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Abstract: A new category equivalence is proved in this paper, involving the two distinct categories
of modules, the covariant and the contravariant, respectively, released by Higgins and Mackenzie.
The equivalence of the two categories is given when restricting to almost finitely generated projective
modules and their allowed morphisms, defined in the paper. The equivalence is expressed by using
generators. In particular, we obtain the well-known equivalence of the two categories of projective
finitely generated modules; thus, our main result extends this classical one.
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almost finitely generated

1. Introduction

The category of modules is of special interest, in the general form (see, for example, [1,2]),
or in special forms (see, for example, [3–10]).

A category of modules has the doubles (A, M) as objects, where A is a ring and M is
an A-module. The usual category of modules has morphisms of (A, M) and (A′, M′) as
doubles (ϕ, ψ), where ϕ : A→ A′ is a ring morphism and ψ : M→ M′ is an A-morphism.
One can say it is a covariant category of modules

−−→
Mod, since there is another category of

modules
←−−
Mod, called here a contravariant one, having the same objects, but the morphisms

of (A, M) and (A′, M′) are the set of doubles (ϕ, ψ), where ϕ : A′ → A is a ring morphism
and ψ : M → A ⊗A′ M′ is an A-module morphism. It comes from the categories of
vector bundles, where the morphisms and co-morphisms of vector bundles give different
categories via the morphisms of modules (see [5]). More specifically, if one considers that,
for a smooth vector bundle, π : E→ B the ring of real functions F (B) and the module of
sections Γ(E), the usual morphism of vector bundles gives rise to a contravariant morphism
for modules of sections, while a co-morphism of vector bundles gives rise to a covariant
morphism for modules of sections. This fact applies, in general, to module morphisms.
These categories of modules are emphasized in [6] (see also [11]).

There is a natural functor FCnv from
←−−
Mod to

−−→
Mod (Proposition 2), while a converse

functor can be given only when restricted to some subcategories. We relate the existence of
such a functor to the existence of a module morphism Ψ, as in Proposition 3. For finitely
generated projective modules, Ψ is an isomorphism for every such module and an inverse
functor can be considered.

We consider in the paper a more general case, of almost finitely generated projective
modules that extend finitely generated projective modules.

Considering also allowed morphisms, we obtain two subcategories:
←−−
ModFP and

−−→
ModFP, of almost finitely generated projective modules, when the morphism Ψ is an
isomorphism.
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By using generators from condition (Proj), we explicit the morphisms related to two
functors FFP :

←−−
ModFP →

−−→
ModFP (given from the restriction) and FPF :

−−→
ModFP →

←−−
ModFP

(constructed using Ψ) by using several propositions in Section 3. An essential difference
of these two functors, versus the (finitely generated projective) modules, is that the A-
dual M∗A of a module M is replaced by a restricted dual M+A (called here a + dual),
defined in the paper. In the case of a finitely generated projective module (A, M), we have
M+A = M∗A and the functor FFP is just the restriction of FCnv.

The equivalence of the functors FFP and FPF is known only in the case of finitely
generated modules, stated, for example, in [12], without an effective proof.

We summarize the general result explicitly in Theorem 1, where we prove that the
functors FFP and FPF are inverse each to other, giving an equivalence of the two categories
of modules.

The aim of our paper involves two directions. Besides the equivalence stated above, we
claim that the new category of almost finite modules can open many interesting problems
involving the properties of finite generated modules and the way they can be extended in
this new category. We give now some examples in this line.

A classification of almost finitely generated projective modules can be investigated as
in [9].

An infinite sequence of the special kind modules are introduced in [13] for Charac-
teristic Lie rings for Toda type 2 + 1 dimensional lattices, and the author proves that, for
known integrable lattices, these modules are finitely generated. We launch the problem
that almost finitely generated projective modules can be an alternative for the general case.

The importance of finitely generated projective modules in differential geometry is
emphasized in [5,14]. The almost finitely generated projective module case can arise for a
numerable direct sum of such objects.

How to involve almost finitely generated projective modules in Lie–Rinehart algebras
and modules can be studied as in [4,15].

The authors in [16] show that every finitely generated studied module is associated
by a sequence of invariant modules. A similar problem can be investigated in the case of
almost finitely generated projective modules.

A relation with the finitly generated projective module can be studied using [17].

2. Basic Facts

Let A be a ring (with a unit) and M be an A-module; we say also (A, M) is a module.
We are concerned about the ring of a module, since it is an essential fact in what follows.

Modules over a given ring A is a category ModA where objects are A-modules and
morphisms are the usual morphisms of A-modules (i.e., A-linear maps). When we are
concerned with different rings, then we have to consider some larger categories. Notice
that the ring morphisms are very restrictive; for example, if a ring morphism ϕ : A′ → A
exists, then the characteristic of A divides the characteristic of A′.

First, it is a category
−−→
Mod that the objects are (A, M) as above and morphisms

−−→
Hom((A, M), (A′, M′)) are the set of doubles (ϕ, ψ), where ϕ : A→ A′ is a ring morphism
and ψ : M→ M′ is an A-module morphism via ϕ. We say that (ϕ, ψ) is a Cov-morphism.

Then, it is category
←−−
Mod that the objects are (A, M), as above, and morphisms

←−−
Hom((A, M),

(A′, M′)) are the set of doubles (ϕ, ψ), where ϕ : A′ → A is a ring morphism and
ψ : M→ A⊗A′ M′ is an A-module morphism. We say that (ϕ, ψ) is a Con-morphism.

There is a natural functor FCnv :
←−−
Mod→

−−→
Mod, defined as follows. We have FCnv(A, M) =

(A, M∗A), where M∗A is the A-module of A-linear maps ω : M → A; we use (also in the
following) a single pair of parenthesis: FCnv(A, M) instead of FCnv((A, M)). We say that
M∗A is the A-dual of M. Let (ϕ, ψ) be a Con-morphism.

In order to relate chain Cov-morphisms, we have the following true statement.
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Proposition 1. Let (A′′, M′′) be a module, ϕ : A′ → A and ϕ′ : A′′ → A′ be some ring

morphisms. Then, there is a canonical A-module isomorphism A⊗A′′ M′′ F→ A⊗A′ (A′ ⊗A′′ M′′).

Proof. The morphism F is defined by F(a⊗A′′ m′′) = a⊗A′ (1A′ ⊗A′′ m′′). It has as inverse

A⊗A′ (A′ ⊗A′′ M′′) F−1
→ A⊗A′′ M′′, given by

F−1(a⊗A′
(
a′ ⊗A′′ m′′

))
= aϕ

(
a′
)
⊗A′′ m′′.

There is an isomorphism, as given below; when ϕ is a surjection, it is the identity.

Corollary 1. Let (A′, M′) be a module, ϕ : A′ → A be a ring morphism and denote by i : A0 → A
the inclusion of the subring A0 = ϕ(A′) ⊂ A. Then, there is a canonical A-module isomorphism

A⊗A′ M′ F→ A⊗A0 (A0 ⊗A′ M′).

Lemma 1. Let (A′, M′) be a module and ϕ : A′ → A be a ring morphism. Then, there are

An A′-module morphism Φ : (M′)∗A′ → (A⊗A′ M′)∗A ;

An A-module morphism Ψ : A⊗A′ (M′)∗A′ → (A⊗A′ M′)∗A .

Proof. We define

Φ
(
ω′
)(

∑
α

bα ⊗m′α

)
= ∑

α

bα ϕ
(
ω′
(
m′α
))

(1)

and

Ψ

(
∑

i
ai ⊗ω′i

)(
∑
α

bα ⊗m′α

)
= ∑

i,α
aibα ϕ

(
ω′i
(
m′α
))

.

Notice that if A = A′ and ϕ = 1A, then Φ and Ψ are identity maps.
Corresponding to the following maps:

Φ given by Lemma 1;

ψ∗ : (A⊗A′ M′)∗A → M∗A , the A-dual of ψ : M→ A⊗A′ M′,

we can consider
FCnv(ϕ, ψ) = (ϕ, ψ1 = ψ∗ ◦Φ).

In addition, FCnv(A, M) = (A, M∗A).
More specifically, if

ψ(m) = ∑
α

aα ⊗m′α,

then ψ1 : (M′)∗A′ → M∗A is given by

ψ1
(
ω′
)
(m) = ∑

α

aα ϕ
(
ω′
(
m′α
))

.

The validity of the following statement follows by a direct verification.

Proposition 2. There is a natural contravariant functor FCnv :
←−−
Mod→

−−→
Mod.

Related to application Ψ, we have the following statement.

Proposition 3. An A-module map Ψ̄ : (A⊗A′ M′)∗A → A⊗A′ (M′)∗A′ and an A′-module map
ψ : M′ → M give rise to an A-module map ψ̄ : M∗A → A⊗A′ (M′)∗A′ . In particular, if Ψ is an
isomorphism, then we can consider Ψ̄ = Ψ−1.
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Proof. One can consider ψ̃ : A ⊗A′ M′ → M, ψ̃(a⊗A′ m′) = aψ(m′) and its dual ψ̃∗ :
M∗A → (A⊗A′ M′)∗A . Then, we define ψ̄ = Ψ̄ ◦ ψ̃∗.

However, there is not a natural functor
−−→
Mod →

←−−
Mod; in order to obtain one, we

have to consider the restrictions of these categories, imposing supplementary conditions,
merely based on projective modules. For projective modules that are finitely generated, Ψ
is an isomorphism and one can consider functors between restricted categories giving an
equivalence.

IfR ⊂ Ring is a subcategory of rings, then we can consider some full subcategories
←−−
ModR and

−−→
ModR of

←−−
Mod and

−−→
Mod, respectively, considering the rings, morphisms and

modules over rings according toR; we call them restricted categories toR. If we also restrict
the modules, the subcategories can be not full subcategories.

In order to be more clear, we exemplify the above constructions for two cases: the
category of scalars and the category of vector bundles.

Let us consider first the full subcategory (of rings) Scal (of scalars) that has as objects
two rings (in fact fields),Ob(Scal) = {R,C}, and morphismsHomR,R = {1R} ,HomC,C =
{1C}, HomR,C = {I} and HomC,R = �, where I is the natural inclusion of R in C. The
corresponding categories

←−−
ModScalM and

−−→
ModScalM have the same objects, the real and the

complex vector spaces. The morphisms of real vector spaces are real linear ones, morphisms
of complex vector spaces are also complex linear ones; there are not covariant morphisms
from complex to reals, nor contravariant morphisms from reals to complex, the covariant
morphisms from reals to complex are real linear maps, while contravariant morphisms
from complex to reals are given by complex linear maps from complex to complexificated
real linear spaces.

The map Φ and Ψ looks as follows in this case:

– For A = A′ they are 1A;
– For I : R → C, Φ : (M′)∗R → (C⊗M′)∗C , where M′ is a real vector space, asso-

ciates to an (M′)∗R 3 ω′ → Φ(ω′) ∈ (C⊗M′)∗C , Φ(ω′)
(
m′1 + im′2

)
= ω′

(
m′1
)
+

iω′(m′2) (i.e., Φ(ω′) is the natural extension of ω′ to the complex dual). The map
Ψ : C⊗ (M′)∗R → (C⊗M′)∗C is a natural C-isomorphism that associates to ω′1 + iω′2
the Ψ

(
ω′1 + iω′2

)(
m′1 + im′2

)
= ω′1

(
m′1
)
− ω′2(m

′
2) + i

(
ω′1(m

′
2) + ω′2

(
m′1
))

, which is a
complex isomorphism.

More generally, if K′ is a field and f0 ∈ K′[X] is an irreducible polynomial, then
K = K′[X]/( f0) is an extension of K′ and the only (ring) morphism i′ : K′ → K is the
inclusion. There are not morphisms ϕ : K → K′, because X̂ is a root of f0 in K; thus, ϕ

(
X̂
)

would be a root of f0 in K, contradicting the irreducibility of f0.
Another example is when the categoryR is indexed by smooth connected manifolds.

In fact, this is the image of the contravariant functor from the category of connected
manifolds to the category of rings, which associates to a smooth connected manifold B the
ring (in fact a real algebra) F (B) of smooth real functions on B. Instead of all modules,
one can consider the projective and also finitely generated ones. According to the Serre–
Swan theorem (see [18]), such a module over F (B) is isomorphic to the F (B)-module of
the sections Γ(V) of a vector bundle V over the base B. A covariant morphism ( f ∗0 , f ) of
modules (F (B′), Γ(V′)) and (F (B), Γ(V)) corresponds to a co-morphism of vector bundles
( f0, f ), where f0 : B→ B′ and f : f ∗0 V′ → V is an f0 co-morphism of vector bundles, or
f : Γ(V′) → Γ(V) at the section form. A contravariant morphism ( f ∗0 , f ) of modules
(F (B), Γ(V)) and (F (B′), Γ(V′)) corresponds to a morphism of vector bundles ( f0, f ),
where f0 : B→ B′ and f : V → V′ is an f0 morphism of vector bundles that can be regarded,
as well, as the vector bundle morphism f : V → f ∗V′, or f : Γ(V) → F (B)⊗F (B′) Γ(M′)
at the section form (see [5] for more details).
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3. The Case of Projective Modules

We are concerned in this section with projective modules, mainly almost finitely
generated, defined here. The result concerning the equivalences of categories of finitely
generated projective modules is stated, for example in [12], without an effective proof.
We prove an analogous result in a more general setting, of almost finitely generated
projective modules.

According to the Dual basis lemma (see [2] (Proposition 4.7.5)), the projectivity of a
module (A, M) is equivalent to the condition:

(Proj) There exist a set of generators {mi}i∈I ⊂ M and a set { fi}i∈I ⊂ M∗A such that
(∀)m ∈ M, the set { fi(m)}i∈I is finite and we have m = ∑

i∈I
fi(m)mi.

If I is finite, one says the module M is finitely generated.
Let (A, M) be projective and condition (Proj) holds, where set I is not necessarily finite.

Let us denote by M+A ⊂ M∗A the submodule of ω ∈ M∗A such that the set {ω(mi)}i∈I is
finite. We say that the projective module (A, M) is almost finitely generated if there are some
{ fi}i∈I ⊂ M+A in its definition. These elements of M+A are not necessarily unique, but
their existence will be considered implicitly in what follows.

Notice that a finitely generated module is almost finitely generated, but the converse
fact is not true.

Indeed, consider the ring A = R[X] and the R[X]-module M = R[X][Y] = R[X, Y],
seen as the module of sequences from R[X] having a finite support. Then, M∗A is the
A-module of sequences from R[X], while M+A is the module of sequences from R[X] with
a finite support. Notice that this example can be extended to R[X1, . . . , Xn]. We have also
that (R[X],R[X, Y]) is an example of an almost finite projective module which is not finitely
generated. Indeed, it is a free module, thus, it is projective; then, considering dual bases
mn = Xn and fk(Xn) = δn

k , n, k ∈ N, the assertion follows easily.
Another example of an almost finite projective module is the direct sum M = ⊕

i∈I
Mi of

finitely generated projective modules. When I is not finite, we have again an example of an
almost finitely generated projective module which it is not finitely generated.

Proposition 4. If M is projective and almost finitely generated, then M+A is also projective
and almost finitely generated, and the natural morphism i++ : M → M+A+A , i++(m)(ω) =

ω(m)
not.
= m̃(ω), is an isomorphism.

Proof. Using condition (Proj), we have m = ∑
i∈I

fi(m)mi; thus, ω ∈ M+A has the form

ω = ∑
i∈I

ω(mi) fi, (2)

where one can see ω(mi) = m̃i(ω). Let us notice that the generators of M+A are { fi}i∈I
and the duals are {m̃i}i∈I . Thus, condition (Proj) holds and the conclusion of the first
assertion follows by the Dual basis lemma. For the second assertion, we can see that if
η ∈ M+A+A ; then, we have

η = ∑
i∈I

η( fi)m̃i, (3)

where m̃i = i++(mi). The correspondence m ←→ η of the isomorphism i++ is given by
η( fi) = fi(m)(= m̃( fi)). If η is given by (3), consider m = ∑

i∈I
η( fi)mi; then, m̃ = i++(m) =

∑
i∈I

η( fi)m̃i = η; thus, i++ is a surjection. If m̃ = 0, then it follows that

m = ∑
i∈I

fi(m)mi = ∑
i∈I

m̃( fi)mi = 0,

thus, i++ is an injection.
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Since, for a finitely generated module M, one has M+A = M∗A , we have the follow-
ing corollary.

Corollary 2. If M is projective and finitely generated, then M∗A is also projective and finitely
generated. In addition, the natural morphism i∗∗ : M→ M∗A∗A , i∗∗(m)(ω) = ω(m)

not.
= m̃(ω),

is an isomorphism.

Proposition 5. If M′ is projective and ϕ : A′ → A is a ring morphism, then the A-module
A⊗A′ M′ is projective. If M′ is also almost finitely generated, then A⊗A′ M′ and (A⊗A′ M′)+A

are projective and almost finitely generated as well.

Proof. Consider
{

m′i
}

i∈I ⊂ M′ and a set
{

f ′i
}

i∈I ⊂ (M′)+A′ as in condition (Proj).
Let

{
1A ⊗A′ m′i

}
i∈I ⊂ A ⊗A′ M′ and

{
f̃i = Ψ

(
1A ⊗A′ f ′i

)}
i∈I ⊂ (A⊗A′ M′)+A . Then,

a ⊗A′ m′ = a ⊗A′ ∑
i∈I

f ′i (m
′)m′i = ∑

i∈I

(
aϕ
(

f ′i (m
′)
)
⊗A′ m′i

)
= ∑

i∈I

(
f̃i(a⊗A′ m′)⊗A′ m′i

)
=

∑
i∈I

f̃i(a⊗A′ m′) ·
(
1A ⊗A′ m′i

)
.

Since the last sum has a finite number of terms, it follows that A⊗A′ M′ is projective.
If M′ is almost finitely generated, then A⊗A′ M′ is also almost finitely generated, since

for every i ∈ I , the set{
f̃i

(
1A ⊗A′ m′j

)}
j∈I

=
{

1A ⊗A′ fi

(
m′j
)}

j∈I

is finite. Using Proposition 4, the final conclusion follows.

Lemma 1 has the following form for the + duals.

Lemma 2. Let (A, M) and (A′, M′) be two modules that are projective and almost finitely gener-
ated, and ϕ : A′ → A be a morphism of rings. Then, there are

An A′-module morphism Φ : (M′)+A′ → (A⊗A′ M′)+A ;

An A-module morphism Ψ : A⊗A′ (M′)+A′ → (A⊗A′ M′)+A .

Proposition 6. If M′ and M are projective and almost finitely generated, then the A-morphism Ψ
given by Lemma 2 is an isomorphism.

Proof. From Propositions 4 and 5, it follows that
{

f̃i = Ψ
(
1A ⊗A′ f ′i

)}
i∈I ⊂ (A⊗A′ M′)+A

is a set of generators. The linear extension of the correspondence of generators f̃i →
1A ⊗A′ f ′i , i ∈ I gives a well-defined inverse Ψ−1 of Ψ.

Let us notice that:

– All the sums below (for i ∈ I or i′ ∈ I ′) are finite ones but, for the sake of simplicity,
we do not specify it distinctly;

– The product of two matrices that all lines and all columns have finite support has the
same property.

We explicit now the Cov-morphisms and Con-morphisms for almost finitely generated
projective modules, using generators and corresponding matrices. In this way, we define
the allowed morphisms that give the morphisms of these two categories.

For almost finitely generated projective modules (A′, M′) and (A, M), where ϕ : A′ →
A and ψ : M′ → M, a Cov-morphism (ϕ, ψ) reads as follows. Consider, by condition (Proj)
for M′ and M:

{
m′i′
}

i′=1,k′ ⊂ M′,
{

f ′i′
}

i′=1,k′ ⊂ (M′)+A′ and {mi}i′=1,k ⊂ M, { fi}i′=1,k ⊂
M+A . Denote ψi′i = fi(ψ(mi′)); thus,

ψ(mi′) = ∑
i∈I

ψi′imi. (4)
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We have

ψ
(
m′
)
= ψ

(
∑

i′∈I ′
f ′i′
(
m′
)
m′i′

)
= ∑

i′∈I ′
∑
i∈I

ϕ
(

f ′i′
(
m′
))

ψi′imi. (5)

We say that (ϕ, ψ) is allowed if all the lines and columns of the matrix {ψi′i}i∈I ,i′∈I ′
have finite support.

Using the above data for two almost finitely generated projective modules as above, a
Con-morphism (ϕ, ψ), reads as follows.

We have that ϕ : A′ → A and ψ : M → A⊗A′ M′; then, ψ(mi) =
n
∑

α=1
aiα ⊗A′ m′′α =

n
∑

α=1
∑

i′∈I ′
aiα ⊗A′

(
a′′i′αmi′

)
= ∑

i′∈I ′

(
n
∑

α=1
aiα ϕ

(
a′′i′α
))
⊗A′ mi′ = ∑

i′∈I ′
ψi′i ⊗A′ mi′ ; thus

ψ(mi) = ∑
i′∈I ′

ψi′i ⊗A′ mi′ . (6)

We have

ψ(m) = ψ

(
∑
i∈I

fi(m)mi

)
= ∑

i′∈I ′

(
∑
i∈I

fi(m)ψi′i

)
⊗A′ mi′ . (7)

According to Proposition 4, the modules (A, M+A) and
(

A′, M′+A′
)

are almost finitely
generated projective modules.

Consider now a Cov-morphism (ϕ, ψ) of almost finitely generated projective modules
(A, M) and (A′, M′); thus, ϕ : A′ → A and ψ : M′ → M.

We say that (ϕ, ψ) is allowed if all the lines and columns of the matrix {ψi′i}i∈I ,i′∈I ′
have finite support.

Considering only allowed morphisms, we obtain the following result by a straightfor-
ward verification.

Proposition 7. The restrictions of the objects to the finitely generated projective modules and of the
morphisms to the allowed ones in the categories

−−→
Mod and

←−−
Mod are the objects and the morphisms of

two new categories, denoted by
−−→
ModFP and

←−−
ModFP, respectively.

Let us define, in this case, FFP(A, M) = (A, M+A) and

FFP(ϕ, ψ) = (ϕ, ψ̄),

where ψ̄ is given as in Proposition 3. Specifically, for a given ψ, consider ψ̃ : A⊗A′ M′ → M,
ψ̃(a⊗A′ m′) = aψ(m′) and its dual ψ̃+ : M+A → (A⊗A′ M′)+A ; then, ψ̄ = Ψ̄ ◦ ψ̃∗.

According to the proof of Proposition 4, an ω ∈ M+A has the form of (2). Consider ψ
having the form (5). Using (6), we can consider ψ̄ having the form

ψ̄(ω) = ∑
i′∈I ′

(
∑
i∈I

ω(mi)ψi′i

)
⊗A′ fi′ . (8)

Proposition 8. There is a natural contravariant functor FPF :
−−→
ModFP →

←−−
ModFP.

Proof. Consider a Cov-morphism (A, M) −→
(ϕ,ψ)

(A′, M′), then

FPF(A, M) =
(

A, M+
)
, FPF

(
A′, M′

)
=
(

A′,
(

M′
)+), FPF(ϕ, ψ) = (ϕ, ψ̄),
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where
(

A′, (M′)+
)

(ϕ,ψ̄)−→ (A, M+), and ψ̄ : (M′)+ → A′ ⊗A′ M+ is given by (8). It is easy to

see that if we consider a Cov-morphism (A′, M′) −→
(ϕ′ ,ψ′)

(A′′, M′′), then FPF((ϕ, ψ) ◦ (ϕ′, ψ′)) =

(ϕ ◦ ϕ′, ψ̄ ◦ ψ̄′), where ψ̄ ◦ ψ̄′ is constructed using the isomorphism given by Proposi-
tion 1.

In order to prove that the restriction of the functor considered in Proposition 2 and
the functor considered in Proposition 8 give the equivalent categories

−−→
ModFP and

←−−
ModFP,

respectively, we also use generators.

Proposition 9. The functor FCnv :
←−−
Mod →

−−→
Mod induces a natural contravariant functor FFP :

←−−
ModFP →

−−→
ModFP.

Proof. We check that the functor FFP gives a natural correspondence involving the same
matrix (ψi′i).

Indeed, given the Con-morphism (ϕ, ψ), where ϕ : A′ → A and ψ : M → A⊗A′ M′,
thus ψ(m) is given by (7), where the matrix (ψi′i)i∈I ,i′∈I ′ is given by (6). Then

FFP(A, M) =
(

A, M+
)
, FFP

(
A′, M′

)
=
(

A′,
(

M′
)+), FFP(ϕ, ψ) = (ϕ, ψ̃),

where ψ̃ : (M′)+ → M+ is given by

ψ̃
(
ω′
)
(m) = ∑

i′∈I ′

(
∑
i∈I

fi(m)ψi′i

)
ϕ
(
ω′(mi′)

)
. (9)

and the matrix (ψi′i)i∈I ,i′∈I ′ is given as in (8).
If we consider a Con-morphism (A′, M′) −→

(ϕ′ ,ψ′)
(A′′, M′′), then

FFP
(
(ϕ, ψ) ◦

(
ϕ′, ψ′

))
=
(

ϕ ◦ ϕ′, ψ̃ ◦ ψ̃′
)
,

where the composition ψ̃ ◦ ψ̃′ : M++ → (M′′)++ is constructed as follows:

(
ψ̃ ◦ ψ̃′

)(
ω′′
)
(m) = ∑

i′∈I ′

(
∑
i∈I

fi(m)ψi′′i

)
ϕ ◦ ϕ′

(
ω′′(mi′′)

)
,

where, using the definition (6) of the matrix (ψi′i)i∈I ,i′∈I ′ , we have

ψ(mi) = ∑
i′∈I ′

ψi′i ⊗A′ mi′ , ψ′
(
m′i′
)
= ∑

i′∈I ′
ψi′′i′ ⊗A′′ mi′′ .

Using the isomorphism given by Proposition 1, it follows that

(ψi′′i)i∈I ,i′′∈I ′′ = (ϕ(ψi′′i′))i′∈I ′ ,i′′∈I ′′ · (ψi′i)i∈I ,i′∈I ′ .

Let C and C ′ be two categories. A functor F : C → C ′ is an equivalence of the two
categories if there is an inverse functor G : C ′ → C, i.e., F ◦ G u 1C ′ and G ◦ F u 1C , where
u indicates a category equivalence (or isomorphism). If the functor F is contravariant, then
G is assumed contravariant as well. This is the case we are dealing with below.

The natural correspondences involving the same matrices also give the following true
statement.

Theorem 1. The functor FPF :
−−→
ModFP →

←−−
ModFP in Proposition 8 and the functor FFP :

←−−
ModFP →

−−→
ModFP in Proposition 9 give an equivalence of the categories

←−−
ModFP and

−−→
ModFP.
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Proof. In order to prove that the categories
←−−
ModFP and

−−→
ModFP are equivalent, we prove

that functors FPF and FFP are inverse each to other. Let us denote by (A, M)
(ϕ,ψ)−→ (A′, M′)

and (A, M) −→
(ϕ,ψ)

(A′, M′) a morphism in the categories
−−→
ModFP and

←−−
ModFP, respectively.

We consider condition (Proj) for the modules (A, M) and (A′, M′) with {mi}i∈I ⊂
M, { fi}i∈I ⊂ M+A and

{
m′i′
}

i′∈I ′ ⊂ M,
{

f ′i′
}

i′∈I ′ ⊂ M+A , respectively. In order to
simplify computations, we denote m′i′ and f ′i′ as mi′ and fi′ , respectively; in addition,
similar conventions hold for other cases below.

We check now the equivalence using the constructions performed in the proof of
Proposition 9. We use also Formulas (8) and (9).

Consider a Cov-morphism (A, M) −→
(ϕ,ψ)

(A′, M′), then FPF(A, M) = (A, M+), FPF(A′,

M′) = (A′, (M′)+) and FPF(ϕ, ψ) = (ϕ, ψ̄), as above. Then, FFP ◦ FPF(A, M) = (A, M++),
FFP ◦ FPF(A′, M′) =

(
A′, (M′)++

)
and FFP ◦ ◦FPF(ϕ, ψ) =

(
ϕ, ˜̄ψ), where ˜̄ψ : M++ →

(M′)++ ˜̄ψ(m̃)
(
ω′
)
= ∑

i′∈I ′
∑
i∈I

m̃i′
(
ω′
)
ψi′i ϕ(m̃( fi))

has the same action as ψ, via the canonical isomorphisms coming from Proposition 4,
i++ : M→ M++ and (i′)++ : M′ → (M′)++. Thus, FFP ◦ FPF u 1−−→

ModFP
.

Consider now a Con-morphism (A, M)
(ϕ,ψ)−→ (A′, M′).

Then, FPF ◦ FFP(A, M) = (A, M++), FPF ◦ FFP(A′, M′′) =
(

A′, (M′)++
)

and FPF ◦

FFP(ϕ, ψ) =
(

ϕ, ψ̃
)

, where ψ̃ : M++ → A⊗A′ (M′)++

ψ̃(m̃) = ∑
i′∈I ′

∑
i∈I

m̃( fi)ψi′i ⊗A′ m̃i′

has the same action as ψ, via the canonical isomorphism coming from Proposition 4. As in
the previous case, FPF ◦ FFP u 1←−−

ModFP
.

Corollary 3. The restrictions of categories
−−→
ModFP and

←−−
ModFP to the finitely generated projective

modules give two categories
−−→
ModFGP and

←−−
ModFGP, respectively. The restrictions of functors FPF

and FFP in Theorem 1 to
−−→
ModFGP and

←−−
ModFGP give a equivalence of these categories.

4. Conclusions

The equivalence of the two categories of modules (covariant and contravariat) in the
case of finitely generated projective modules

−−→
ModFGP and

←−−
ModFGP is well-known. In this

paper, we extended the above result to the more general case of the categories of almost
finitely generated projective modules,

−−→
ModFP and

←−−
ModFP, defined in the paper. In the

general case of the module categories, this equivalence does not take place (there are no
natural functors to give the equivalence of the two general categories

−−→
Mod and

←−−
Mod). That

is why we considered the restrictions
−−→
ModFP and

←−−
ModFP of the two general categories so

that there are natural functors that ensure their equivalence.
We claim that the study of both categories of modules can give interesting results in

the future. The non-equivalence of the two categories of modules, in the general case, can
give different contributions. According to the results in the paper, the two categories of
modules can have other equivalent subcategories, other than finitely generated projective
modules, but using some different functors. A study of the (pre-)shaves of such modules
can be performed as, for example, in [12].

We expect that the new category of almost finite modules, defined in the paper, will
raise many interesting problems involving the properties of finite generated modules and
the way they can be extended in this new category.
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