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Abstract: The celebrated Montgomery identity has been studied extensively since it was established.
We found a novel version of the Montgomery identity when we were working inside the framework
of p- and g-calculus. We acquire a Montgomery identity through a definite (p, q)-integral from
these results. Consequently, we establish specific Ostrowski-type (p, )-integral inequalities by using
Montgomery identity. In addition to the well-known repercussions, this novel study provides an
opportunity to set up new boundaries in the field of comparative literature. The research that is being
proposed on the (p, q)-integral includes some fascinating results that demonstrate the superiority and
applicability of the findings that have been achieved. This highly successful and valuable strategy
is anticipated to create a new venue in the contemporary realm of special relativity and quantum
theory. These mathematical inequalities and the approaches that are related to them have applications
in the areas that deal with symmetry. Additionally, an application to special means is provided in
the conclusion.

Keywords: quantum montgomery identity; quantum calculus theory; post quantum calculus theory;
Holder’s inequality; power mean inequality

1. Introduction

The field of quantum calculus has been established for a long time and has numerous
applications in the fields of mathematics, physics, and engineering research. Researchers in
number theory, hypergeometric functions, special functions, and other areas of mathematics
have made extensive use of it, indicating that it played an important role in the field
of mathematics. We would like to direct the attention of the readers to two essential
publications on the fundamentals of g-calculus that were written by Ernst [1] and Kac and
Cheung [2]. In the area of approximation theory, the first work was published in 1987, when
the Romanian mathematician Lupas [3] introduced the q analogof Bernstein polynomials.
This marked the beginning of the discipline of approximation theory. He investigated
several characteristics of the Bernstein polynomials using the q variation. However, sadly,
the researchers of the period showed only a moderate amount of interest in the applications
of quantum calculus in approximation theory. Nearly ten years later, Phillips [4] proposed
another q variation of the Bernstein polynomials. Subsequently, academics began focusing
their attention on this particular path of inquiry. The authors Ntouyas and Tariboon [5,6]
examined how quantum derivatives and quantum integrals are solved across the intervals
of the type [¢1, ¢2] C R in their prior papers, which establish various quantum analogs for
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several well-known effects, including as the Holder inequality, the Hermite-Hadamard
inequality, and the Ostrowski inequality, as well as Cauchy-Bunyakovsky-Schwarz, Gruss,
Gruss—Chebyshev, and other integral inequalities that make use of classical convexity.
Research on g-calculus analysis has been conducted by a large number of mathematicians;
for more information, the reader may refer to [7-16].

In addition, g-calculus can be extended to post-quantum calculus, more specifically
(p,g)-calculus. In the most recent investigation of the quantum calculation, we dealt
with g numbers using a single g basis. On the other hand, in post-quantum calculus,
a p and a ¢ number were used in conjunction with two independent variables, p and
g. Since the publication of this study, researchers have discovered several additional
(p,q)-analogs of classical inequality. For instance, Chakarabarti and Jagannathan [17]
have suggested using this interpretation of the term. New post-quantum analogs of
Hermite-Hadamard’s inequality have been discovered by Kunt and colleagues [18]. To
prove some recent parameterized inequalities, Luo et al. [19] employed a generalized
integral identity that involved functions that could be differentiated by p and 4. In 2015,
Mursaleen et al. [20] proved the approximation Results by (p, 7)-analogue of Bernstein-
Stancu operators. Following is a description of the definitions of (p, q)-derivatives and
(p, q)-integrals at finite intervals. In 2018, Duran [21] wrote a note on the (p, q) Hermite
polynomials which is new direction in the field of post quantum calculus. These concepts
were inspired by the most recent research on Tung and Go6v [22].

Definition 1 ([22]). If f : [¢1, p2] — R is a continuous function, then the (p, q)-derivative of f
at k € [@1, 2] with 0 < q < p < 1is defined as

flpr+ (A —p)e1) — flge+ (1 —q)91)

D,qf(x) = , K # 1. @)
S (b0~ 91) "
Since f is a arbitrary function, then we obtain y, Dy 4 f (¢1) = lim Dyqf (x).
Kk=¢1
Note that for p =1
lim D, f(x) = L&), @)

g—1- dx
if () is differentiable.

Taking ¢1 = 0in (1), then dp, ;f = D, 4f, where Dy, ;f is well-known (p, g)-derivative
of f(x), denoted as follows

f(px) — f(gx)

(p—q)x e ®

Dp,qf(K) =

If we change p = 1 in (3), then we will obtain an interpretation of the g- derivative, which
can be found in [2], and it will be written as follows:

Dyf(x) =

Example 1. Let a mapping f : [¢1, 92] — Rby f(x) = x> +x + 8 with 0 < g < p < 1. Then,
for x # @1, we have

[(pr+ (1= p)g1) + (pr+ (1= p)p1) + 8]
(P— )= g1)

(g + (1= )g1) + (qx + (1= 9) 1) + 8]
(p— )= g1)

o1 Dpq(K* + 1+ 8) =
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_ KZ[Z]M + 291 [1— [2]p,4] + (P%[[z]p,q —2] + (k- ¢1)
(k — 1)
K[2]pq(k — @1) + @1(2]pq(k — @1) +2¢1(x — 1) + (K — 1)
(K — 1)
= [2]pq(c —¢1) +2¢1 + 1.

Definition 2 ([22]). Let f : [¢1, 2] — R be a arbitrary function, the (p, q)-integral on [¢1, ¢2],
with 0 < g < p < 1is defined as follows:

[ FS)oax = (p=a) = 1) o pZ+1f< et (1 - pZH)qol), @

for all x € [@1, ¢2].
Notice that if we consider ¢; = 0 in (4), we obtain

[ 7@ = = e 3 ST (S

If c € (¢1,A), then the definite (p, q)- integral on [c, k] is expressed as

/CKf(x)fmdiﬂ,qx = /q: f(x)g,dpqx — /(:1 f(x)gydpqx.

Example 2. Define function f : [¢1, 2] — Rwith f(x) =2k +5and 0 < q < p < 1. Then,

P2 e ql’l qn qn
/go 2k +5)prdpgx  =2(p2—91)(P—q) ) 7 (p”“(’)z + <1 ~ > <P1>
1 =0

<

=

n

e

+5(¢2 — 91)(p —9) TR

n=0
_ 22— 1)(p2— (1 —p—9q))
[2]p.4

Generalized inequality, also known as (p,q)-Hermite-Hadamard-type inequality, was
demonstrated by Kunt and colleagues [18].

+5(p2 — ¢1)-

Theorem 1 ([18]). Suppose that a mapping f : 1, ¢2] — R ia convex differentiable on [¢1, ¢2]
and 0 < g < p < 1. Then, we have

F(BEE ) < ot [P )t < SO EIL02)

91 [2] A
The Ostrowski-type inequality is the one of the most notable inequalities in the litera-
ture and was introduced by Dragomir et al. in [23].

Theorem 2. Let f : [¢1, ¢2] — R be a differentiable mapping on (¢q, ¢2) and f € L{g1, ¢2]. If
|f (x)| < M where x € [pq, ¢2), then the following inequality holds

1 ¢ M |[(x=g)*  (p2—x)
)= o [ o] < %[ o) (e ©

forall x € [¢1, p2).
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The following well-known Montgomery identity is highly important for proving the
Ostrowski-type inequality described above; for more information, see [24].

_ 1 ¢ _ X ok — @ P2 K— @y
)= = Ao " )i /qo S ()t / P f s ©

where f(x) is a continuous function on [¢7, ¢2] with a continuous first derivative on

(91, 92)-
By changing the variable, the Montgomery identity (6) can be expressed in the following

way:

£5) = o [ e = (g2 = g0) [ K0S g2+ (1= X)), @)

where
X—¢1 |.
K, K € [0, ¢27(p1},
K(x) =
K—1, xe(xﬂﬁly

P2—¢1’
forall x € [¢1, ¢2].

The aim of this paper is to investigate a Montgomery identity for post-quantum theory
that is a generalization of the identity proved in [24]. We further use this identity to obtain
generalizations of the Ostrowski type, midpoint type, etc., for (p, q)-calculus. We shall deal
with functions whose derivatives in absolute values are the (p, q)-differentiable convex.
Relevant connections of the results obtained in this work with those deduced in earlier
published papers are considered. Additionally, an application to special means is provided
in the conclusion. We hope our results will motivate further work in various fields of pure
and applied sciences.

2. Main Results

Lemma 1. Let f : [p1, p2] — R be an arbitrary function, where y, Dy 4 f is quantum-integrable
on [¢1, 2], then the following quantum identity holds:

f() g1dpqk

1 pe2+(1-p)ey
x B —
f&) p*(¢2 — qvl)/

1
= (92— ¢1) /0 Kp,q(K) 91 Dpqf (kg2 + (1 —x) 1) dpqk, (8)

91

with

e ve oz,

Kpq(x) =

pac—p, xe (1],
forall x € [¢1, p2).

Proof. Calculating the integral for the right side of (8), with the help of Definitions 1 and 2,
gives us

1
(92 = 91) || Kpa(() g Dpaf (kg2-+ (1= K)g1)dygx
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—((Pz—(f’l)[/o

1

|
P2-91

pax ¢, Dpqf (kg2 + (1 —

K)@1) dp,g

+ / gy (PAK = P) o1 Dpaf (k2 + (1 —x)¢1) dp,qK}

P21

g
= (g2 — ¢1) [/O(pz " Pax ¢, Dpqf (k@2 + (1 —x)@1) dp g%

=91
P2—91

+(p2 — 901)19/0

¢ Dpaf (kg2 + (1 —x) 1) dpgqr

pax — p) g Dp,af (k@2 + (1 —x)¢1) dp,qK}

= (p2 — (Pl)/ol(PqK_

P)o:Dpqf (k@2 + (1 —x)¢1) dpyx

¢ Dpaf (kg2 + (1 —x) 1) dp,qgk

1
= (g2 — (Pl)/o pax

f (prg2 + (1= pr)g1) — f (qrg2 + (L —qr) 1) ,

(p—9)(p2— p1)x par

—p(p2— ¢1)

X—¢1
P01 Koy + (1 — px
+p(¢2_¢1)/04’z o f(prg2+ (1= pr)g1)

/1 f (prga+ (1 - px)g1)
0

—f (qrg2 + (1 —qr)91)
(r —)x(p2 — 1)

— f (qxp2 + (1 — gx) 1)

pa¥

d, K
(p—q)x(g2 — 1) P

= % [/01 f (pre2 + (1 — px) 1) dpqx — /01 f (gxe2 + (1 —gx) 1) dp,qK]

1 K — K 1 K —gK
[ et oy [ e (=)o)

.

_|_

p_

=pq )
n=0

3 =

_pz

o [ (prga+ (1= pr)g1) won [ (qrpa+ (1—q)g1)
p L p pak

q 2+<
p

pZilf(n(P
= g [t (1-F)e) =

n+1 qn+1
P2t (1 - pm) 991>

- ZZ)%) by nilf(

n+1
n= Op

X*(pl

n=0P
n+1
n f n+1 4’2 + - q;:rl (Pl)
(5] 5 g i (-5
pn+l n=0 pn+1

¢ S Gt (-5 (6%))e)

+p

7N

I ag:

P2 — 1

P
(e ()on (1§ (525)) )

<P2+<1qn)§01) ‘72 nilf(

q<x—¢1
"\2— 91

n+1

p" n+1 P2+ <1 o
) n+1 qn+1
E)o) e (o (- )
n=0 p

Jerr (=5 (55 ))

qn+1
prtl ) gol)
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L (5 (e (- S (325))»)
_qz f<‘7n < ZZ)%) Piqu( +<

n=0 " n=1P
- _T v (1 T
PZf (P2+ slen)tp X fl et pi ) 1
°° q"(“”) =L )
+ — +(1——
p}j{)f(pn p2—g1) " P\ 92— o1
" *X— ¢
- + 11—
(et (565
Simplifying the above calculations, we obtain the following result

=—(p—q) i ﬁf(:’;,fpzﬂL (1—‘7n>¢1>

n=0 p

() (- () )#1)

~pf0 =0 L L (Lot (1- 5 o)

1 pe2+(1=p)¢1
O gy S

}’l

+1
n+1

which concludes the proof. [
Remark 1. Choosing g — 17 and p = 1 in Lemma 1, we recapture the Montgomery identity (7).

Remark 2. Taking x = W in Lemma 1, we have the Lemma proved in [18]

991 + P§02> B 1 poctope
f< 2]pg p*(¢2 — ¢1) /qol F() g1y g

14
[2]p,
= (g2 — (Pl)/o - pax ¢, Dpqf (k@2 + (1 —x)@1) dpqg%

1
+(p2=91) [, (P = p) g Dpaf (92 + (1= 1)g1) dp g

2lpg

Remark 3. Choosing p = 1 in Remark 2, we obtain the Lemma proved in [25]

991+ ¢2 1
f( 2] ) $2— 1 f()

1
2l
= (g2 — (Pl)/oz'7 K ¢, Dgf (k@2 + (1 —x) 1) dgxc

+ (92 — ¢1) /; (qx = 1) o, Dgf (k@2 + (1 —x)@1) dgx
[2q
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Remark 4. Choosing q — 1~ in Remark 3, we have the Lemma proved in [26]

f<¢1;¢2) 9 1 ¢1 -/(:zf(K)dK =(p2— 4’1)/0E f (kg2 + (1= 1) g1 )dx
1

+(92 — 1) /1 (k= 1)f (k@2 + (1 — k) 1 )dx.

2

Let us introduce some new (p, q)-integral inequalities by the help of Lemma 1 and the
power means inequality:

Theorem 3. Let f : [¢p1,¢2] C R — R be a (p,q)-differentiable function on (@1, ¢2) and

o1 Dpqf is quantum-integrable on (@1, g2]. I | o, Dpof| is a convex mapping on (g1, ¢2] for
r > 1with0 < g < p <1, then the following quantum-integral inequality holds:

1 pe2+(1-p)e1
\f(x) -

P (2 — 1) f(K) gdpqx| < (92— 1)

P1

x{[Hl(x, p,q)]% |:‘q)1Dp,qf (qu)erz(x/ p.49) + | Dpaf (¢1)\VH3(x, P/q)} )
+[Hs(x,p,0)] 7 (|01 Dpaf (92) Hs(x,p,9) + gy Dpaf (91| Ho(x,p.0)] "},

forall x € [@1, p2|, where

2
x_
H1(x,p,q)—pq< 1 ) ,

mm P2 — P1
3
_ P X—¢
Hy(x,p,q) = 7[3]%‘7 <<P2 — q)1> ,

Hs(x,p,q) = Hi(x,p,q) — Ha2(x,p,q),

2 . - 2
Hy(x, p,q) = ¥ Pq<¢z x)+ pq <<P2 x)l

2] pg \P2—P1 2]pg \ 92 — ¢1
3 2 3
_ o (x—fm) Pq<x—¢1)
Hs(x,p,q) = + ’
5(xp.4) R2lpqlBlpg  [2lpg \ 92— ¢1 Blpg \ 92 — ¢1

Hg(x, p,q) = Hy(x, p,q) — Hs(x, p, q).

Proof. By utilizing Lemma 1, the power means inequality, and the characteristics of the
modulus, we obtain the following

f(K) gy dpqx

1 pe2+(1-p)e1
x e —
‘f( ) p? (g2 — ‘Pl)/

91

< (¢2— 1) /01|Kp,q(K)H4’1qu (k@2 + (1 = 1) p1)| dp g

. x*_‘/’l 1
< (g2 - 1) [/0” "pax+ [, (p—pax) | lpDpaf (k@2 + (1= K)@1)| dpgr
P21

r=1

=N r
< (g2 — (Pl){ (/Oqu_@1 pqx dMK>
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1
7

X—¢1
x (/Ow " x| g, Dpaf (kez + (1 — K)ﬁ"l)’rdp,q’f>

r=1

1 r
+ ( / gy (P = PAK) dp,qK>

P2—91

1
;

}.

|(P1Dp,qf(7<€02 +(1- K)€01)|r < K|¢1Dp,qf(§”2)}r +(1- K)|¢1Dp,qf(4’l)

X (/:,,,1 (p = Pax) |, Dpaf (kg2 + (1 — K)¢1)|rdp,q7<>

9291

Utilizing the convexity of |, Dp,qf|"

7

we obtain the resulting inequality:

r—1
X*q)l

=91 r
< (g2— <P1){ (/quz " pax dp,q") <’¢1Dp,qf ((Pz)\r/O(pz " pa® dp g

r—1

x7_¢1 T 1 o
+lo:Dpaf (91)] /0” " (pgx — px?) dp,qK> + ( / vy (P = PO¥) dp,qK>
’ 92-91

1
X(|¢1Dlﬂrﬂf (4’2)| /Y o (pK—qu) L

P21

+|o Dpaf (91)] /iq,l ((p = pax) = (px = pax?) ) dpr ) % }

P2-91

We evaluate the required definite (p, g)-integrals as follows:
Caa)

P2—01 do o= _ 4)1 ¢ (x4
Hi(x,p,q) = /0 pax dpgr = pq(p —9q) Z%) P @2 — g1 prt
n

2
_ N[ X=¢ 1 pq (x—<p1>
palp q)<<P2<P1> =7 Rlg\p2—91) "

x—¢q

Hz(qu):/q’“’lwzd K= pq(p— q( —%)i i (x_% T )2
T 0 P P2 — @1 P\ g2 — @1 prtl

n=0
3 3
_ B X —¢1 1 pq (x—q)l)
pa(p q)<¢z—(m) P—=3 Blpg\e2—¢1) "’

=9

Hi(x,p,q) = /O(PH)1 (qu — quZ) dpqax = Hi(x,p,q) — Ha(x, p,q),

1 91

1 =
Hy(x,p,q) = / gy (P PAK) dp g = /0 (p = pax) dpqgx — /04,2 " (p = par) dpqx

P21
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-} ZL(?-L’n:l)—(zﬂ q( (pl)ipL(P—qn:lx%)

= p P —91) = p" g2 — 1
il st () st
p(p q){p—q p? —q? p(p =) p1)lp—a PP—9*>92— 1
] ot
— 1 1
P [z]p,q P P2 — P1 [ ]pq P2 — P
2
_ (1_ wz—x){ P 4 . 1 (1_ 4’2-96”
I Ny § [ ) Py 7 PN PP Gy
7 P2 —x p q [ ¢2—x
A s 2 -
Hp,q 92— P1 []pq []pq P2 — 1
:pzpq(¢zX)+ P4 (qux)z
2] pq P2 — 1 [Z]M P2 — 1
1 1 o 5
Hs(x,p,q) = / L, (e = ) dp g = /O(PK—quZ)dp,qK— /0902 " (pr = pa) dpgr
P29
) n n 2n+1
o q (qq )
(p q)nX::Oanrl pn pn
X — 0 n n Y — 2n+1 X — 2
_(p_q)< (Pl)z ql q( 4’1)_‘7 ( q’l)
P2—@1) ="\ P\ g2 — 91 AN
1 q

-0 (o) [ () - ()]
(22 [ () - ()]
- B (2 g (2o,

1
He(x, p.q) = / w o ((p=pax) = (pr = pai?) ) dpgx = Ha(x,p,0) = Hs(x,p,9).

P2-91

The proof is thus accomplished. [J

Here, we derive some special cases from Theorem 3.

Corollary 1. I. By Using |, Dp,qf (¢)| < M and putting r = 1 in Theorem 3, we obtain the
following special case

2+ (1-p) s
flx) - 1) / 'j‘” P F () grdpr

P (92— o1
(10)
< [2];711(40]\/21901){%()(_ 4)1)2-‘,- (PZ _ Pq)(qu _x)(q)z . 471) +Pq(§02 _x)2:|.
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Moreouver, if the limit is taken as ¢ — 1~ and p = 1 in (10), the inequality (10) reduces to (5).
II. Choosing x = ’WH& in Theorem 3, we obtain
pA

qge1 + pq)2> 1 pe2+(1-p)g1 p
‘f( p* (92— ¢1) /q)l J(K) g pa

r—1

4

p3q r r pq
< (G"z%)(w) {Uq’lD”'qf((’)Z)’ (21p9)%Blpq

1
5 2.4 3,3 4|7

qp° + Ppt 4 PP -
o Dyuf (o) TP P —ap ]

([21p,g)*BBlpg
r 4 ; 2q(—2 3 ’ %
[l Draf (0] Tl + e Do (o0 C(’fz];a:)?[s[]i:q)] }

III. Choosing p = 1and x = % in Theorem 3, we obtain following inequality proved in [25]

‘f(qul[;];qu) quiq)l f()

r=1

< (p2- )<([])>r
3

r 9 sl %
{ 2t 02 gy * 2ot 00l it

727’1 ’M %
+[[¢1qu(<l)2)| EREIEN) + | Daf (91)] ([z]q)?)([?,]q)} }

IV. Choosing q — 17 in Corollary 1 part 111, we obtain following inequality proved in [26]

’f<(P112L(P2) B (4)21901) /:zf(x) dx -
8 [(il’f/(q’z)‘rJr112’f/((/71)‘r)r+ (112 f’(¢2)|r+214‘f,(%)|,>r].

V. Choosing r = 1 and x = WH# in Theorem 3, we obtain

991+ Pﬁl’z) B 1 pg2+(1-p)p1 .
lf( 2lpq p2(¢2 — ¢1) /rm F() grdpar

+ +
< (g2— @1){!¢1Dp,qf <¢2>\H2(W,p,q) 4 |psDpaf <¢1>|HS(W,p,q)

+ +
X | g, Dpgf (¢2)|Hs 91 T PP pgDZ/PMI + |91 Dpqf (91)|He 19 T PPz p(PZ,p,q
21,9 2]pq

3 gt g’ + °p* + ¢°p® — gp
= (’”){"’”D”'qf AT T o

2qp* p?a(=2p + Blpa) }
x| Dy, — 4+ |4, Dp,
R T TR A T

991 + P(Pz) B 1 po2+(1-p)g1 ;
'f( 2]p,q p(@2 — 1) /(,,1 f(K) gidpqr

< (2 — ¢1)
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4
< (p2= g0 {osDpaf (o2 e
pAa r4

—3qp* + 2qp° + 2¢°p* 4+ 2¢4°p° }
. .
(121p9)"[8]p.q
+¢2
q

VI. Choosingr =1 = pand x = szi] in Theorem 3, we obtain

‘f (W}ZJ];(PZ> 9 - 1 s:zf (k) g

+|pDpaf (91)]

39
(1219)° (1214 + %)
| 24> +2¢4° — ¢ }
(1214)° (131,)

VII. Choosing q — 17 in Corollary 1 part V1, we obtain the following inequality proved in [26]

‘f(%;(m) - ((Pzi(Pl) /q:Zf(K) o

Here, we introduce some new (p, q)-integral inequalities by the help of Lemma 1 and
the Holder’s inequality:

< (¢2— 901){‘¢1qu (¢2)]

+|<P1D!7f (¢1)

< (2= ) [f(¢1) + f'(92)]
- 8

Theorem 4. Let f : [¢p1,¢2] C R — R be a (p,q)-differentiable function on (@1, ¢2) and
o1 Dp,qf be quantum integrable on [pq, ¢)]. If | ¢1Dp,qf|r is a convex mapping on [¢1, ¢2] for
r > 1and % + % =1, with0 < g < p <1, then the following quantum integral inequality holds:

1 P2+ (1-p)g1
0 5 |

Plor—o1) . f() pydpgr| < (92 — ¢1)

91

1

<{ (N1 (%, ,9)* (lon Dpaf (@2)] Mo, ,9) + | Dpaf (01) Na(x,p) )" (1)

1

+(Na(%,2,0)° (|s Dpaf (92)| Ns(x,2,9) + gy Dpaf (@1)] No(x.p.a)) "},

where

s+1
_ X—¢1 P—q
Ni(x,p,q) = Psqs<¢2 - (Pl) <ps+1_qs+l)

_ 1 X—¢1 2
Na(x,p,q) = 7[2]%&7 <<P2 — <p1> ,

2

(x—¢ 1 (xgol)

Ns(x,p,q) = - ,
3(xpra) (qoz—fpl) 2]pq \ 92 — 91

(] n n 1 S
Ni(x,p,9) =P (p—q)| ) Z+1 < Z+1 - )
n=0 p p q
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() D (= (55) -3)
P2 — @1 = pn—i—l pn+1 P2 — @1 q 4
1 [ X—¢ 2
N5(X, p, Q) - [z]p,q (1 (4)2 — 471) )r
) )
N X, p, - - - - 7
oxrp4) [z]p,q P2 — ¢1 [Z]M P2 — ¢1

forall x € [¢1, ¢2].

Proof. By using Lemma 1, Holder’s inequality and properties of modulus, we obtain

1 pe2+(1=-p)e1
x e —
‘f( ) p2(¢2 — 1) /

K) gidpqk
?1

1
< ((P2—<P1)/O [Kp,q(1)]| g, Daf (k@2 + (1 —x)g1)| dpqx

x‘:”l 1
< (g2 — 1) (/O” “pge+ [, (p- PW)) i Dpaf (k@2 + (1= ) @1)| dpqx
P2-¢1

=91 §
< (¢2— (Pl){ ( /0‘”2_"” (par)® de)

7

X9
% (/O(P2 " g1 Dpaf (kg2 + (1— K)‘Pl)‘rdp,q">

1
1 S
+ (/X,,,l (p— pax)’ dp,qK>

1 r
X (/A,pl |91 Dpaf (kg2 + (1= x)¢1)| dwﬂ‘)

92— %1

}

Utilizing the convexity of |y, Dpqf ", we obtain

=

1
x—gy H
< (g2— 4’1){ (/O(Pz " (P‘iK)Sdp,qK> <|¢1Dp,qf ((P2)|r/0¢2 " Kdpqk

1 1
- r 1 s
+ [ Dpaf (o0 [* (1 =x) dp,qx> + ( [ (= pa0y’ dp,qx>

P2-91

1
r

1 1
X <|¢1Dp,qf(‘P2)| /wl xdpqr + g Dpaf (1)) /le (1-x) dm")

P2-91 P2—91

In order to determine the essential definite (p,g)-integrals,

quj% X—¢ s+ P—q
Ni(x,p,q) = Psqs/o K dpgk = pq° () <ps+1_qs+l>

$2 — P1
X—¢1 2
Nao(x,p,q) = /04)2 " Kdpgk = —[z]pq <<P2 _4;1) ,
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2+ (1-p) 1
’f(x) - pz(l) /(:P ne f(x) gidpgr| < M(p2 — 1)

X{(Nl(x,zﬂ,q))

X—91 2

— — 1 X —
Na(x,p, :/¢2¢’11_KdK:<x 471)_ < (Pl)/
3( p q) 0 ( ) r4q 92— @1 [2]P,q P2 — @1

) ) Bt G ) )
X - - - - - 7
|j§) pn-i-l <pn+1 q P2 — 1 1;) pn-i-l pn-i-l P2 — @1 q

_ [2lpg—1 _(x—gol )+ 1 (x—¢1 )2
2]p.4 P2 — ¢1 2]pq \ @2 — ¢1
The proof is completed. [J

Here, we derive some special cases from Theorem 4.

Corollary 2. I. By using | ¢, Dpqf (¢)| < M in Theorem 4, we obtain the following special cases

P2 — 91
(12)

@
<l
@l
<l

(Na(x, p,q) + N3(x,p,9) )" + (Na(x,p,9)) (Ns5(x, p,q) + Ne(x, p,9))

3

II. Choosing x = WH# in Theorem 4, we obtain

P11 PP 1 pe2+(1—p)es
‘f( ) P2 (p2 — ¢1) / f(K) prdp,qx

: Pq(qu—(pl){[(m’;a)m(w’fizsﬂ)r

r pz rp3+2P2q+Pq2—P2 T
<[lsPeaf (0] s+ Py (ol 2T R

1
g1+ pe2 s
*<N7< 2l ""q» .

2 2 _ 2 37
“%Dp,qf(fp )I’WH%DMH P q+2pq([2]§52 q +q] }

where
+ ! 1\*
N7(M,qu> = / ) (K—> dpqgx = (p—9q)
[ ]p,q pify q

(B GED) -@) Bt -]
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III. Choosing p = 1 and x = % in Theorem 4, we obtain following inequality proved in [25]

() L 0

gq@z_m{[(pgq)“(;_—qg)r

217
e

(5(5210)

129 + ¢? rP g —q]7
[’4’1 Dy f (PZ)| ([Z]q)3 +’<P1qu((/’1)‘ ([2]'1)3] }’

where

991+ @2 ) 1 ( 1>S
Ng (1917924 ) = K—=) dx=(1—

Eq (¢ —1)5‘@§q"<""<[21]q> _117)]

VI. Choosing g — 17 in Corollary 2 part 111, we obtain following inequality proved in [26]

‘f<(Pler(P2) B (qui(pl) /(szf(x)dx < <(”21_6<P1) (Sil)i

- [(!f’wz)r +3lf o) + (3l () + |f’<qo1>|’)*].

3. Application to Special Means

The following is an example of how the special means for positive real numbers would
be used:
1. Arithmetic mean

A1, 92) = ’- er 2,
2. Generalized logarithmic mean
Li(1, 92) = ( 7" — 91" ) i, k € R\{-1,0}.
(k+ 1)(4’2 —¢1)
Proposition 1. If k > 1 and ¢1, @2 are two positive real numbers such that ¢1 < ¢, then
Atk o) - Lo < BECA(gh ). )

Proof. Let f(x) = x* for k > 1. Then, we have

(1-p)p1+pe2

p—q } (((1((— P)p1 + pga)f T — gkt )

k d — |:
) ¥ lpaX = | ST e —p)e1+pe2) — ¢1
1
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k Pk ‘ik k—1
¢1Dp,qf(<l’1) = ¢ Dpqo1 = 91

and

k Pr—a"| i
¢1Dpaf(92) = ¢ Dpags = ¢ -
So, using the Corollary 1 part VI, we have

gk +pes 1 { p—4q } (1= p)o1 + pg2)f*! — g™
2] p2(¢2 — 1) [ pFHT — gkttt (1=p)o1 + pe2) — g1

B 3qp* P =dt|
= (e [([zw?’[s]p,q[ P4 ]%

L =Bap* +2qp° +2¢°p* + 2¢°p° lp" — q"] ¢k1]
3 _ 1 .
(12]p.q)"[Blpg P—1

By taking the limit when g4 — 17 and p = 1, we are able to obtain the inequality that we
are looking for (13). 0O

Remark 5. Utilizing the same concept as in Proposition 1 while employing Theorems 3 and 4,
and associated respective corollaries, and taking suitable functions, such as f(x) = x*, k > 1 and
x>0; f(x) = %, x> 0; f(x) =e*, x € R, etc., we are able to obtain many fresh new interesting
inequalities by making use of a variety of distinct methods. We do not include their proofs; therefore,
it is the reader’s responsibility to seek out the material they require in order to satisfy their curiosity.

4. Conclusions

In order to use functions whose first derivatives’ absolute values are (p, q)—differentiable
convex, the authors formulate some Ostrowski-type integral inequalities in terms of the
identified Montgomery identity. In addition, we investigated the essential relevant links
between the results achieved in this work with all those developed in the previous peer-
reviewed papers. Some of the sub-results can be generated from our main results by
taking a unique and valuable variable for x € [¢1, ¢2], some fixed value forr, p = 1,
and g — 17. To the best of our knowledge, these results are new in the literature. Since
quantum calculus has large applications in many mathematical areas, we hope that our
results can be applied in umbral calculus, oscillations in g-calculus, interpolation theory,
quantum groups, quantum algebras, hypergeometric series, complex analysis, and particle
physics. The results obtained by the future plan are all exhilarating compared to the results
available in the literature.
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