by
a stretched surface. Some other studies in MHD flows made use of advanced numerical
analysis: the authors in [27] analysed a mesh-free weak-strong (MWS) method to provide
solutions for a MHD flow in a pipe with different geometries and with arbitrary conducting
walls. In [28], a meshless local Petrov–Galerkin method was used to search for solutions
in an unsteady MHD flow for different values in the wall conductivity and for different
Hartmann numbers. Further, in [29], an MHD flow was solved by a combination of finite
volume method and spectral techniques. Another novel numerical analysis was provided
in [30] where Crank-–Nicolson schemes supported by energy methods were employed to
study the convergence and stability of the solutions.

The article structure is as follows: Firstly, a discussion about the fluid model proposed
is introduced. Afterward, regularity of solutions is explored. Profiles of solutions are
obtained based on the theory of travelling waves and the Geometric Perturbation Theory.
Finally, a numerical process aims at validating the analytical approach proposed.

Fluid Model Principles

To start with, assume a one-dimensional, incompressible, unsteady and electrically
conducting Eyring–Powell fluid. The velocity field is given by

−→
V = V(v1(y, t), 0, 0), where

v1(y, t) is the first velocity component depending of a transverse direction y. The geometry
under study can be described as a big porous media with volume V and porous structures
of typical size l, such that V

1
3 � l. Given any interstitial distribution in the medium, a

certain initial velocity is given as it will be introduced. The intention is to characterize the
evolution of the velocity profile flowing through the x−axis and while varying with the
transversal direction y. The hypothesis of a one dimensional flow is typical in flowing
principles of pipes of stretching surfaces (see [31] for a MHD fluid flowing along rectangular
and circular pipes).
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The continuity equation and constitutive equation for Eyring–Powell fluid are given by:

div
−→
V = 0, (1)

and:

ρ
d
−→
V

dt
= div

−→
A +

−→
J ×−→B , (2)

where ρ is the fluid density,
−→
J is the current density,

−→
B is the magnetic field and

−→
A is

given by
−→
A = −p

−→
I + τij, (3)

div
−→
B = 0, curl

−→
B = µ1

−→
j , curl

−→
E = −∂

−→
B

∂t
(4)

−→
J = σ

(−→
E +

−→
V ×−→B

)
, (5)

where p is pressure the pressure distribution, τij is the shear stress tensor,
−→
I is the identity

tensor, µ1 the magnetic permeability,
−→
E is the electric field and σ is the electrical conduc-

tivity. The magnetic field can be expressed as:
−→
B =

−→
B 0 +

−→
b where

−→
B 0 and

−→
b are the

imposed and induced magnetic fields, respectively. In addition, the shear stress tensor τij
for an Eyring–Powell fluid model is given by (refer to [16]):

τij = µ
∂vi
∂xj

+
1
β

sinh−1

(
1
d1

∂vi
∂xj

)
, (6)

where µ dynamic viscosity, β and d1 are the characteristics of Powell–Eyring model and vi
the velocity component for i = 1, 2, 3. Considering:

sinh−1

(
1
d1

∂vi
∂xj

)
∼=

1
d1

∂vi
∂xj
− 1

6

(
1
d1

∂vi
∂xj

)3

,

∣∣∣∣∣ 1
d1

∂vi
∂xj

∣∣∣∣∣ ≤ 1.

The governing equation for i = 1 in the absent of induced magnetic field can be
written as (refer to [15–17]):

∂v1

∂t
= −1

ρ

dP
dx

+

(
ν +

1
βC1ρ

)
∂2v1

∂y2 −
1

2βC3
1ρ

(
∂v1

∂y

)2 ∂2v1

∂y2 −
σB2

0v1

ρ
− νv1

K
−

v2
1

K1
, (7)

where ν = µ
ρ is the kinematic viscosity, K is the permeability (hydraulic conductivity) of the

porous medium, K1 is the inertial permeability, C1 is a fluid characteristic constant and B0
refers to the magnitude of the imposed magnetic field as describe above. Let us introduce
non-dimensional quantities (refer to [32]) as follows:

v∗1 =
v1

U0
, x∗ =

x
L

, y∗ =
y
L

, t∗ =
U0

L
t, P∗ =

P
ρU2

0
, A =

1
βC1ρ

,

ε =
U0

2ρβC3
1 L3

, F =
U0

K
, G =

U2
0

K1
. (8)

Substitute (8) into into Equation (7) (ignoring ∗ for simplicity):

∂v1

∂t
= −dP

dx
+

1
Re

(1 + A)
∂2v1

∂y2 − ε

(
∂v1

∂y

)2 ∂2v1

∂y2 −
(

M2

Re
+ F

)
v1 − Gv2

1, (9)
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where Re =
U0L

ν is the Reynolds number and M = B0L
√

σ
ρν is the Hartmann number. Now,

differentiate the Equation (9) with regards to x, so that:

−d2P
dx2 = 0, −dP

dx
= K2.

After using the value of − dP
dx in Equation (9):

∂v1

∂t
= K2 +

1
Re

(1 + A)
∂2v1

∂y2 − ε

(
∂v1

∂y

)2 ∂2v1

∂y2 −
(

M2

Re
+ F

)
v1 − Gv2

1, (10)

As pointed previously, it is required to introduce a general initial velocity distribu-
tion that is related with the interstitial structure of the medium. Mathematically, this is
considered as follows:

v1(y, 0) = v10(y) ∈ L1(R) ∩ L∞(R), (11)

where v1 → 0+ at the pseudo-boundary in |y| → ∞ and v10(y) refers to the mentioned
initial velocity distribution.

2. Existence and Uniqueness of Solutions

Let us consider a test function φ1 ∈ C∞(R) such that for 0 < τ < t < T :

∫
R

v1(t)φ1(t)dy =
∫
R

v1(τ)φ1(τ)dy +

t∫
τ

∫
R

v1
∂φ1

∂s
dyds + A1

t∫
τ

∫
R

φ1dyds

+
1

Re
(1 + A)

t∫
τ

∫
R

v1
∂2φ1

∂y2 dyds +
ε

3

t∫
τ

∫
R

(
∂v1

∂y

)3 ∂φ1

∂y
dyds

−
(

M2

Re
+ F

) t∫
τ

∫
R

v1φ1dyds.− G
t∫
τ

∫
R

v2
1φ1dyds. (12)

Assume a finite r0 ∈ R+ and define a ball Br accordingly, such that r � r0. The
following equation is defined in Br × [0, T]:

v1
∂φ1

∂s
+ A1φ1 +

1
Re

(1 + A)v1
∂2φ1

∂y2 +
ε

3

(
∂v1

∂y

)3 ∂φ1

∂y
−
(

M2

Re
+ F

)
v1φ1−Gv2

1φ1 = 0, (13)

with the following boundary and initial like conditions:

0 <
∂φ1

∂y
= φ1 � 1,

v1(y, 0) = v10(y).

The following Theorem shows the existence of solutions to the defined problem (13).

Theorem 1. Given v10(y) ∈ L1(R) ∩ L∞(R), then the solution is bounded for all (y, t) ∈
Br × [τ, T] with r � 1.

Proof. Consider ζ ∈ R+. The following cut-off function is defined:

ψζ ∈ C∞
0 (y, t), 0 ≤ ψζ ≤ 1,

ψζ = 1 in Br−ζ , ψζ = 0 in R− Br−ζ ,
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so that: ∣∣∣∣∂ψζ

∂ζ

∣∣∣∣ = Bc

ζ
,

Multiplying the Equation (13) by ψζ and integrating in Br × [τ, T], we obtain:

t∫
τ

∫
Br

v1
∂φ1

∂s
ψζ dyds + A1

t∫
τ

∫
Br

φ1ψζ dyds +
1

Re
(1 + A)

t∫
τ

∫
Br

v1
∂2φ1

∂y2 ψζ dyds

+
ε

3

t∫
τ

∫
Br

(
∂v1

∂y

)3 ∂φ1

∂y
ψζdyds−

(
M2

Re
+ F

) t∫
τ

∫
Br

v1φ1ψζ dyds− G
t∫
τ

∫
Br

v1φ1ψζdyds = 0. (14)

As the intention is to prove uniqueness and regularity under a global time evolution
for m > 1, assume some large r � r0 > 1 and with t� 1 ([33,34]):

t∫
τ

v1ds ≤
t∫
τ

vm
1 ds ≤ B1(τ)r

2m
m−1 .

Considering the spatial variable y close to ∂Br, it can be assumed y ∼ r. Then, for
m = 2, it holds:

t∫
τ

v1ds ≤
t∫
τ

v2
1ds ≤ B1(τ)r4,

t∫
τ

(
∂v1

∂y

)3
ds ≤ 64B3

1(τ)r
3.

Then, the following integral can be bounded as:

1
Re

(1 + A)

t∫
τ

∫
Br

v1
∂2φ1

∂y2 ψζdyds ≤ 1
Re

(1 + A)
∫
Br

B1(τ)r4 ∂2φ1

∂y2 ψζ dy

=
1

Re
(1 + A)B1(τ)r4

(∂φ1

∂y
ψζ

)
∂Br

−
∫
Br

∂φ1

∂y
∂ψζ

∂y
dy

. (15)

As r � 1 and taking φ1 sufficiently small such that ∂φ1
∂y ψζ � 1 over ∂Br:

1
Re

(1 + A)

t∫
τ

∫
Br

v1
∂2φ1

∂y2 ψζ dyds = − 1
Re

(1 + A)B1(τ)
∫
Br

r4 ∂φ1

∂y
∂ψζ

∂y
dy

≤ 1
Re

(1 + A)B1(τ)
∫
Br

r4 ∂φ1

∂y
Bc

ζ
dy (16)

=
1

Re
(1 + A)BcB1(τ)

∫
Br

r3 ∂φ1

∂y
dy,

and:
ε

3

t∫
τ

∫
Br

(
∂v1

∂y

)3 ∂φ1

∂y
ψζ dyds ≤ 64ε

3

∫
Br

B3
1(τ)r

9 ∂φ1

∂y
ψζ dy.
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Integrating, we get:

ε

3

t∫
τ

∫
Br

(
∂v1

∂y

)3 ∂φ1

∂y
ψζdyds ≤ −64ε

3

∫
Br

B3
1(τ)r

9φ1
∂ψζ

∂y
dy

≤ 64ε

3

∫
Br

B3
1(τ)r

9φ1
Bc

η
dy (17)

=
64εBcB3

1(τ)

3

∫
Br

r8φ1dy.

Using (17) and (18) in (14), we obtain:

t∫
τ

∫
Br

v1
∂φ1

∂s
ψζdyds + A1

t∫
τ

∫
Br

φ1ψζdyds ≤ 1
Re

(1 + A)BcB1(τ)
∫
Br

r3 ∂φ1

∂y
dy

+
64εBcB3

1(τ)

3

∫
Br

r8φ1dy +

(
M2

Re
+ F

)
B1(τ)

∫
Br

r4φ1ψζdyds + GB1(τ)
∫
Br

r4φ1ψζ dyds. (18)

Next, consider a test function φ1 of the form:

φ1(r, s) = e−ks
(

1 + r2
)−a

, (19)

we can choose a in such a way that (18) is convergent, therefore:

1
Re

(1 + A)BcB1(τ)
∫
Br

r3 ∂φ1

∂y
dy +

64εBcB3
1(τ)

3

∫
Br

r8φ1dy +

(
M2

Re
+ F + G

)
B1(τ)

∫
Br

r4φ1ψζ dyds

≤ 2a
Re

(1 + A)BcB1(τ)
∫
Br

e−ksr−2adr +
64εBcB3

1(τ)

3

∫
Br

e−ksr8−2adr (20)

+

(
M2

Re
+ F + G

)
B1(τ)

∫
Br

e−ksr4−2adr

For a > 4 and r → ∞:

1
Re

(1 + A)BcB1(τ)
∫

Br→∞

r3 ∂φ1

∂y
dy +

64εBcB3
1(τ)

3

∫
Br→∞

r8φ1dy

+

(
M2

Re
+ F + G

)
B1(τ)

∫
Br→∞

r4φ1ψζ dyds ≤ 0. (21)

As the previous integrals are positive, we conclude on the null values of the involved
integrals for r → ∞. As a consequence, the previous integrals are regular and finite for any
other r < ∞. Considering (21) and the expression (18) for any r < ∞:

t∫
τ

∫
Br

v1
∂φ1

∂s
ψζ dyds + A1

t∫
τ

∫
Br

φ1ψζ dyds ≤ Υ, (22)
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where Υ is a suitable constant that exists in accordance with the integrals shown in (21).
As both integrals are finite in τ < s < t < T, it is possible to conclude on the Theorem
postulation about the boundness of solutions in Br×(0, T].

The next intention is to continue exploring the regularity of the proposed Equation (10)
by showing the boundness of ∂v1

∂y .

Theorem 2. Given v1(y) as a solution of Equation (10), then ∂v1
∂y is bounded for all (y, t) ∈ R× [0, T].

Proof. Multiplying Equation (10) by v1 and using integration by parts:

d
dt

∫
R

|v1|2dy = A1

∫
R

v1dy− 1
Re

(1 + A)
∫
R

(
∂v1

∂y

)2
dy

+
ε

3

∫
R

(
∂v1

∂y

)4
dy−

(
M2

Re
+ F

)∫
R

|v1|2dy− G
∫
R

|v1|3dy,

which implies that:

∫
R

(
∂v1

∂y

)2
(

ε

3

(
∂v1

∂y

)2
− 1

Re
(1 + A)

)
dy =

d
dt

∫
R

|v1|2dy

−A1

∫
R

v1dy +

(
M2

Re
+ F

)∫
R

|v1|2dy + G
∫
R

|v1|3dy.

After integration in both sides, the following holds:

t∫
0

∫
R

(
∂v1

∂y

)2
(

ε

3

(
∂v1

∂y

)2
− 1

Re
(1 + A)

)
dyds =

∫
R

|v1(y, t)|2dy

−
∫
R

|v10(y)|2dy− A1

t∫
0

∫
R

v1dyds +
(

M2

Re
+ F

) t∫
0

∫
R

|v1|2dyds + G
∫
R

|v1|3dy. (23)

Based on Theorem 2.1 results, the right hand side of Equation (23) is bounded, therefore
we can choose A2 such that:

t∫
0

∫
R

(
∂v1

∂y

)2
(

ε

3

(
∂v1

∂y

)2
− 1

Re
(1 + A)

)
dyds ≤ A2, (24)

which implies that ∂v1
∂y is bounded.

The coming intention is to show the uniqueness of solutions. To this end, the following
Gronwall‘s inequality is required:

Proposition 1. Consider a non-negative and differentiable function f : [0, T]→ R and a constant
C such that

f ′(t) ≤ C f (t),

for all t ∈ [0, T]. Then,

f (t) ≤ eCt f (0),
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for all t ∈ [0, T].

Theorem 3. Assume v1 > 0 and v̂1 > 0 are a minimal and a maximal solution respectively for
Equation (10), then v1 coincides with the maximal solution v̂1, i.e., the solution is unique.

Proof. Suppose that v̂1 is the maximal solution to Equation (10) in R× (0, T) such that:

v̂1(y, 0) = v10 + α, (25)

with α > 0 arbitrary small. In addition, a minimal solution to Equation (10) is given for the
initial condition:

v1(y, 0) = v10(y).

The maximal and minimal solutions satisfy the following equations:

∂v̂1

∂t
= A1 +

1
Re

(1 + A)
∂2v̂1

∂y2 − ε

(
∂v̂1

∂y

)2 ∂2v̂1

∂y2 −
(

M2

Re
+ F

)
v̂1 − Gv̂2

1, (26)

∂v1

∂t
= A1 +

1
Re

(1 + A)
∂2v1

∂y2 − ε

(
∂v1

∂y

)2 ∂2v1

∂y2 −
(

M2

Re
+ F

)
v1 − Gv2

1. (27)

Then, for every test function φ1 ∈ C∞(R), and after subtraction, the following expres-
sions hold:

0 ≤
∫
R

(v̂1 − v1)φ1(t)dy =

t∫
0

∫
R

(v̂1 − v1)
∂φ1

∂s
dyds +

1
Re

(1 + A)

t∫
0

∫
R

(v̂1 − v1)
∂2φ1

∂y2 dyds

+
ε

3

t∫
0

∫
R

((
∂v̂1

∂y

)3
−
(

∂v1

∂y

)3
)

∂2φ1

∂y2 dyds−
(

M2

Re
+ F

) t∫
0

∫
R

(v̂1 − v1)φ1dyds

−G
t∫
0

∫
R

(
v̂3

1 − v3
1

)
φ1dyds

≤
t∫
0

∫
R

(v̂1 − v1)
∂φ1

∂s
dyds +

1
Re

(1 + A)

t∫
0

∫
R

(v̂1 − v1)
∂2φ1

∂y2 dyds

+
ε

3

t∫
0

∫
R

(
∂v̂1

∂y
− ∂v1

∂y

)((
∂v̂1

∂y

)2
+

∂v̂1

∂y
∂v1

∂y
+

(
∂v1

∂y

)2
)

∂φ1

∂y
dyds

−
(

M2

Re
+ F

) t∫
0

∫
R

(v̂1 − v1)φdyds− G
t∫
0

∫
R

(v̂1 − v1)
(

v̂2
1 + v̂1v1 + v2

1

)
φ1dyds

Based on Theorems 1 and 2 results, we can choose A3 and A4 such that
A3 = supy∈R{

∂v̂1
∂y , ∂v1

∂y } and A4 = supy∈R{v̂1, v1}, then:

∫
R

(v̂1 − v1)φ1(t)dy ≤
t∫
0

∫
R

(v̂1 − v1)
∂φ1

∂s
dyds +

1
Re

(1 + A)

t∫
0

∫
R

(v̂1 − v1)
∂2φ1

∂y2 dyds

+
εA3

3

t∫
0

∫
R

(
∂v̂1

∂y
− ∂v1

∂y

)
∂φ1

∂y
dyds−

(
M2

Re
+ F

) t∫
0

∫
R

(v̂1 − v1)φ1dyds + GA4

t∫
0

∫
R

(v̂1 − v1)φ1dyds

=

t∫
0

∫
R

(v̂1 − v1)
∂φ1

∂s
dyds +

(
1

Re
(1 + A)− εA3

3

) t∫
0

∫
R

(v̂1 − v1)
∂2φ1

∂y2 dyds
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−
(

M2

Re
+ F− A4

) t∫
0

∫
R

(v̂1 − v1)φ1dyds. (28)

Consider the test function:

φ1(|y|, s) = eA4(T−s)
(

1 + |y|2
)−b

, (29)

where A4 and b are constants. Differentiate φ1 with regards to s and y, to obtain:

∂φ1

∂s
= −A5φ1(|y|, s),

∂2φ1

∂y2 ≤ A6(b)φ1(|y|, s).

Then:

(v̂1 − v1)
∂φ1

∂s
+

(
1

Re
(1 + A)− εA3

3

)
(v̂1 − v1)

∂2φ1

∂y2 −
(

M2

Re
+ F− A4

)
(v̂1 − v1)φ1

≤ −A5φ1(v̂1 − v1) +

(
1

Re
(1 + A)− εA3

3

)
A6(b)φ1(v̂1 − v1)−

(
M2

Re
+ F− A4

)
(v̂1 − v1)φ1 (30)

=

(
−A5 +

(
1

Re
(1 + A)− εA3

3

)
A6(b)−

(
M2

Re
+ F− A4

))
(v̂1 − v1)φ1.

Using (31) into (28), the following holds:∫
R

(v̂1 − v1)φ1(t)dy

≤
(
−A5 +

(
1

Re
(1 + A)− εA3

3

)
A6(b)−

(
M2

Re
+ F− A4

)) t∫
0

∫
R

(v̂1 − v1)φ1dyds

≤
∣∣∣∣−A5 +

(
1

Re
(1 + A)− εA3

3

)
A6(b)−

(
M2

Re
+ F− A4

)∣∣∣∣ t∫
0

∫
R

(v̂1 − v1)φ1dyds.

After making the differentiation with regards to t:

d
dt

∫
R

(v̂1 − v1)φ1(t)dy

≤
∣∣∣∣−A5 +

(
1

Re
(1 + A)− εA3

3

)
A6(b)−

(
M2

Re
+ F− A4

)∣∣∣∣∫
R

(v̂1 − v1)φ1(t)dy. (31)

Define:
h(t) =

∫
R

(v̂1 − v1)φ1(t)dy. (32)

Putting (32) into (31):

dh
dt
≤
∣∣∣∣−A5 +

(
1

Re
(1 + A)− εA3

3

)
A6(b)−

(
M2

Re
+ F− A4

)∣∣∣∣h(t), (33)

with
h(0) = α,
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with α positive and sufficiently small. After applying Gronwall’s inequality (see Proposition 1)
on (33), the following holds

h(t) ≤ e
∣∣∣−A5+

(
1

Re (1+A)− εA3
3

)
A6(b)−

(
M2
Re +F−A4

)∣∣∣th(0),
for t ∈ [0, T]. As α is sufficiently small then h(t) = 0, i.e., v̂1 = v1, which shows the
uniqueness of solutions as stated.

3. Travelling Waves Existence and Regularity

The travelling wave profiles are described as v1(y, t) = g(ζ) where ζ = y− ct ∈ R, c
refer to the travelling wave speed and g : R→ (0, ∞) is the travelling wave profile that is
requested to satisfy g ∈ L∞(R).

Equation (10) is then transformed in accordance with the travelling wave change as:

− cg′(ζ) = A1 +
1

Re
(1 + A)g′′(ζ)− ε

(
g′(ζ)

)2g′′(ζ)−
(

M2

Re
+ F

)
g(ζ)− Gg2(ζ), (34)

with g′(ζ) < 0, by hypothesis. Now, consider the new variables:

X = g(ζ), Y = g′(ζ), (35)

so that the following system holds:

X′ = Y

Y′ =
Re

1 + A− εReY2

(
−cY− A1 +

(
M2

Re
+ F

)
X + GX2

)
. (36)

To analyse the propose system nearness the critical points, establish X′ = 0 and
Y′ = 0, yielding:

X1 = −
(

M2 + FRe

2GRe

)
+

1
2

√
(M2 + FRe)

2

G2R2
e

+
4A
G

,

X2 = −
(

M2 + FRe

2GRe

)
− 1

2

√
(M2 + FRe)

2

G2R2
e

+
4A
G

.

Consequently, (X1, 0) and (X2, 0) are the system critical points. The intention, now,
is to make use of the Geometric Perturbation Theory to characterize the obtained critical
points and to determine any solution profile in the vicinity of such critical conditions.

3.1. Geometric Perturbation Theory

In this section, we use the Singular Geometric Perturbation Theory to show the
asymptotic behaviour of solutions associated to hyperbolic manifolds to be defined.

For this purpose, assume the following manifold:

N0 =

{
X, Y / X′ = Y; Y′ =

Re

1 + A− εReY2

(
−cY− A1 +

(
M2

Re
+ F

)
X + GX2

)}
, (37)

under the flow (36) and with the same critical points (X1, 0) and (X2, 0). Now, the following
perturbed manifold, Nα, close to N0 in the critical point (X1, 0) is defined as:

Nα =
{

X, Y / X′ = αY; Y′ = F1α(X− X2)
}

, (38)

where α denotes a perturbation parameter close to equilibrium point (X1, 0) and F1 is a
suitable constant, which is found after root factorization. Firstly, consider X̂2 = X−X2. Our
intention is to apply the Fenichel invariant manifold theorem in [35] as formulated in [36,37].
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For this, we shall show that N0 is a normal hyperbolic manifold, i.e., the eigenvalues of N0
in the linearized frame close to the critical point, and transversal to the tangent space, have
non-zero real part. This is shown based on the following equivalent flow associated to N0 :(

X̂′2
Y′

)
=

(
0 α

F1α 0

)(
X2

Y

)
The eigenvalues are both real

(
±
√

F1α
)
, which show that N0 is hyperbolic. Now, we

want to show that the manifold Nα is locally invariant under the flow (36). As a consequence
of this, the manifold N0 can be regarded as an asymptotic manifold to Nα. For this, we
consider the functions:

ψ1 = αY

ψ2 = F1αX̂2

which are Ci(R× [0, δ]), (i ≥ 1), in the proximity of the critical point (X1, 0). In this case, δ
is determined based on the following flows that are considered to be measurable, a.e., in R :∥∥∥ψN0

1 − ψNα
1

∥∥∥ ≤ F1α
∥∥∥X̂2

∥∥∥ ≤ δα, (39)

Since the solutions are bounded, we can call δ = F1

∥∥∥X̂2

∥∥∥ that represents a finite
value. Then, the distance between the manifolds holds the normal hyperbolic condition for
δ ∈ (0, ∞) and for α sufficiently small close the critical point (X1, 0).

Now, we consider the following perturbed manifold Nγ, close to N0 in the critical
point (X2, 0), defined as:

Nγ =
{

X, Y / X′ = γY; Y′ = Bγ(X− X2)
}

, (40)

where γ denotes a perturbation parameter close to the equilibrium (X2, 0) and B is a
suitable constant found after root factorization. Assume X̂2 = X− X2, then the Fenichel
invariant manifold theorem can apply in the same manner as for the critical point (X1, 0).
Note the following equivalent flow associated to N0 :(

X̂′1
Y′

)
=

(
0 γ

Bγ 0

)(
X1

Y

)

The eigenvalues are both real
(
±
√

Bγ
)

. This shows that N0 is a hyperbolic manifold.
Now, the manifold Nγ is locally invariant/under the flow (36), so that the manifold N0 can
be expressed as an asymptotic manifold to Nγ. Consider the functions:

θ1 = γY

θ2 = BγX̂1

which are Ci(R× [0, β]), (i ≥ 1), in the proximity of the critical point (X2, 0). In this case, β
is determined based on the following flows that are considered to be measurable, a.e., in R :∥∥∥θN0

1 − θ
Nγ

1

∥∥∥ ≤ Bγ
∥∥∥X̂1

∥∥∥ ≤ βγ, (41)

Since the solutions are bounded, β = B
∥∥∥X̂1

∥∥∥ is finite. Then, the distance between the
manifolds holds the normal hyperbolic condition for β ∈ (0, ∞) and γ sufficiently small
close the critical point (X2, 0).
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3.2. Travelling Waves Profiles

Based on the show normal hyperbolic condition in the manifold N0 under the flow (36),
convergent travelling wave profiles can be obtained. For this purpose, let us consider firstly
the Equation (36) such that the following family of trajectories in the phase plane (X, Y)
holds

dY
dX

=
Re

1 + A− εReY2

(
−cY− A1 +

(
M2

Re
+ F

)
X + GX2

)
= H(X, Y). (42)

The intention is to determine a trajectory in the phase plane in the proximity of
the equilibrium (X1, 0). This is shown based on a comparison with subsolutions for a
sufficiently small travelling wave speed and supersolutions for a sufficiently large speed
together with a topological argument and the continuity of H. Assume c → 0, then it is
possible to find a suitable value of A1 such that dY1

dX1
> 0 while when c� 0, it is possible to

conclude on a condition of the form dY1
dX1

< 0 for suitable values in the involved constants.
Given the continuity of H, it is possible, hence to conclude on the existence of a critical
trajectory close the critical point (X1, 0) of the form

−cX′1 − A1 +

(
M2

Re
+ F

)
X1 + GX2

1 = 0,

which implies that

X′1 =
G
c

X2
1 +

(
M2

cRe
+

F
c

)
X1 −

A1

c
. (43)

Solving Equation (43), we obtain

X1 =

(√
c1 − b2

c

)
+
(√

c1 +
b2
c

)
e2b2
√

c1ζ

1− e2b2
√

c1ζ
.

where b1 = G
c , b2 = M2

GRe
+ F

G and c1 =
A2

1
G2 +

1
4

(
M2

GRe
+ F

G

)2
. After using the value of X1, we

obtain the following travelling wave profile:

g(ζ) =

(√
c1 − b2

c

)
+
(√

c1 +
b2
c

)
e2b2
√

c1ζ

1− e2b2
√

c1ζ
,

close the critical point (X1, 0).
Note that a non-growing travelling wave is obtained by replacing (ζ) by the symmetric

(−ζ):

g(ζ) =

(√
c1 − b2

c

)
+
(√

c1 +
b2
c

)
e−2b2

√
c1ζ

1− e−2b2
√

c1ζ
, (44)

which implies that:

v1(y, t) =

(√
c1 − b2

c

)
+
(√

c1 +
b2
c

)
e−2b2

√
c1(y−ct)

1− e−2b2
√

c1(y−ct)
.

The last expression shows the existence of an exponential profile in the travelling
wave frame. Now, we want to show that the defined supporting manifolds preserve the
exponential behaviour close the critical points. For this purpose, consider the Equation (38),
so that:

dY
dX

=
F
Y

X +

(
M2 + FRe

2GRe

)
+

1
2

√
(M2 + FRe)

2

G2R2
e

+
4A
G

. (45)
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After solving Equation (45), we get:

Y = −
√

F

X +

(
M2 + FRe

2GRe

)
+

1
2

√
(M2 + FRe)

2

G2R2
e

+
4A
G

.

From the (38), the Equation (45) becomes:

X′ = −
√

Fα

X +

(
M2 + FRe

2GRe

)
+

1
2

√
(M2 + FRe)

2

G2R2
e

+
4A
G

. (46)

After solving (46):

X = −
(

M2 + FRe

2GRe

)
− 1

2

√
(M2 + FRe)

2

G2R2
e

+
4A
G

+ e−
√

Fαζ .

Then, the Equation (45) becomes:

g(ζ) = −
(

M2 + FRe

2GRe

)
− 1

2

√
(M2 + FRe)

2

G2R2
e

+
4A
G

+ e−
√

Fαζ ,

v1(y, t) = −
(

M2 + FRe

2GRe

)
− 1

2

√
(M2 + FRe)

2

G2R2
e

+
4A
G

+ e−
√

Fα(y−at).

This last expression permits to show the conservation of the exponential profile close
the critical points defined by the asymptotic manifold Nα.

The same process shall be repeated to determine a trajectory in the phase plane close to
the equilibrium (X2, 0). Assume c→ 0, then it is possible to find a suitable value of A1 such
that dY1

dX2
> 0, while for c� 0, it is possible to conclude on a condition of the form dY1

dX2
< 0

for suitable values in the involved constants. Given the continuity of H, it is possible to
conclude on the existence of a critical trajectory close the critical point (X2, 0) of the form:

−cX′ − A1 +

(
M2

Re
+ F

)
X + GX2 = 0,

which implies that:

X′ =
G
c

X2 +

(
M2

cRe
+

F
c

)
X− A1

c
. (47)

Solving (47), we obtain:

X =

(√
c1 − b2

c

)
+
(√

c1 +
b2
c

)
e2b2
√

c1ζ

1− e2b2
√

c1ζ
,

where b1 = G
c , b2 = M2

GRe
+ F

G and c1 =
A2

1
G2 + 1

4

(
M2

GRe
+ F

G

)2
. After using the value of X,

we get

g(ζ) =

(√
c1 − b2

c

)
+
(√

c1 +
b2
c

)
e2b2
√

c1ζ

1− e2b2
√

c1ζ
,

close the critical point (X2, 0).
A non-growing travelling wave profiles is obtained by replacing (ζ) by the symmetric

(−ζ):

g(ζ) =

(√
c1 − b2

c

)
+
(√

c1 +
b2
c

)
e−2b2

√
c1ζ

1− e−2b2
√

c1ζ
, (48)
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which implies that:

v1(y, t) =

(√
c1 − b2

c

)
+
(√

c1 +
b2
c

)
e−2b2

√
c1(y−ct)

1− e−2b2
√

c1(y−ct)
,

which shows that the existence of an exponential profile along the travelling wave frame
holds. Now, we want to show that the defined supporting manifold Nγ preserves the
exponential behaviour close to the critical points. For this purpose:

dY
dX

=
F
Y

X +

(
M2 + FRe

2GRe

)
+

1
2

√
(M2 + FRe)

2

G2R2
e

+
4A
G

. (49)

After solving Equation (49), we get:

Y = −
√

F

X +

(
M2 + FRe

2GRe

)
+

1
2

√
(M2 + FRe)

2

G2R2
e

+
4A
G

. (50)

From the expression (40), the Equation (50) becomes:

X′ = −
√

Fγ

X−
(

M2 + FRe

2GRe

)
− 1

2

√
(M2 + FRe)

2

G2R2
e

+
4A
G

. (51)

After solving Equation (51), we have:

X =

(
M2 + FRe

2GRe

)
+

1
2

√
(M2 + FRe)

2

G2R2
e

+
4A
G

+ e−
√

Fγζ . (52)

From (35), the Equation (45) becomes:

g(ζ) =

(
M2 + FRe

2GRe

)
+

1
2

√
(M2 + FRe)

2

G2R2
e

+
4A
G

+ e−
√

Fγζ ,

v1(y, t) =

(
M2 + FRe

2GRe

)
+

1
2

√
(M2 + FRe)

2

G2R2
e

+
4A
G

+ e−
√

Fγ(y−at).

This last expression permits to show the conservation of the exponential profile in the
critical points defined by the asymptotic manifold Nγ.

It shall be noted that the travelling wave profiles (44) and (48) defined in the proximity
of the critical points (X1, 0) and (X2, 0), respectively, follow the same behaviour.

4. Numerical Validation

The idea in this section is to show that the analytical assessments done in previous
sections are accurate to support asymptotic solutions to the Equation (10). To this end, a
numerical exercise is provided to solve Equation (10) and then compared with the analytical
solutions in expressions (44) and (48).

The numerical routine introduced in this section is provided for moderate values in
the Reynolds number (to be representative of a porous medium) and in the assumption of:

A1 = 1; 0 < M� 1, F = 1, G = 1. (53)

The idea is to provide a validating exercise of the analytical assessments for certain
values in the fluid parameters. The numerical exercise is not intended to provide solutions
and to discuss them for different combinations in the parameters.
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The following properties are of relevance:

• The numerical approach is done with the Matlab function bvp4c. This function is
based on a Runge–Kutta implicit approach with interpolant extensions [38]. The bvp4c
has a collocation method at the pseudo-boundary conditions given by g(−∞) = 1 and
g(∞) = 0.

• The influence of the pseudo-boundary conditions and the collocation method shall be
minimized. To this end, the integration domain is sufficiently large (−1000, 1000).

• To make the problem tractable in terms of computational efforts, the integration
domain has been split into 100,000 nodes with an absolute accumulated error of
10−4. With this level of discretization, the problem has been simulated with standard
computers and with reasonable computational lead times.

The results are provided in Figures 1 and 2. The solutions are close for moderate
values in the Reynolds number independently of the value of a. Note that the asymptotic
convergence of travelling wave profiles to the numerical solution is given for ζ as sufficiently
big. As described in each figure footprint, the criteria for asymptotic convergence between
the analytical and numerical solutions is considered as the global distance ≤ 10−3. For this
value and making numerical explorations, a dedicated value of ζmin is found, such that for
ζ ≥ ζmin, the global error is preserved.

Figure 1. Left: c = 1, Re = 10. Right: c = 1, Re = 100. Representation of solutions. Note that g(ζ)
is the asymptotic solution as per expressions (44) and (48) and f (ζ) is the numerical resolution of
Equation (36). For Re = 10 (left), the global error between the analytical and numerical solution is
≤10−3 for ζ ≥ 1.73, while for Re = 100 (right), the global error is ≤10−3 for ζ ≥ 5.24.

Figure 2. Left: a = 10, Re = 10. Right: a = 10, Re = 100. Representation of solutions, where g(ζ)
is the asymptotic solution as per expressions (44) and (48) and f (ζ) is the numerical resolution of
Equation (36). For Re = 10 (left), the global error between the analytical and numerical solution is
≤10−3 for ζ ≥ 1.13, while for Re = 100 (right), the global error is ≤10−3 for ζ ≥ 2.34.



Symmetry 2022, 14, 1451 16 of 17

5. Conclusions

The analysis discussed in this paper has provided results on the regularity of solutions
to a fluid flow formulated with a degenerate diffusivity Eyring–Powell viscosity term
and a Darcy–Forchheimer law in porous medium. Travelling wave profiles have been
obtained and asymptotic solutions have been shown to hold based on the Geometric
Perturbation Theory. The analytical assessments presented have been validated with a
numerical exploration applicable for moderate values in the Reynolds number, i.e., in
medium of high porosity. As a main finding to conclude upon, we highlight the existence
of an exponential profile of the solution under an asymptotic approximation. This is not
a trivial result and reflects that such an exponential profile holds as well for the case of
degenerate diffusivity introduced. As a future research topic related with the presented
analysis, the authors would like to bring attention to the introduction of further advanced
numerical analyses in line with the references cited. In addition, other analytical techniques
based in perturbation to solitons, (G‘/G)-expansion methods or maximal–minimal profiles
may be explored to further precise the exponential solution found.
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