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Abstract: We have considered the holographic dark energy and modified holographic Ricci dark
energy models to analyze the time-dependent gravitational constant G(t) and cosmological constant
Λ(t) in the context of Chern–Simons modified gravity theory. The FRW metric is used to examine
the physical and kinematical properties of these models, which predicted the accelerated expansion
phase of universe. Further, the Λ(t) showed increasing trends while G(t) showed decreasing trends
for both cases. Finally, the range −1.99× 10−10 yr−1 ≤ Ġ

G ≤ 0 was estimated mathematically, which
is similar to the results obtained from observational data.

Keywords: HDE and MHRDE model; gravitational constant; cosmological constant; CSMG theory

1. Introduction

Various theories of gravity have risen in popularity in the past few decades, due to
recent cosmological observations [1,2]. To understand the concepts of late-time accelerated
expansion of the universe and orientation curvatures of celestial objects in clusters within
the general relativity (GR) framework, it is absolutely essential to postulate the origin
of unidentified matter. Energy sources which fill the known universe and are supposed
to influence gravity dynamics at cosmological levels are named dark energy (DE) and
dark matter (DM). The challenge of identifying these dark modules and differentiating
their effects from GR modifications at large scale prompts the development of alternative
gravity theories.

The four-dimensional Chern–Simons modified gravity (CSMG) theory [3] is among
the most well-known and exciting extensions of Einstein’s gravity theory, enabling the
implementation of the Lorentz symmetry violations in the context of gravity theories. A
more significant aspect of this modification is how beautifully higher-order representations
of the metric are generally incorporated. This model indeed has a genuine scalar field in
the dynamical formulation, including a relationship with the Pontryagin density [4]. The
non-dynamical formulation of the CSMG theory was initially investigated, which lacked
a kinetic description of the scalar field during the execution and requires a predefined
spacetime function. The dynamical CSMG theory [5] is a more sophisticated formulation
in which the scalar field is postulated to be dynamical, has attracted a lot of attentions
especially in recent years.

In the last couple of decades [6–9], holographic dark energy (HDE) models have been
thoroughly studied and evaluated as ρ ∝ Λ4 using associations among IR, UV cutoff, and
entropy, contributing significantly to Λ3L3 ≤ S

3
4 . The connection incorporating IR cut-offs

and entropy in equivalent formations usually leads to the HDE model’s energy density,
which itself is identical to the Bekenstein–Hawking term S = A

4G . The vacuum energy
density is linked to the UV cut-off, Ricci scalar, Hubble horizon, event horizon, and so on,
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suggesting that the IR cut-off is related to large-scale cosmos structures. There is adequate
literature on the investigation of a significant number of IR cut-offs [10–16].

t’Hooft [17] introduced the HDE model, which recently received a lot of attractions
in the investigation of inflationary and late-time cosmic acceleration phenomena [18–22].
This model is used in a variety of circumstances involving the Hubble radius and cosmic
canonical phase of particle horizon [23]. Gao et al. [12] proposed an interesting Ricci
holographic dark energy (RHDE) model using the formula L =| R |− 1

2 , where R is the
Ricci scalar. In the perspective of CSMG theory, Silva and Santos [24] demonstrated
that the RDE of the FRW universe is analogous to the generalized Chaplygin gas (GCG).
Somewhat on an amended FRW universe, Jamil and Sarfraz [25] accomplished similar tasks.
In the framework of CSMG theory, some of the modern researchers [16,26–29] explored
cosmological constraints, using the modified RHDE model and rebuilt several scalar field
theories, such as quintessence, tachyon, k-essence, and dilaton models.

Porfirio et al. [30] founded the connections for Gödel-type solutions using four-
dimensional CSMG theory, taking into account the non-dynamical CS factors for multiple
phases of matter and associated correlation forms. By accepting a characterization of
Schwarzschild solutions, Konno et al. [31] addressed rotating black holes in the context
of the CSMG theory. Guarrera and Hariton [32] used the CSMG to create a preserved,
symmetric energy-momentum pseudo tensor that seems to be a Lorentz invariant. Nandi
and fellows [33] investigated the effect of the CSMG on the possible phase difference of de
Broglie waves in neutron interferometry.

Ray and Mukhopadhyay [34] investigated two cosmological models Λ ' ( ȧ
a )

2 and
ä
a , assuming Newtonian gravitational constant G as the time-variable parameter and con-
cluded that it is inversely proportional to time, as Dirac showed previously. Furthermore,
the universe expanded at an accelerated and decelerated rate as a result of the combined
influence of time variable G, indicating a Big Crunch. Sarfraz and Saddique [35] inves-
tigated G and Λ in the framework of CSMG taking Λ ∼ ( ȧ

a )
2 is naturally attractive in

existence, whereas Λ ∼ ä
a corresponds to a repulsive conditions and thus pertains to

the present situation of the accelerating universe. It is also noticed that the universe is
expanding with acceleration due to the simultaneous influence of time variables Λ and G.
Alfedeel et al. [36,37] studied time dependent gravitational constant G(t) and cosmological
constants Λ(t) taking into account Bianchi type-I and V matrices and analyzed that the
Λ(t) decreases with time while the G(t) increases, and the reverse tendency is found for
another range of constraints. Motivated by these studies, we opted for two models named
holographic dark energy (HDE) Λ ∼ (αḢ + βH2) and modified holographic Ricci dark
energy (MHRDE) Λ ∼ 2

α−β (Ḣ + 3
2 αH2) [12] to investigate their influence on universe

expansion in the framework of the CSMG theory.
This paper is arranged in the following order: in Section 2, a detailed introduction of

CSMG theory and its field equations for FRW metric are introduced. In Sections 3 and 4,
the holographic models Λ ∼ (αḢ + βH2) and Λ ∼ 2

α−β (Ḣ + 3
2 αH2) are evaluated. The

numerical results and comparison with other models are in Section 5. The discussion on
the results and conclusions is given at the end.

2. Formulism of CSMG Theory

The CSMG theory based on the idea of leading-order gravitational parity violation
is one of the important extensions of GR. The Einstein–Hilbert action is modified in the
following way:

X = XEH + XCS + XΘ + Xmat, (1)

where Einstein–Hilbert term XEH is expressed as

XEH = κ
∫

v
d4x
√
−gR, (2)
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the Chern–Simons term XCS is represented as

XCS = α
1
4

∫
v

d4x
√
−gΘ∗RR, (3)

the term XΘ is a scalar field expressed as

XΘ =
−β

2

∫
v

d4x
√
−g[gab(∇mΘ)(∇nΘ) + 2V(Θ)], (4)

and the matter part Xmat involved in this action is given by

Xmat =
∫

v
d4x
√
−g£mat, (5)

where £mat stands for Lagrangian matter density, κ = 1
16πG , R is the Ricci scalar and

Pontryagin density ∗RR = RR̃ =∗ Racd
b Rb

acd and Θ is a pseudo-scalar field depending on
the space-time coordinates. The natural choice for the potential V[Θ] of the CS coupling is
the Cotton tensor.

The variation of Equation (1) with respect to gab and Θ gives a set of CSMG field
equations in the following form:

Gmn + lCmn = − 1
2κ

(Tρ
mn + Tϑ

mn). (6)

gmn5m5nΘ = −ψ

4
∗Racd

b Rb
acd. (7)

Gmn is the Einstein tensor, ψ is coupling constant and Cmn is the Cotton tensor.

Cmn = − 1
2
√−g

[υσεσmζη5ζ Rn
η +

1
2

υστεσnζη Rτm
ζη ] + (m←→ n). (8)

here that υσ = 5σΘ and υστ = 5σ5τ Θ.
Furthermore, Tmn is a combination of matter and external field given as

Tϑ
mn = (∂mΘ)(∂nΘ)− 1

2
gmn(∂

pΘ)(∂pΘ). (9)

Tm
mn = (px + ρ)UmUn + pxgmn. (10)

where pressure px, energy density ρ and 4-vector velocity Um in co-moving spacetime
coordinates.

A bundle of studies on the gravitational modification of the CSMG theory have been
conducted in the non-dynamical paradigm. In this case, scalar field is assumed to be
a pre-prescribed function of spacetime. Approximate and exact solutions, cosmology,
astrophysical studies, and matter interactions are all addressed in this context. However,
there is a theoretical challenge concerning Schwarschild BH perturbation, the existence
of static and axi-symmetric solutions, and their stability in non-dynamical CSMG theory.
Moreover, there are lot of concerns within this theory, such as the following: P.1 In the
case of the rotation of a BH, singularities of curvature are observed on the rotating axis.
P.2 Oscillation modes of a big bunch of black holes are concealed. P.3 Ghosts frequently
appear. To avoid the aforementioned concerns and maintain the theory’s self-stability,
various scholars advocated the dynamical CSMG theory with the kinetic term for the scalar
field. The first two issues described are mostly not encountered in dynamic theory, and the
third is not seen in a specific scenario. As a result, the dynamical CSMG theory has arisen
in popularity in recent years.

The spacetime curvature, through which light moves to its path towards earth, affects
the outlook of objects at cosomological distances. The geometrical characteristics of universe
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are completely described by a metric which is the basic quantity in GR. The curvature
of spacetime may fluctuate in a homogeneous isotropic universe, but its significance has
remained constant since the Big Bang. The FRW metric is the most comprehensive model
for depicting an expanding homogeneous isotropic universe.

ds2 = −dt2 + a2(t)dx2 (11)

where dx2 = dr2 + r2dθ2 + r2 sin2 θdφ2. For the metric given in Equation (11), the first two
Einstein tensor constituents are calculated as

G00 =
3(ȧ2 + κ)

a2 ,

G11 = − 1
1− κr2 (2aä + ȧ2 + κ), (12)

Component of energy–momentum tensor for scalar field Tϑ
mn is evaluated from Equation (9).

ρϑ = Tϑ
00 =

Θ̇2

2
. (13)

All the Cotton tensor’s components diminish identically:

Cmn = 0 . (14)

CSMG theory in the presence of cosmological constant Λ(t) and gravitational constant
G(t) are given by

Gµν + lCµν = 8πG(t)[Tm
µν +

Λ(t)
8πG(t)

gµν] + Tϑ
µν, (15)

Here that Λ(t) and G(t) are governed by the dynamical condition Λ̇ = −8πĠρ, so that
the Bianchi identities do not take effect and the system remains consistent. It is observed
that if G(t) increases, then Λ(t) will eventually deceases and vice versa. This entitles that
the energy conservation equation formally looks the same as in standard FRW model.

Making use of the 00-component of Einstein tensor, Cotton tensor, energy–momentum
tensor for matter and scalar field contribution from Equations (12)–(14) into Equation (15),
it turns out to be

3(
ȧ
a
)2 +

3k
a2 −Λ(t)− 1

2
Θ̇2 = 8πG(t)ρ. (16)

To investigate the significance of the external field Θ in dynamical CSMG theory, it is
observed that the Pontryagin term turns zero, so Equation (7) reduces to

gµν∇µ∇νΘ = gµν[∂µ∂νΘ− Γβ
µν∂βΘ] = 0. (17)

Stated that Θ is a function of spacetime coordinates in the dynamical case, and we
make the assumption Θ to be a function of temporal coordinate and thus examined as

Θ̇ = εa−3, (18)

Equation (18) in Equation (16) and assuming a flat universe, one arrives at

3(
ȧ
a
)2 −Λ(t)− 1

2
εa−6 = 8πG(t)ρ. (19)

Equation using Equation (16) is given by,

ä
a
+

1
2
(

ȧ
a
)2 = −4πG(t)p +

Λ(t)
2

. (20)
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Equations (19) and (20) turns out to be

3(
ä
a
) = 4πG(t)(ρ + 3p) + Λ(t). (21)

The Hubble parameter H = ȧ
a and Equations (19) and (21) in terms of H reduce to

4πG(t)ρ =
1
2
[3H2 −Λ(t)− 1

2
εa−6] (22)

3(H2 + Ḣ) = −4πG(t)(ρ + 3p) + Λ(t). (23)

3. HDE Model

The HDE model is a useful tool for resolving the DE dilemma because it is derived
from the holographic principle, which states that a system’s degree of freedom is directly
proportional to its area rather than volume. In actuality, HDE connects the infrared and
ultraviolet cut-offs, which are correlated to the energy density of quantum fields in vacuum.
HDE is also an intriguing effort to investigate the characteristics of DE from the perspective
of quantum gravity. The evolution of HDE density depends on a relationship with the
system’s vacuum energy, which should not exceed the black holes mass, according to
Cohen et al. [38]. In [28], some HDE models in a dynamical CS paradigm have cosmic
implications. Granda and Oliveros [13] proposed a new infrared cut-off model which is
proportional to the square of the Hubble scale parameter and its time derivative defined as
Λ(t) = 3(αḢ + βH2), where α and β are free parameters. Equation (22) turns out to be

4πG(t)ρ =
3(1− β)H2

2
− 3αḢ

2
− εa−6

2
. (24)

The barotropic equation is defined as p = ωρ, where ω is the equation of state
parameter which is a function of the temporal coordinate, redshift parameter or scale factor,
in general. It is noted that the current observational data have imposed some limitations
on ω to clearly differentiate between a time varying and constant values of the equation
of state: such limits are −1.67 < ω < −0.62 and −1.33 < ω < −0.79 [39–42]. Using the
barotropic equation in Equation (23), we obtain

3(Ḣ + H2) = −4πG(t)ρ(1 + 3ω) + 3(αḢ + βH2). (25)

4πG(t)ρ into Equation (25), we obtain

3(Ḣ + H2) = −[1
2
(3 + 9α)H2 − 9

2
αḢ − εa−6

2
](1 + 3ω). (26)

Equation (26), we arrive at

Ḣ =
9(1 + ω)(β− 1)
3(2− 3α(1 + ω))

H2 +
1 + 3ω

3(2− 3α(1 + ω))
εa−6. (27)

(26) in terms of the scale factor is evaluated as

ä
a
=

9(β− α)(1 + ω)− (1 + 3ω)

3(2− 3α(1 + ω))

ȧ2

a2 +
1 + 3ω

3(2− 3α(1 + ω))
εa−6. (28)

ȧ = da
dt = y(a) ⇒ y dy

da = d2a
dt2 = ä to calculate the scale factor a(t), a differential

equation is executed as

y
dy
da

=
9(1 + ω)(β− α)− (1 + 3ω)

3(2− 3α(1 + ω))
y2 +

1 + 3ω

3(2− 3α(1 + ω))
εa−5. (29)
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This linear differential equation, using another substitution U(a) = y2(a)⇒ y(a) dy
da =

1
2

dU
da , results as

dU
da

+
18(−1−ω)(β− α) + (1 + 3ω)

3a(2− 3α(1 + ω))
U =

2(1 + 3ω)

3(2− 3α(1 + ω))
εa−5. (30)

Solution is turned out to be

U(a) =
2ε[1 + 3ω]

[18(1 + ω)(α− β)− 3(1−ω)]a4 . (31)

A scale factor is explored as

a(t) =

[
3
(√ 2ε(1 + 3ω)

[18(1 + ω)(α− β)− 3(1−ω)]

)
t + ε1

] 1
3

. (32)

A graph of scale factor vs. temporal coordinate is plotted to investigate the behavior
of the results obtained, with various values of α = 0.7, β = 0.5 and ω = −1,− 1

3 , 0
corresponding to red, green, and blue curves, respectively.

The Figure 1 is obviously shown that the increasing trends indicate that the universe
is in an accelerating phase of expansion in the framework of CSMG theory.

Figure 1. a(t) vs. t.

Let us consider a case in which all the contributions from dark energy, pressure and
mass density obey the law of conservation such that

ρ̇ = −3
ȧ
a
(ρ + p). (33)

p = ωρ, thus Equation (33) becomes

ρ̇

ρ
= −3

ȧ
a
(1 + ω). (34)

The integral value of ρ(t) is evaluated as

ρ(t) = ε2

[
3
(√ 2(1 + 3ω)ε

3[6(−1−ω)(β− α)− (1−ω)]

)
t + ε1

]−(1+ω)

. (35)

Let us plot a graph of Equation (35). The graphical representation of energy density vs.
temporal coordinate makes a conjecture that decreases equally to the prediction of GR on
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considering a set of parametric values of α = 0.7, β = 0.5 and ω = −1,− 1
3 , 0 corresponding

to red, green and blue curves respectively, in the context of CSMG theory in Figure 2.

Figure 2. ρ(t) vs. t.

Furthermore, to evaluate cosmological parameter Λ(t) considered as the DE model,
we use the values of energy density and scale factor, arriving at

Λ(t) =
9ε2 + 18(α− 2)(1 + 3ω)

81c2(α− β)[6(1 + ω)(α− β) + (ω− 1)]
t + ε1. (36)

Now, to examine the cosmological constant Λ(t) in the context of CSMG theory, a
graph given in Figure 3 is plotted with previously assumed values.

Figure 3. Λ(t) vs. t.

It is well mentioned here that the graph of cosmological constant parameter Λ(t)
initiated from zero decreases as the cosmic time increases in the framework of CSMG theory.
It is worth mentioning here that the graphical trends of Λ(t) are decreasing described a
decelerated expansion of the universe.

Using values of Λ(t) and ρ(t) from Equations (35) and (36), we obtain the mathematical
relation for gravitational constant G(t) such that

G(t) =
3(2− β) (1+3ω)(α−β)ε

2(1+ω)+β(1−3ω)−4α
− ε

8πε1

×
[
3

√
(α− β)(1 + 3ω)

2(1 + ω) + β(1− 3ω)− 4α
t + ε1

]−1
. (37)
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The graph of gravitational constant showed decreasing behavior, representing a con-
tracting universe, as both Λ(t) and G(t) simultaneously decreased shown in Figure 4.

Figure 4. G(t) vs. t.

4. MHRDE Model

Gao et al. [12] proposed an interesting Ricci holographic dark energy (RHDE) model
using the formula L =| R |− 1

2 , where R is the Ricci scalar. The holographic principle in a
cosmic scenario, by correlating the infrared cutoff L with the dark energy density and L−2

as a linear combination of Ḣ and H2, is given by Λ = 2
α−β (Ḣ + 3

2 αH2) , where α and β are
free parameters. Substituting this model in Equations (22) and (23), new expressions are
formulated as

4πGρ =
3
2
(1− α

α− β
)H2 − 1

α− β
Ḣ − εa−6

2
. (38)

3[Ḣ + H2] + 4πρG(1 + 3ω) =
1

α− β
[2Ḣ + 3αH2]. (39)

Equations (38) and (39) simultaneously, these transformed into

Ḣ =
1

2(α− β)− (1 + ω)
[3(1 + ω)βH2 + (3 + ω)(α− β)εa−6]. (40)

Scale factor a(t), Equation (40) takes the form

(
ä
a
) =

3(1 + ω)β

2(α− β)− (1 + ω)
(

ȧ2

a
) +

(α− β)(3 + ω)

2(α− β)− (1 + ω)
εa−6. (41)

Substitutions y(a) = da
dt ⇒ Y dY

da = d2a
dt2 to calculate the scale factor, one arrives at

Y
dY
da

=
3β(1 + ω)

2(α− β)− (1 + ω)
y2 +

(3 + ω)(α− β)

2(α− β)− (1 + ω)
εa−5. (42)

Use of substitution U(a) = Y2(a)⇒ Y(a) dY
da = 1

2
dU
da

dU
da
− 6(1 + ω)β

2(α− β)− (1 + ω)
U =

2(3 + ω)(α− β)

2(α− β)− (1 + ω)
εa−5. (43)

Equation can be evaluated as

U(a) =
(α− β)(3 + ω)ε

−4α + 2(1 + ω) + (1− 3ω)β

1
a4 . (44)
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The technique of separating variables and using backward substitutions, the expres-
sion of scale factor a(t) looks as follows:

a(t) =

[
3
(√ (α− β)(3 + ω)ε

(−4α + 2(1 + ω) + β(1− 3ω))

)
t + ε1

] 1
3

. (45)

The scale factor and time graph is plotted in Figure 5 are plotted to investigate the
obtained results, which obviously show the increasing behavior with time, predicting the
accelerated phase of expansion of the universe.

Figure 5. a(t) vs. t.

Working on the same lines, we obtain

ρ(t) =

[
3
(√ (α− β)(3 + ω)ε

(−4α + β(1− 3ω) + 2(1 + ω))

)
t + ε1

]−(1+ω)

. (46)

where ε1 is the constant of integration. Now, we draw the energy density vs. time graph
(Figure 6). The visual representation reveals that the density is decreasing with the passage
of time, which is consistent with GR’s predictions.

Figure 6. ρ(t) vs. t.

The relation for cosomological constant Λ(t) is given by

Λ(t) =
9(α− 2)(α− β)(1 + 3ω) + ε2

3ε2(α− β)[−4α + 2(1 + ω) + β(1− 3ω)]
t + ε1. (47)
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In Figure 7, the behavior of cosmological constant Λ(t) in the CSMG theory shows a
decreasing trend for ω = −1 and − 1

3 , but increasing on ω = 0 as the cosmic time increases.
The cosmological constant Λ(t) is revealed to be a decreasing function, which is endorsed
by observational data of recent type Ia supernovae. Addazi [43] argued that the holographic
naturalness model prefers models over dynamical variation of Λ toward a cosmological
attractor Λ −→ 0 over models with a static cosmological constant. While a Big Rip is
expected from the scenarios with Λ increasing with time, it is entropically confiscated as a
quantum unstable state.

Figure 7. Λ(t) vs. t.

The expression for gravitational constant G(t) is evaluated as

G(t) =

(1+3α−β)(3+ω)(α−β)ε
2(1+ω)+β(1−3ω)−4α

− c

8πε1

×
[

3

√
(α− β)(3 + ω)ε

−4α + 2(1 + ω) + (1− 3ω)β
t + ε1

]−1

, (48)

We plotted a graph between gravitational constant G(t) and cosmic time t, in Figure 8
where increasing tendencies were seen in the visual representation of gravitational constant
for varying parameters for ω = −1,− 1

3 but decreasing on ω = 0. The critical density
assumption and the conservation of energy–momentum tensor demand that G increases
proportionally for the expanding universe as found in [44].

Figure 8. G(t) vs. t.
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5. Numerical Results and Comparison with Other Models

Štefančić [45] investigated the time-dependent G(t) and discovered that it is more
susceptible to the phantom energy component η. G(t) varied slowly in the early cosmos,
but the variability of G(t) is astonishing in the current era, while G(t) tends to zero over
extended periods of time. For larger negative values of variable η, it changes very quickly.
The escalating negative values of η demonstrated to be an effective testing ground for
several models. It would start imposing the stringent restrictions on the emergence of
the cosmological constant, energy density, and scale factor, which are all depicted by the
parameter η. Štefančić [45] founded the results for Ġ

G , given by

Ġ
G

= 3(1 + η)Ω0
ΛH0. (49)

Equation (37) is related to the phantom energy model parameter η. We calculated, by
following Equation (37),

Ġ
G

= −3H. (50)

Compare Equation (49) and Equation (50) along with Ω0
Λ = 2

3 from recent observa-
tional data.

η =
−5
2

(51)

The values of η and Ω0
Λ in (49), we explored the same result as found in Equation (50).

Ġ
G

= −3H0. (52)

The gravitational constant G(t) changes rapidly with negative values of η, accord-
ing to Stefancic [45], and the same is apparently true in this study. Many astronomical
observations have validated the fluctuation in the value of the gravitational constant as
time progresses. Many of them have produced similar results, confirming Dyson’s claim
that the variance of the values of the gravitational constant G(t) is the Hubble parameter’s
order. Because the Hubble parameter H is inversely proportional to the time coordinate
t, G(t) declines as t rises. Guenther et al. [46] used helioseismology data to determine
the range of Ġ

G and accumulated the comprehensive range of G(t) variability, which is
1.60 × 10−12 yr−1 < Ġ

G < 0 . Benvento [47] computed the range −2.5 × 10−10 yr−1 < Ġ
G <

4.5 × 10−10 yr−1. Damour et al. [48] employed binary pulsar data to compute the variation
ranges for Ġ

G , and found −(1.10 + 1.07) × yr−1 < Ġ
G < 0. Biesiada and Malces [49] found

the optimal variation range Ġ
G < 4.1× 10−11 yr−1 via using observational data from dwarf

stars. Copi et al. [50] computed −4.1× 10−13 yr−1 < Ġ
G < 3.5× 10−13 yr−1 through using

Big Bang nuclei synthesis. Additionally, on the basis of experimental data from WMAP,
Zhang and Wu [51] revised the current value of H0 = 6.64× 10−11 yr−1. In this paper, using
this numerical value, we calculated the range −1.99× 10−10 yr−1 ≤ Ġ

G ≤ 0 equivalent
to [52].

6. Summary and Discussion

In this study, we analyzed the time-dependent gravitational constant G(t) and cos-
mological constant Λ(t) in the context of Chern–Simons modified gravity theory using
HDE and MHRDE models. The FRW metric was examined by calculating the scale factor,
energy density, cosmological constant and gravitational constant. Addazi [43] argued that
the holographic naturalness model prefers models over dynamical variation of Λ toward
a cosmological attractor Λ −→ 0 over models with a static cosmological constant. While
a Big Rip is expected from the scenarios with Λ increasing with time, it is entropically
confiscated as a quantum unstable state. It is shown that the Λ = H3 model predicts the
accelerated expansion of the universe at a negative energy density, but with a positive
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pressure [53]. Further, we studied the Ġ
G for both models with different limitations on

variational values of G(t) obtained from theoretical as well as observational data. It is
found that G(t) is inversely proportional to time such that G ∝ t−1 for all possibilities of Ġ

G
mentioned. Belinchon [54] obtained similar accuracy during the dimensional investigation
employing on Dirac’s large number of the hypothesis (LNH) in the context of GR, i.e., G ∝ t,
which is obviously contrary to Dirac’s conclusion. However, G(t) fluctuates inversely with
t in the current investigations. Finally, it is observed that, regardless of the variability of
the gravitational constant G(t), the scale factor and cosmological constant preserved the
same status for both the models considered in this paper. With the appropriate scaling of α

and β, we estimated the range for variation of G(t) given as −1.99× 10−10 yr−1 ≤ Ġ
G ≤ 0,

which matches [52].
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