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Abstract: Given the widespread use of the Kalman filter in robotics, an increasing number of re-
searchers devote themselves to its study and application. This work underscores the importance of
this filter while analyzing the modifications made to the same to improve its performance and reduce
its deficiencies in some fields and presenting some of its applications in robotics. The following
methods are presented in this study: least squares (LS), Hopfield Neural Networks (HNN), Extended
Kalman filter (EKF), and Unscented Kalman filter (UKF). These methods are used in the parameter
identification of a Selective Compliant Assembly Robot Arm (SCARA) robot with 3-Degrees of
Freedom (3-DoF) and a clamp at its end. The dynamic model of this robot is obtained and employed
to identify its parameters; then, the identification results are compared considering the difference
between the obtained parameters and the real values of the robot parameters; in this comparison, the
good results yielded by the LS and UKF method stand out. Subsequently, the obtained parameters
through each method are validated by measuring different performance indexes—during trajectory
tracking—such as: Residual Mean Square Error (RMSE), Integral of the Absolute Error (IAE), and the
Integral of the Square Error (ISE). In this way, a comparison of the robot’s performance is possible.

Keywords: Kalman filter; robotics; parameter identification; control

1. Introduction

Since dynamic systems abound in our environment, system identification techniques
have gained relevance in diverse fields of knowledge, for example, engineering, economy,
and biotechnology, which require an accurate model for analysis, prediction, simulation,
design, and control purposes.

Particularly for system analysis and design, current control techniques require mathe-
matical models that are increasingly precise. In many cases, these models cannot be obtained
easily based on the laws governing the dynamic behavior of each system. In these cases,
the Identification of Dynamic Systems plays a decisive role. This is a tool that provides
the necessary approximation methods for obtaining the sought mathematical models in a
relatively easy way, as well as estimating the parameters of the system under study.

Estimating the value of the dynamic parameters of the system can be calculated
through different estimators, among which are the least-squares estimation, the maximum
likelihood principle, neural networks, and the Kalman filter (KF).

Specifically, the Kalman filter, since its creation in 1960, has been based on the estima-
tion of the non-observable state variables through the observed variables, which can have
measurement errors [1].

The Kalman filter performs better than other estimation algorithms as it requires a
small storage capacity and has a wide range of uses. Nevertheless, in actual applications,
factors such as effect on the environment, incorrect parameters, and measurement errors
produce errors in the system [2]. Different variations of this filter have been developed
in recent years, which attempt to address the issues presented by the algorithm as a
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consequence of increased equipment complexity that requires enhanced efficiency and
accuracy in some processes in the manufacturing, medicine, and navigation industries.

This filter has suffered several modifications that allow it to be used in diverse en-
gineering areas, especially in robotics. Among the most relevant modifications are the
Extended Kalman filter (EKF), which can be used in non-linear systems by conducting a
system linearization; the Unscented Kalman filter (UKF), which is based on the premise
that it is easier to approximate a probability distribution than an arbitrary linear transfor-
mation, using the Unscented Transformation (UT) for this purpose [3]. However, some
modifications based on the adaptability feature, such as the Adaptive Extended Kalman
filter (AEKF) and Adaptive Unscented Kalman filter (AUKF), have also been developed to
determine the statistical parameters of the dynamic system according to the behavior of the
system during data processing [4]. Furthermore, filters for countering undesired responses
such as inconsistency from the EKF have been created.

Localization is among the most used applications of the KF and its modifications [5–7].
This application is employed to correct the position of some robots [8–10], for trajectory
tracking [11–14], and for parameter estimation [15–17].

Recently, the KF has been applied in sensor-less speed control, which seeks to control
a synchronous reluctance motor [18]. Variations of the KF have also been employed in
solving one of the main challenges presented by real-time image and video processing
applications, i.e., following objects and detecting movement [19].

2. Materials and Methods
2.1. Kalman Filter for Linear Systems

As an algorithm, the KF comprises two types of equation: the first type is called main
equations, which associate state variables with observable variables, while the second type,
called state equations, is related to the temporary structure of state variables.

State variables are estimated by calculating time and dimension, which represent the
dynamics of estate variables, but also by measuring the values of observable variables at
each time instant (transversal). In conclusion, two steps explain this dynamic (see Figure 1):

• Prediction stage: state variables are estimated through their own dynamics.
• Correction stage: the first estimation is improved based on information from observ-

able variables.
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Figure 1. Kalman filter stages.

The Kalman filter is very attractive due to its recursion, i.e., its suitability for real-time
use. When the new state is predicted by the algorithm at the moment t, a correction term is
added, and the new state, which has been corrected, becomes an initial condition for the
next stage, t + 1. In other words, in addition to the information from the state previous
to estimation, available information is also used to estimate the state variables, which is
denominated “signal extraction”.

The KF represents a belief or trust in the xk state at time k that is given by the mean,
x̂−k and the P−k covariance. The entry received by KF is the belief in time k − 1, represented
by x̂k−1 and Pk−1. The KF also needs control signals (uk) and environment observations
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from the sensors (zk) to update this belief. The output of the KF would be the belief in the
time instant k, which is represented by x̂k and Pk.

Figure 1 shows the equations that describe the KF, which consists of two stages. In the
prediction stage, the state and covariance of the error are projected in the current instant t,
i.e., it is the sum to the system of instant t− 1 that was generated from the instant before the
current. The second stage, or update stage, considers the observed characteristics. At this
stage, based on the estimation from the prediction stage, an estimation of the characteristic
location can be conducted, and thereby, a correction can be applied to the system. The new
characteristics added to the map are useful for later reobservation, which can be conducted
using information about the current characteristics of the system and about the association
between new and old characteristics.

According to the definitions of the matrices in Figure 1:

Ak: Matrix n× n related to the states at instant t− 1 and at instant t, without control signals.
Bk: Matrix n × l related to control signals that are optional to the current state.
Qk: Matrix n × n representing process noise, or constant covariance.
Hk: Matrix m × n that associates the current state and environment observations.
Rk: Matrix m × m that indicates the covariance of noise in observations.
Kk: Matrix n × m that indicates the Kalman gain, which is trust in the observed characteristics,
based on the uncertainty of all characteristics together plus a data quality measurement.

The Kalman filter has been applied in a wide range of technologies. Vehicle guidance, nav-
igation, and control are common applications of the KF, particularly in aircrafts and exploration
robots. Furthermore, this filter has also expanded its use to signal processing and econometrics.

As described above, the Kalman filter is an estimation method whose parameters are
corrected for each iteration based on the prediction error from the previous iteration [20].
In its original form, the KF is known to be unable to deal with state estimations correctly
if employed in non-linear systems. Therefore, its extension was developed by R. Kalman,
Dr. Schmidt, and the research team of the Dynamic Analysis Branch of NASA [21]. The
Extended Kalman filter has an algorithm with the same recursive steps as linear Kalman
filter, i.e., prediction and correction, but Taylor’s linearization is conducted during the
prediction stage instead, as shown in Figure 2, where A and W are the Jacobian matrices
from the partial derivatives of function f, while H and V correspond to the Jacobian matrices
from the partial derivatives of function h.
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2.2. Unscented Kalman Filter

The Unscented Transform is a method for calculating the statistics of a random variable
that suffers a non-linear transformation [20].
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If it is considered the possibility of propagating a random variable x (of L dimensions)
a through a y = g(x) non-linear function, and assuming that x has a mean x and a covariance
Px, to calculate the statistics of y, a matrix X of 2L + 1 Xi sigma vectors can be formed (with
its Wi corresponding weights) according to the following equations:

X0 = x (1)

Xi = x +

(√
(L + γ)Px

)
i

i = 1, . . . , L (2)

Xi = x−
(√

(L + γ)Px

)
i
− L i = L + 1, . . . , 2L (3)

W(m)
0 =

γ

L + γ
(4)

W(c)
0 =

γ

L + γ
+
(

1− α2 + β
)

(5)

W(m)
i = W(c)

i =
γ

2(L + γ)
i = 1, . . . , 2L (6)

where γ = α2 (L + K) − L is a scaling parameter, α determines the distribution of the sigma
points around the x mean—which is normally a positive value—K is a secondary scaling
parameter—which should be higher or equal to 0—β is a parameter employed for obtaining
previous knowledge of the x distribution—whose optimal value for Gaussian distributions
is β = 2—and

(√
(L + γ)Px

)
i

is the i-th row of the matrix square. Sigma vectors propagate
according to the following non-linear function:

Yi = g(Xi) i = 1, . . . ., 2L. (7)

In turn, the mean and covariance of Y can be approximated using a weighed sample
mean and the covariance of the posterior sigma points, according to:

y =
2L

∑
i=0

W(m)
i Yi (8)

Py =
2L

∑
i=0

W(c)
i (Yi − y)(Yi − y)T (9)

It is necessary to consider that this method substantially differs from general state
“sampling” methods such as the Monte-Carlo methods in terms of the particle filter, which
at some point may require more sample points to propagate an accurate distribution that is
likely non-Gaussian.

Each sigma point is used in the state evolution model, and, thereby, it is possible to
obtain the sigma points of the predicted state based on the following equation:

X−k = f (Xk−1, uk−1) (10)

Subsequently, the weighed measure and the covariance of the predicted sigma points
are obtained according to:

X̂−k =
2L

∑
i=0

Wi

(
X−i,k
)

(11)

P−xk
=

2L

∑
i=0

Wi

(
X−i,k − X−k

)(
X−i,k − X−k

)T
(12)
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The predicted sigma points are used in the measurement equation for generating the
predicted measurement sigma points in the following way:

δ−k = h
(
X−k , uk

)
(13)

The weighted mean of the predicted measurement, the corresponding covariance
matrix, and the cross-correlation matrix are calculated as follows:

• The matrix P−xkyk
represents the cross-correlation between the difference of the sigma

points of the predicted state X−i,k and corresponding predicted state X̂k, and the differ-
ence between the sigma points of the predicted measurement δ−k and the corresponding
predicted measurement y−k :

ŷ−k =
2L

∑
i=0

Wi

(
δ−i,k

)
(14)

P−yk
=

2L

∑
i=0

Wi
(
δ−k − y−k

)(
δ−k − y−k

)T
+ R (15)

P−xkyk
=

2L

∑
i=0

Wi

(
X−i,k − X−k

)(
δ−k − y−k

)T (16)

• Finally, the Kalman gain matrix Kk is calculated to find the mean X̂k and the covariance
matrix PXk as indicated below:

Kk = P−xkyk

(
P−yk

)−1
(17)

X̂k = X−k + Kk
(
yk − y−k

)
(18)

PXk = P−xk
− KkP−yk

Kk (19)

2.3. Parameters Identification and System under Study

Automation systems are present in a wide range of industrial applications, in which
the inclusion of robotics is increasingly important for tasks such as manipulation and
transport of elements. The growing need for manipulator robots in this industry to execute
tasks with more accuracy and promptness requires the development of more exact math-
ematical models, which allows for a better representation of the kinematic and dynamic
behavior of such robots. Therefore, the parameters employed in the dynamic model of
the manipulator robot are relevant to model-based control algorithms in order to validate
simulation results and to improve the accuracy of the algorithms that permit these robots
to plan trajectories [22].

Parameter identification is used in the creation of mathematical models and con-
trollers [23–25]. The proper selection of parameter estimation methods for robotized
systems directly impacts the accuracy of these systems. Therefore, the comparison of the
behavior of diverse identification methods assists in the development of more accurate and
better controllers.

Through identifiability, a single parameter set is found, which is able to describe the
behavior of the mathematical model [26]. This is achieved by means of data compiled from
diverse experiments conducted in real systems, thanks to which it is possible to find a
single solution for each unknown parameter of a mathematical model [27]. The parameter
identification process of a manipulator robot starts with the gathering of input/output data
from the signals that excite the robot when this executes a function or trajectory. Since, in
a dynamic model, not all parameters have the same relevance, they cannot be estimated
all at once. This impossibility occurs because the links of a manipulator robot contain
redundant parameters that impede finding a single solution for each unknown parameter
of its mathematical model. However, the non-redundant and identifiable parameters can
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be represented through a minimal set of dynamic parameters, whose values are useful
for the development of a mathematical model. This set of parameters is denominated by
base dynamic parameters or minimal dynamic parameters and is enough to describe the
dynamic behavior of a mechanical system [28,29].

After parameter identification, the mathematical model needs to be validated to verify
that the model properly represents the real system. The diagram in Figure 3 shows a two-
stage mathematical model, in which the first stage corresponds to trajectory validation, and
the second is the comparison of measured and estimated torques/forces and the calculation
of the executed trajectories [22].
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2.4. System under Study

The system under study corresponds to a SCARA manipulator robot with 3-DoF,
which has a clamp on its end. Its first two joints are rotational, while the third one is
prismatic. This robot was designed and implemented in the Laboratory of Robotics at the
Electric Engineering Department of the University of Santiago of Chile for research and
educational purposes (see Figure 4).
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Dynamics is a branch of physics that studies the forces/torques that cause the move-
ment of bodies. The following dynamic models are obtained from these forces/torques [31]:

• Direct Dynamic Model: Expresses the evolution of a robot’s joint coordinates over
time based on the forces/torques that intervene.

• Inverse Dynamic Model: Expresses the forces/torques that intervene based on joint
coordinates and their derivatives.

2.4.1. Newton–Euler Formulation

This formulation is based on the equilibrium of the forces/torques in a link, which
can be represented by two equations: Newton’s motion Equation (20) and Euler’s motion
Equation (21) [32].
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∑ F = m
.
v (20)

∑ T = I
.

ω + ω× (Iω) (21)

where F represents the linear force, m the mass of the body, v corresponds to linear speed, I
is the inertia tensor, ω is angular speed,

.
ω is angular acceleration, and T is the torque.

2.4.2. Lagrange–Euler Formulation

This formulation describes the behavior of a dynamic system in terms of work and en-
ergy stored in it. The closed-form equations can be systematically derived in any coordinate
system [33].

The Lagrangian L is defined as:

L
(
qi,

.
qi
)
= T −U (22)

From the Lagrangian, the motion equations of the dynamic system are given by:

d
dt

∂L
∂

.
qi
− ∂L

∂qi
= Qi (23)

where L represents the Lagrangian function, T the kinetic energy, U the potential energy, qi
the generalized coordinates, Qi represents the generalized force applied to qi.

Finally, the general form of the dynamic model of a manipulator robot can be expressed as:

τ = M(q)
..
q + C

(
q,

.
q
) .
q + G(q) (24)

where:

τ: Generalized forces vector.
q: Generalized coordinates vector.
M(q): Inertia matrix.
C
(
q,

.
q
)
: Centrifuge and Coriolis forces vector.

G(q): Gravitational force vector.

2.4.3. Dynamic Model of the Manipulator Robot

Figure 5 shows the parameters of the system under study, based on which a dynamic
model of the manipulator robot will be obtained by applying the Lagrange–Euler formulation.
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where:

m1: First link mass.
M2: Second link mass.
M3: Third link mass.
L1: First link length.
L2: Second link length.
L3: Third link length.
Lc1: Length from the first link origin to its center of mass.
Lc2: Length from the second link origin to its center of mass.
Lc3: Length from the third link origin to its center of mass.
I1: Moment of inertia of first link.
I2: Moment of inertia of second link.
I3: Moment of inertia of third link.

For the 3-DoF SCARA manipulator robot, the generalized coordinates vector is:

q =

∣∣∣∣∣∣
θ1
θ2
d3

∣∣∣∣∣∣ (25)

r0,c1 =

∣∣∣∣∣∣
lc1 cos(θ1)
lc1sen(θ1)

l0

∣∣∣∣∣∣ (26)

r0,c2 =

∣∣∣∣∣∣
l1 cos(θ1) + lc2 cos(θ1 + θ2)
l1sen(θ1) + lc2sen(θ1 + θ2)

l0

∣∣∣∣∣∣ (27)

r0,c3 =

∣∣∣∣∣∣
l1 cos(θ1) + l2 cos(θ1 + θ2)
l1sen(θ1) + l2sen(θ1 + θ2)

l0 − d3

∣∣∣∣∣∣ (28)

Then, from Equations (25)–(28), the Jacobian matrixes for m1, m2, and m3 are respec-
tively calculated.

Jvc1 =

∣∣∣∣∣∣
−lc1sen(θ1) 0 0
lc1 cos(θ1) 0 0

0 0 0

∣∣∣∣∣∣ (29)

Jvc2 =

∣∣∣∣∣∣
−l1sen(θ1)− lc2sen(θ1 + θ2) −lc2sen(θ1 + θ2) 0
l1 cos(θ1) + lc2 cos(θ1 + θ2) −lc2 cos(θ1 + θ2) 0

0 0 0

∣∣∣∣∣∣ (30)

Jvc3 =

∣∣∣∣∣∣
−l1sen(θ1)− l2sen(θ1 + θ2) −lc2sen(θ1 + θ2) 0
l1 cos(θ1) + l2 cos(θ1 + θ2) −lc2 cos(θ1 + θ2) 0

0 0 −1

∣∣∣∣∣∣ (31)

From these Jacobian matrixes, the kinetic and potential energy of the robot can be
obtained, using the following equations:

T =
1
2

mvT +
1
2

ωT Iω (32)

U = mg
⇀
r (33)

Therefore, employing Equation (22), the corresponding Lagrangian for this robot will
be given by the following equation:

L = T1 + T2 + T3 −U1 −U2 −U3 (34)
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Now, substituting the corresponding values in Equation (34), it is obtained:

L = 1
2
[
m1l2

c1 + m2
(
l2
1 + l2

c2 + 2l1lc2cosθ2
)

+m3
(
l2
1 + l2

2 + 2l1l2cosθ2
)
+ I1 + I2

+I3]
.
θ

2
1

+
[
m2lc2 (lc2 + l1cosθ2) + m3

(
l1l2cosθ2 + l2

2
)

+I2 + I3]
.
θ1

.
θ2 +

1
2
[
m2l2

c2 + m3l2
2 + I3

] .
θ

2
2

+ 1
2 m3

.
d

2
3 − g[(m1 + m2)l0 + m3(l0 − d3)]

(35)

When calculating total and partial derivatives, specified in Equation (23), the following
equations describing the dynamics of the manipulator robot are obtained:

τ1 = M11
..
θ1 + M12

..
θ2 − 2h

.
θ1

.
θ2 − h

.
θ2

2 (36)

τ2 = M11
..
θ1 + M22

..
θ2 + h

.
θ1

2 (37)

F3 = M33
..
d3 + G (38)

where:

M11 = m1l2
c1 + m2

(
l2
1 + l2

c2 + 2l1lc2 cos(θ2)
)
+ m3

(
l2
1 + l2

2 + 2l1l2 cos θ2

)
+ I1 + I2 + I3 (39)

M12 = m2lc2(lc2 + l1 cos(θ2)) + m3

(
l1l2 cos(θ2) + l22

)
+ I2 + I3 (40)

h = (m2l1lc2 + m3l1l2) sin(θ2) (41)

M22 = m2lc2
2 + m3l22 + I2 + I3 (42)

M33 = m3 (43)

G = m3g (44)

Below, the parameters of each robot link, specified in Table 1 [34] (mass, length, mass
center, and inertia) are used to then simulate their dynamic behavior and obtain their
position, velocity, acceleration, and torques, which will be employed in the parameter
identification of the real robot. It should be noted that the parameters that are not specified
in Table 1 are those not required in the dynamic equation of the manipulator robot.

Table 1. Parameters of manipulator robot.

Parameters Link 1 Link 2 Link 3

mi [kg] 12 6 2
li [m] 0.6 0.4 -
lci [m] 0.3 0.2 -

Ii [kgm2] 0.36 0.08 0.08

The control scheme proposed for this 3-DoF robot is presented in Figure 6; a PID
controller is employed in each of its links, whose values are presented in Table 2.
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Table 2. Parameters of manipulator robot.

Controller P I D

1 0.5 0 0.37
2 1 0 0.04
3 40 50 10

Thirty dynamic parameters are obtained for the 3-DoF SCARA robot. However, not
all these parameters affect the dynamics of the robot. Therefore, parameter identification
is simplified into finding a set of minimum base parameters. In turn, thanks to the re-
duced number of DoF in the manipulator robot, an empirical formulation can be obtained,
considering that the regressor should be a full rank matrix [35].

From the dynamic equations of the manipulator robot above developed, substituting
and arranging each component, the following equations are obtained:

τ1 =

 m1lc1
2 + I1 + m2l12 + m2lc2

2 + I2+
m3l12 + m3l22 + I3 + 2(m2l1lc2 + m3l1l2) cos(θ2)

 ..
θ1

+

((
m2lc2

2 + I2 + m3l22 + I3
)
+

(m2l1lc2 + m3l1l2) cos(θ2)

)
..
θ2

+ − 2(m2l1lc2 + m3l1l2)sen(θ2)
.
θ1

.
θ2

−(m2l1lc2 + m3l1l2)sen(θ2)
.
θ1

.
θ2

−(m2l1lc2 + m3l1l2)sen(θ2)
.
θ2

2

(45)

τ2 =

((
m2lc2

2 + I2 + m3l22 + I3
)
+

(m2l1lc2 + m3l1l2) cos(θ2)

)
..
θ1 +

(
m2lc2

2 + I2 + m3l22 + I3
) ..
θ2

+(m2l1lc2 + m3l1l2)sen(θ2)
.
θ1

2
(46)

F3 = m3
..
d3 −m3g (47)

Now, if the parameters are grouped as follows:

IZZ1 = m1lc1
2 + I1 + m2l12 + m2lc2

2 + I2 + m3l12 + m3l22 + I3
IZZ2 = m2lc2

2 + I2 + m3l22 + I3
mr = m2l1lc2 + m3l1l2

(48)

Then, it is obtained:

τ1 = (IZZ1 + 2mr cos(θ2))
..
θ1 + IZZ2 + mr cos(θ2)

..
θ2

−2mrsen(θ2)
.
θ1

.
θ2 −mrsen(θ2)

.
θ2

2
(49)

τ2 = IZZ2 + mr cos(θ2)
..
θ1 + IZZ2

..
θ2 + mrsen(θ2)

.
θ1

2 (50)

F3 = m3
..
d3 −m3g (51)

Finally, the following equations depict the linear formulation based on four base
parameters: IZZ1, IZZ2, mr and m3.

τ1 = IZZ1
..
θ1 + IZZ2

..
θ2 + mr

((
2

..
θ1 +

..
θ2

)
cos(θ2)−

( .
θ2

2 + 2
.
θ1

.
θ2

)
sen(θ2)

)
(52)

τ2 = IZZ2

( ..
θ1 +

..
θ2

)
+ mr

( ..
θ1 cos(θ2) +

.
θ1

2sen(θ2)
)

(53)

F3 = m3

( ..
d3 − g

)
(54)
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where: IZZ1 represents the inertia of links 1, 2, and on the Z0 axis, while IZZ2 is the inertia
of links 2 and 3 on the Z1 axis, mr is the mass center of links 1 and 2, and m3 is the mass of
link 3.

Equations (52)–(54) can be represented in vectorial terms of force/torque as shown in
(36) and as a matrix in (37).

y(τ) =

∣∣∣∣∣∣
τ1
τ2
F3

∣∣∣∣∣∣ (55)

y(τ) = Φ
(
q,

.
q,

..
q
)

p (56)

where: Equation (57) corresponds to the regressor Φ and Equation (58) to the vector of base
parameters p.

Φ =

∣∣∣∣∣∣∣∣∣
..
θ1

..
θ2

(
2

..
θ1 +

..
θ2

)
cos(θ2)−

( .
θ2

2 + 2
.
θ1

.
θ2

)
sen(θ2) 0

0
( ..

θ1 +
..
θ2

) ( ..
θ1 cos(θ2) +

.
θ1

2sen(θ2)
)

0

0 0 0
( ..

d3 − g
)
∣∣∣∣∣∣∣∣∣ (57)

p =

∣∣∣∣∣∣∣∣
IZZ1
IZZ2
mr
m3

∣∣∣∣∣∣∣∣ (58)

3. Results

When a parameter identification parameter is designed for a robot, a trajectory to be
followed by the robot needs to be designed, so the robot parameters are sufficiently excited
during the execution of the movement. Otherwise, it will not be possible to identify some
parameters, or these could be too sensitive to noise [36].

3.1. Simulation
3.1.1. Recurrent Neural Networks: Hopfield Neural Networks

HNNs are characterized by conducting on-line parameter estimations. Therefore, they
allow for updating the estimated parameters over time. However, to achieve a satisfactory
identification, condition (3.1) needs to be met:

I[t0,+∞] , ∩
t∈I

ker(Φ(t)) = {0} (59)

Thus, considering the regressor Φ:

p̃ ∈ ker(φ(t))⇔


φ11 p̃1 + φ12 p̃2 + φ13 p̃3 = 0

φ22 p̃2 + φ23 p̃3 = 0
φ34 p̃4 = 0

(60)

Then, condition (59) holds for all intervals I ⊂ [0,+∞].
Figure 7 shows the response produced by HNN. In this case, for parameter comparison,

the estimated value is calculated by applying the mean value to the HNN response during
the 30 s of simulation. One variation stands out during parameter identification, which
is caused by the presence of Gaussian noise in the input data. Table 3 shows the error
associated with the estimation calculated.
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Table 3. Comparison between real parameters and parameters estimated with Hopfield networks.

Parameters Value Estimation Dev. Err. %

IZZ1 4.968 4.0126 1.0943 19.23
IZZ2 0.648 0.3605 0.3898 44.37
mr 1.200 0.9774 0.4430 18.55
m3 2.000 1.9991 0.0265 0.045

3.1.2. Extended Kalman Filter

The Extended Kalman filter employed the direct dynamic model of the robot, i.e., of
the joint coordinates based on the forces/torques. The direct dynamic model is symbolically
calculated through the Lagrange–Euler formulation, considering the parameter groups
described in Equation (48). Subsequently, the transformation into state variables is con-
ducted considering that to estimate parameters through this algorithm, and an extended
state needs to be added that includes the parameters. Therefore, for the 3-DoF manipulator
robot, it is obtained:

x1 = θ1 →
.
x1 =

.
θ1

x2 =
.
θ1 →

.
x2 =

..
θ1

x3 = θ2 →
.
x3 =

.
θ2

x4 =
.
θ2 →

.
x4 =

..
θ2

x5 = d3 →
.
x5 =

.
d3

x6 =
.
d3 →

.
x6 =

..
d3

x7 = IZZ1 →
.
x7 = 0

x8 = IZZ2 →
.
x8 = 0

x9 = mr →
.
x9 = 0

x10 = m3 →
.
x10 = 0

(61)

Considering the Euler approximation for the derivatives, which is shown in Equation (62):

.
x ≈ xk+1 − xk

∆t
(62)

Using this approximation and substituting it in the state equations, the Formulation (63)
is obtained, which will be implemented in the Kalman filter with ∆t = 0.01.

xk+1 = xk + ∆t
.
xk (63)
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Since the Kalman filter is an iterative algorithm, to initiate the parameter identification
process, the following values are considered: initial value, the covariance matrix of the
initial error, the covariance matrix of the process noise, and the covariance matrix of
observation:

x0 = (1 1 1 1 1 1 5 0, 5 1 1, 5)T (64)

P0 = Q = 10·diag(1 1 1 1 1 1 1 1 1 1) (65)

R = diag

((
5π

180

)2( π

180

)2
(

5π

180

)2( π

180

)2
(0, 02)2(0, 01)2

)
(66)

The comparison of the estimated and real parameters is shown in Table 4. Finally, the
evolution of the parameter estimation curves is displayed in Figure 8.

Table 4. Comparison between real parameters and parameters estimated using EKF.

Parameters Value Estimation Dev. Err. %

IZZ1 4.968 4.6792 0.2932 5.8130
IZZ2 0.648 −0.9285 1.7369 243.28
mr 1.200 1.0965 0.2015 8.6250
m3 2.000 1.9965 0.0342 0.1750
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3.1.3. Least Squares

The least-squares method is based on the use of an inverse linear model in terms
of parameters. This method allows for estimating the inertial base parameters from the
measurement or estimation of the joint’s torques or positions, optimizing the average
square root of the model error under the assumption that errors in measurements are
negligible. This method includes the following steps [28]:

• Using a mathematic formulation to generate a robot model that is linear with respect
to the inertial parameters.

• Reducing the inertial parameters to a set of base parameters.
• Determine the optimal parameter trajectory and optimize trajectory excitation.
• Estimate link parameters through the least-squares method.

Since the regressor Φ is based on the joint coordinates and their time derivatives,
when the manipulator robot travels along a particular trajectory, there will be DoF · npts
equations, thereby obtaining an overdetermined system. Therefore, considering the points
traveled in the trajectory, the system will be given by the expression:

τnptsx1 = Wnptsxnp ·pnpx1 (67)
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where: τnptsx1 is the force/torque vector, Wnptsxnp is the observation matrix of the system,
pnpx1 is the base parameter vector, npts is the number of points and np is the number of
base parameters.

Then, to identify the parameters, the following should be calculated:

pnpx1 =
(

Wnptosxnp
T ·Wnptosxnp

)−1
Wnptosxnp

T ·τnptosx1 (68)

Table 5 shows the results when employing the least-squares methods for estimating
the parameters of a 3-DoF manipulator robot.

Table 5. Comparison between real parameters and parameters estimated using least squares.

Parameters Value Estimation Err. %

IZZ1 4.968 4.7825 3.7334
IZZ2 0.648 0.6305 2.7001
mr 1.200 1.1243 6.3054
m3 2.000 1.9999 0.0063

3.1.4. Unscented Kalman Filter

In order to use the UKF, first, the sigma points and their corresponding weights are
calculated, as explained in Section 2.2. From these calculations, the parameters of the
system described in the Section 2.4.3 are estimated.

Table 6 shows the results obtained when employing this method for estimating the
parameters of a 3-DoF manipulator robot; in addition, this table presents a comparison with
the real value of these parameters. In turn, Figure 9 presents the evolution of the obtained
parameter estimation over time.

Table 6. Comparison between real parameters and parameters estimated using UKF.

Parameters Value Estimation Err. %

IZZ1 4.968 4.762 4.1468
IZZ2 0.648 0.480 25.920
mr 1.200 1.18 1.6670
m3 2.000 1.9968 0.0062
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4. Discussion

The results obtained for parameter identification when using each of the methods
above were satisfactory. The method with the best performance was least squares, as it
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yielded values closer to the real parameters of the 3-DoF manipulator robot, as observed in
Table 7. While the EKF and HNN diverge in the estimation of the value of the parameter
IZZ2, the value in which the error related to the estimation is higher. Comparing the EKF
and HNN, better parameter estimation is obtained through the use of the UKF, as observed
in Figures 10–12.

Table 7. Comparison of the different parameter estimation methods.

Identification
Method

Parameters

IZZ1 IZZ2 mr m3

Real value 4.9680 0.6480 1.2000 2.0000
Least squares 4.7825 0.6305 1.1243 1.9999

HNN 4.0126 0.3605 0.9774 1.9991
EKF 4.6792 −0.9285 1.0965 1.9965

UKF 4.7620 0.48600 1.1800 1.9968
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The figures above show how the UKF offers a better estimation, especially for parame-
ters one and two, compared to other methods, presenting a smaller divergence from the
real value.

It is noteworthy that the standard deviation values in both Tables 3 and 4 were
calculated and considered the real value to be estimated as an average. This was performed
to know how close the values estimated by both HNN and the EKF were during simulation.
In this context, the EKF presented a lower deviation in the parameter estimation of the
parameters IZZ1 and mr, while the estimation of the parameter m3 was the best by all
methods. However, the results of the UKF are superior to those of the EKF for all identified
parameters.

Below, to conduct the validation of the estimated parameters through all the methods
employed, real values are substituted for estimated values, and a simulation is conducted
in the trajectory tracking used for parameter estimation. In this way, the response of the
3-DoF manipulator robot is analyzed.

When using the parameters obtained from the estimation of the EKF, the value of the
parameter IZZ2 is changed for the value found with the least-squares method. Figures 13–15
show the response of each link of the manipulator robot using the parameters estimated
for each method.
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From the figures above, a good response of the 3-DoF manipulator robot to trajectory
tracking can be observed when its parameters are replaced by the values estimated for each
of the methods used. It can be seen that each robot link is able to go across the established
trajectories in a very accurate way. Below, performance indexes will be used to quantify the
behavior of the robot. In this way, the results of all the parameter identification methods
will be validated by performing an analysis of the response error of the robot when real
values are employed in the trajectory tracking of each joint.

Table 8—with the calculations of the Residual Mean Square Error (RMSE), Integral of
the Absolute Error (IAE), and the Integral of the Square Error (ISE)—presents a comparison
of the robot’s performance based on the responses of its first link and the values of the
estimated parameters through the four identification methods employed in this work. In
Table 8, the value of the performance indexes of the “real” robot refers to the value delivered
by the dynamic model of the robot using the values of the default parameters of the real
robot. It is observed that the values of the estimated parameters are very close to the real
parameters, especially the response results with parameters found through EKF and UKF,
which present a lower estimation error.

From the responses of the second and third links, Tables 9 and 10, respectively, present
a comparison of the robot’s performance with the values of the parameters estimated
through the four identification methods employed. In the case of the second link, the
response of the robot stands out when considering the parameters obtained through
HNN and UKF since the estimated parameters are very close to the values of the real
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parameters. Likewise, the excellent response of the robot is highlighted for the third link
when considering the parameters obtained through each identification method employed.

Table 8. Comparison of the error parameters of the 1st link.

RMSE IAE ISE

Real 0.1246 0.7822 0.4564
Least squares 0.1244 0.7802 0.4550

HNN 0.1209 0.7701 0.4289
EKF 0.1242 0.7789 0.4538
UKF 0.1229 0.7792 0.4442

Table 9. Comparison of the error parameters of the 2nd link.

RMSE IAE ISE

Real 0.1059 0.2737 0.2842
Least squares 0.1071 0.2803 0.2917

HNN 0.0908 0.1721 0.1953
EKF 0.1074 0.2818 0.2935
UKF 0.0960 0.2081 0.224

Table 10. Comparison of the error parameters of the 3rd link.

RMSE IAE ISE

Real 0.0102 0.0567 0.0029
Least squares 0.0102 0.0568 0.0029

HNN 0.0102 0.0568 0.0029
EKF 0.0102 0.0568 0.0029
UKF 0.0102 0.0568 0.0029

5. Conclusions

In this article, the current importance of the Kalman filter in robotics has been un-
derscored. It has been demonstrated that over the years, researchers have been able to
modify this filter in order to solve some of its deficiencies, for example, inconsistency.
In addition, several applications of the different modifications of the Kalman filter have
been enumerated, with the UKF being one of the most employed. In general, parameter
identification plays a key role in a control system when the exact values of its model are
not known. Therefore, several algorithms have been developed to know these parameters,
among which is the KF.

Specifically, the dynamic model of a 3-DoF manipulator robot was developed.
The validation of the results of each method proposed for the parameter identification

of the 3-DoF manipulator robot showed that, in general, all these methods present good
results. However, Hopfield Neural Networks and the Extended Kalman filter diverge in the
estimation of the IZZ2 parameter, which is not a problem for the estimation of this parameter
through the UKF. Therefore, using the values of the parameters identified employing EKF
and UKF, the dynamic behavior of the robot is excellent. This was demonstrated through
the calculation of the performance indexes of Residual Mean Square Error, Integral of the
Absolute Error, and Integral of the Square Error. These indexes were calculated for each
DoF of the SCARA robot during the trajectory tracking of its links.

Overall, the UKF presented the best results in parameter estimation, but it was not
able to compete with the results delivered by the least-squares method. Nevertheless, the
least-squares method exhibits the disadvantage of estimating a final value that can only be
seen at the end of the estimation process, while it is not possible to observe such behavior
over time.

The literature review of different parameter identification methods employed in
manipulator robots was key in the development of this work. This allowed for the selection,
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analysis, and validation of parameter identification methods that delivered good results
when this type of robot is used. Likewise, the development of a dynamic model of the
3-DoF manipulator robot was a key aspect of this work, enabling an excellent mathematical
approximation for a real 3-DoF manipulator robot.

In turn, the comparisons and analyses of the simulations for each parameter identifica-
tion method, based on diverse performance indexes, facilitated the validation of the good
results obtained.

6. Future Works

Despite the good outcomes in this work and the fact that they are similar to the real
values of the robot to a great extent, more methods based on the variations of the Kalman
filter should be addressed by further works in order to obtain better results in the parameter
identification of manipulator robots. Furthermore, an extension of this work should deal
with manipulator robots with more than 3-DoF.
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