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Abstract: This article introduces a novel two-stage variable selection method to solve the common
asymmetry problem between the response variable and its influencing factors. In practical applica-
tions, we cannot correctly extract important factors from a large amount of complex and redundant
data. However, the proposed method based on the relaxed lasso and the adaptive lasso, namely, the
relaxed adaptive lasso, can achieve information symmetry because the variables it selects contain
all the important information about the response variables. The goal of this paper is to preserve
the relaxed lasso’s superior variable selection speed while imposing varying penalties on different
coefficients. Additionally, the proposed method enjoys favorable asymptotic properties, that is,
consistency with a fast rate of convergence with Op

(
n−1). The simulation demonstrates that the

proper variable recovery, i.e., the number of significant variables selected, and prediction accuracy
of the relaxed adaptive lasso in a limited sample is superior to the regular lasso, relaxed lasso and
adaptive lasso estimators.

Keywords: variable selection; relaxed lasso; adaptive lasso; consistency

1. Introduction

Rapid advancements in research and technology have resulted in enormous data in
a variety of scientific domains. How to efficiently extract information from complex data
and develop an ideal model that relates critical features to response variables has become a
challenge for researchers in the data explosion era. Over the past two decades, statisticians
have conducted substantial research on the subject of feature selection.

Tibshirani [1] first proposed lasso, a technique for screening high-dimensional vari-
ables that improves least squares estimation by including an L1 penalty component. The
penalty parameter of the lasso set some of the coefficients to zero, thus achieving the
proposal of coefficient shrinkage and model selection. Lasso sacrifices unbiasedness for
minimizing variance and solves the convex optimization problem to find the globally opti-
mal solution. In the rare signal scenario, when the signal strength exceeds a certain level,
lasso shows good performance, far outperforming other variable selection methods [2].
However, Meinshausen and Bühlmann [3] discovered a conflict in the lasso model between
optimal prediction and consistent variable selection, which is one of the lasso’s downsides.
Due to the strong sensitivity of the lasso to the presence of correlation and multicollinearity
in real data, insignificant noisy variables may be selected for the model. As a result, the
noise variables in the model exacerbate the model fitting effect. Fan and Li [4] presented a
more adaptive novel approach for maximizing the likelihood penalty function that applies
to generalized linear models and other types of models. Moreover, Fan and Li [5] enhanced
the preceding approach and stated that as long as the dimensionality of the model is not too
large, the penalized likelihood technique can be used to estimate the model’s parameters via
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the penalty function. To address the issue of inconsistent lasso selection, Zou [6] reported
an adaptive lasso estimator,

β̂Alasso = arg min
β

∥∥∥∥∥Y−
p

∑
j=1

XT
j β j

∥∥∥∥∥
2

2

+ λ
p

∑
j=1

ω̂j|β j|, (1)

where ω̂ = 1/|β̂|γ, γ > 0. The primary reason why adaptive lasso is superior to lasso is
that it has an oracle quality that depends on the weight vector value ω̂. Without this quality,
adaptive lasso’s oracle property would be suboptimal. Fan and Peng [7] claimed that when
the dimension p is less than the sample size n, the lasso and adaptive lasso can both be used
to accelerate and optimize variable selection. The theory of Donoho and Johnstone can also
be used to demonstrate the adaptive lasso’s near-minimax optimality [8]. The non-negative
garotte [9] is another regularization method. It can be considered as a special case of the
adaptive lasso and was proved to have the property of consistent variable screening [10].

Meinshausen [11] defined the relaxed lasso estimator on the set M ⊆ {1, . . . , p}, where
p is the number of nonzero variables selected into the true model,

β̂Rlasso = arg min
β

∥∥∥∥∥Y−
p

∑
j=1

XT
j
{

β j · 1M
}∥∥∥∥∥

2

2

+ φλ
p

∑
j=1
|β j|, (2)

where λ ∈ [0, ∞], φ ∈ (0, 1], 1M is an indicator function, 1M =

{
0, k ∈ M
1, k /∈ M

, for all

k ∈ {1, . . . , p}. Hastie et al. [12] compared the performance of lasso and forward stepwise
regression across a range of signal-to-noise ratios (SNRs) and showed that it is extremely
competitive in any environment. The relaxation parameter φ contributes to relaxed lasso’s
superior performance. By adjusting the control parameter φ appropriately, it can ensure
that the sparse solution on the path does not experience excessive shrinkage. This is the
primary reason we chose to expand the model using a relaxed lasso. In recent works,
numerous studies have demonstrated that the relaxed lasso has excellent performances
compared to other methods. Mentch and Zhou [13] showed that in high-dimensional
settings, lasso, forward selection and randomized forward selection perform similarly at
low SNRs, but for larger SNRs, relaxed lasso performs much better in terms of the relative
test error. Bloise et al. [14] suggested that relaxed lasso is able to avoid overfitting by using
two separate tuning parameters so as to obtain a more accurate model. Comparing relaxed
Lasso to least squares and stepwise regression, He [15] came to the conclusion that relaxed
Lasso improves the accuracy of the model by deleting insignificant variables. Kang et al.
[16] proposed a new method that combines the relaxed lasso and a generalized multiclass
support vector machine to obtain fewer feature variables and higher classification accuracy.
Tay et al. [17] combined elastic net regularized regression with a simplified relaxed lasso
model and built a prediction matrix to measure model performance, which speeds up the
computational efficiency of the model.

We discuss the properties of different variable selection methods in the case of large
samples. Consistency and asymptotic normality are two large sample properties of OLS;
for consistency, we can assume a weaker overall zero-correlation assumption Cov(x, ε) = 0
and a zero-mean assumption of error E(ε) = 0. Fu and Knight [18] examined the consis-
tency and asymptotic features of bridge estimation in convex and nonconvex scenarios
and established that lasso is consistent when certain conditions are met. Thus, another
disadvantage of lasso is that variable selection is conditional, which means that it does not
work similarly to an oracle estimator. Zhao and Yu [19] claimed that the irrepresentable
condition is a necessary and sufficient criterion for lasso to satisfy consistency. However,
both adaptive lasso and relaxed lasso have been proved to be consistent without satisfying
the strict condition. Zou [6] demonstrated that even with huge quantities of data, adaptive
lasso can efficiently filter out the model’s sparse solution while retaining oracle features.
According to Meinshausen [11], relaxed lasso can still retain a high rate of convergence
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with Op
(
n−1) and can lead to consistent variable selection no matter what the asymptotic

result is. To combine the advantages of the preceding two models, we propose a relaxed
adaptive lasso and demonstrate that it has the same asymptotic properties and excellent
convergence rate as the relaxed lasso. The Lars algorithm [20] and an improved algorithm
have been shown to solve the relaxed adaptive lasso.

In this paper, we propose a novel variable filtering method named relaxed adaptive
lasso, which can effectively address the model selection issue, and we demonstrate the
method’s asymptotic properties. We prove that the relaxed adaptive lasso estimator can
achieve the same rate of convergence as the relaxed lasso, indicating that it can obtain
the sparse solution at the optimal rate. The simulation of this study demonstrates that
the relaxed adaptive lasso performs well in variable recovery and predictin accuracy. In
particular, when sample size n and the number of variables p are varied, the performance
of the relaxed adaptive lasso to filter true nonzero variables is superior to that of the lasso,
relaxed lasso, and adaptive lasso. As the sample size n increases, the mean square error
(MSE) of the model remains the best.

The rest of this article is structured as follows: Section 2 defines relaxed adaptive lasso,
describes its computational algorithms, and establishes its asymptotic properties. Then, in
Section 3, we compare the performance of the relaxed adaptive lasso to that of the lasso,
adaptive lasso, and relaxed lasso using a simulation experiment. Section 4 discusses the
application of real-world data. Section 5 makes a conclusion of the proposed method. The
Appendixes A–G contains additional information about the proof.

2. Relaxed Adaptive Lasso and Asymptotic Results
2.1. Definition

Recall that adaptive lasso estimation improves the shrinkage force to equalize the
coefficients in lasso by applying a weight vector. The adaptive lasso estimator’s set of
predictor variables β̂λ,ω is denoted by Sλ,ω,

Sλ,ω =
{

1 ≤ k ≤ p | β̂λ,ω
k 6= 0

}
. (3)

The solution of the relaxed adaptive lasso is obtained via the adaptive lasso estimator
in Sλ,ω if and only if in the low-dimension case.

We now consider the linear regression model

Y = XT β∗ + ε, (4)

where ε = (ε1, . . . , εn)
T is a vector composed of i.i.d. random variables with mean 0 and

variance σ2. X =
(
X1, . . . , Xp

)
is an n× p matrix with a normally distribution X ∼ N(0, Σ),

where Xi is the ith column and Y is an n× 1 vector of response variables. Now, we define
relaxed adaptive lasso estimation. The variable selection and shrinkage are controlled
by adding two constraints, λ and φ, and one weight vector, ω, to the L1 penalty term.
According to the setup of Zou [6], suppose that β̂ is an

√
n-consistent estimator of β∗.

Definition 1. Define the relaxed adaptive lasso estimator as β̂λ,ω denoted by Sλ,ω,

β̂∗ = arg min
β

∥∥∥∥∥Y−
p

∑
j=1

XT
j
{

β j · 1Sλ,ω
}∥∥∥∥∥

2

2

+ φλ
p

∑
j=1

ω̂j|β j|, (5)

where 1Sλ,ω is an indicator function {1Sλ,ω}k =

{
1, k ∈ Sλ,ω

0, k /∈ Sλ,ω , for all k ∈ {1, . . . , p}; φ ∈ [0,1];

given a γ > 0, define the weight vector ω̂ = 1/|β̂|γ.

Notably, only predictor variables in the set Sλ,ω ⊆ {1, . . . , p} can be chosen as the
relaxed adaptive lasso solution. In the following, we discuss different functions and value



Symmetry 2022, 14, 1422 4 of 19

ranges of parameters under the set Sλ,ω. The parameter λ ≥ 0 determines the number of
variables retained in the model. For λ = 0 or φ = 0, the problem of solving the estimators in
Equation (5) is transformed into an ordinary least squares problem where Sλ,ω

0 = {1, . . . , p}
so that the purpose of variable selection cannot be achieved. As λ increases, all coefficients
of the variables selected by adaptive lasso are compressed towards 0, and some finally
become exactly 0. However, for a large λ → ∞, all estimators are shrunk to 0, where
Sλ,ω = ∅, leading to a null model. In addition, the relaxation parameter φ controls the
amount of shrinkage applied to the coefficients in estimation. When φ = 1, the adaptive
lasso and relaxed adaptive lasso estimators are the same. When φ < 1, the shrinkage force
on the estimators is weaker than that of the adaptive lasso. The optimal tuning parameters
λ and φ are chosen by cross-validation. The vector ω̂ = 1/|β̂|γ assigns different weights to
the coefficients; hence, the relaxed adaptive lasso has consistency when the weight vector
is correctly chosen.

2.2. Algorithm

We will discuss the algorithm for computing the estimator of the relaxed adaptive
lasso in this section. Note that (5) is a convex optimization problem, which means that
we can obtain the global optimal solution effectively. Unlike concave penalties, however,
multiple minimal penalties, such as SCAD, suffer from the multiple minimal problem.
In the following, we discuss a simplified version of the relaxed adaptive lasso estimator
algorithm. An improved algorithm is then proposed based on the process of computation
for the relaxed lasso estimator [11].

The simple algorithm for relaxed adaptive lasso

Step (1). For a given γ > 0, we use β̂OLS to construct the weight in an adaptive lasso based
on the definition from Zou [6]. We can also replace β̂OLS with other consistent
estimators, e.g., β̂Ridge.

Step (2). Define X∗j = Xj/ω̂j, j = 1, . . . , p, where ω̂j = 1/|β̂OLS|γ

Step (3). Then, the process of computing relaxed adaptive lasso solutions is identical to
that of solving the relaxed lasso solutions in Meinshausen [11]. The relaxed lasso
estimator is defined as

β̂∗∗ = arg min

∥∥∥∥∥Y−
p

∑
j=1

(
X∗j
)T{

β j · 1Sλ,ω
}∥∥∥∥∥

2

2

+ φλ
p

∑
j=1
|β j|. (6)

The Lars algorithm is first used to compute all the adaptive lasso solutions. Select
a total of h resulting models S1, . . . , Sh attained with the sorted penalty parameters
λ1 > λ2 > . . . > λh = 0. When λh = 0, for example, all variables with nonzero
coefficients are selected, which is identical to the OLS function. On the other
hand, λ0 = ∞ completely shrinks the estimators to zero, thus leading to a null
model. Therefore, a moderate λk, k = 1, . . . , h in the sequence of {λ1, . . . , λh} is
chosen such that Sk = Sλ,ω. Then, define the OLS estimator β̃ = β̂λk + λkδ(k),
where δ(k) =

(
β̂λk − β̂λk−1

)
/(λk−1 − λk) is the direction of adaptive lasso solu-

tions, which can be obtained from the last step. If there exists at least one com-
ponent j such that sgn

(
β̃ j
)
6= sgn

(
β̂

λk
j

)
, then all the adaptive lasso solutions on

the set Sk of variables are identical to the set of relaxed lasso estimators β̂∗∗ for
λ ∈ Lk. Otherwise, β̂∗∗ for λk ∈ Lk are computed by linear interpolation between
β̂

λk
j and β̃ j.

Step (4). Output the relaxed adaptive lasso solutions: β̂∗j = β̂∗∗j /ω̂j, j = 1, . . . , p.

Simple algorithms have the same computational complexity as Lars-OLS hybrid
algorithms. However, due to the high computing complexity, this approach is frequently
not ideal. Then, we consider an improved algorithm introduced by Hastie et al. [12], which
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uses the definition of the relaxed adaptive lasso estimators to solve a problem of high
computational complexity.

The improved algorithm for relaxed adaptive lasso

Step (1). As before, Sλ,ω denotes the active set of the adaptive lasso. Let β̂Alasso denote the
adaptive lasso estimator. The relaxed adaptive lasso solution can be defined as

β̂∗ = φβ̂Alasso + (1− φ)β̂OLS, (7)

where φ is a constant with a value between 0 and 1.

Step (2). The submatrix XSλ,ω of active predictors is a reversible matrix; thus,

β̂OLS =
(

XSλ,ω XT
Sλ,ω

)−1
XSλ,ω Y.

Step (3). Define X# = XSλ,ω /ω̂, where ω̂ = 1/|β̂OLS|γ; then, the adaptive lasso solution
β̂ALasso is identical to solving the lasso problem

β̂Lasso = arg min
β

∥∥∥∥∥Y−
p

∑
j=1

(
X#

j

)T
β

∥∥∥∥∥
2

2

+ λ
p

∑
j=1
|β j|. (8)

By means of the Karush–Kuhn–Tucker (KKT) optimality condition, the lasso
solution over its active set can be written as

β̂Lasso =

(
X#

Sλ,ω

(
X#

Sλ,ω

)T
)−1(

X#
Sλ,ω Y− λsgn

(
β̂Lasso

))
. (9)

From the transformation of the predictor matrix in Step (2), it follows that the
adaptive lasso estimator is β̂Alasso = β̂Lasso/ω̂.

Step (4). Thus the improved solution of the relaxed adaptive lasso can be written as

β̂∗j =


φ
ω̂

(
X#

Sλ,ω

(
X#

Sλ,ω

)T
)−1(

X
#

Sλ,ω Y− λsgn
(

β̂Lasso))+ (1− φ)
(

XSλ,ω XT
Sλ,ω

)−1
XSλ,ω Y, j ∈ Sλ,ω,

0, j /∈ Sλ,ω.
(10)

The computational complexity of Algorithm 1 in the best case is equivalent to the
ordinary lasso. Specifically, in Step (3) of the simple algorithm, the relaxed adaptive lasso
estimator can be solved in the same way as the relaxed lasso. The improved algorithm
is computed from the adaptive lasso and lasso estimators. Given the weight vector, the
computational cost of the relaxed adaptive lasso is the same as that of the lasso [21].
Therefore, the computational complexity of Algorithm 2 is equivalent to that of the lasso.

Now we compare the computational cost of the two algorithms. The relaxed lasso’s
computational cost in the worst scenario is O

(
n3 p

)
, which is slightly more expensive than

the cost of the regular lasso with O
(
n2 p

)
Meinshausen [11]. For this reason, we compute

the relaxed adaptive lasso estimator using the improved algorithm.
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Algorithm 1. The simple algorithm for relaxed adaptive lasso.

Input: a given constant γ > 0, the weight vector ω̂ = 1/|β̂OLS|γ,
Precompute: X∗ = X/ω̂

Initialization: Let λ1 > λ2 > . . . > λh to be the optimal parameter

corresponding to the modified models S1, . . . , Sh.
Set k = 1 to an initial order number of λk

Define Q(β) =

∥∥∥∥∥Y−
p
∑

j=1

(
X∗j
)T{

β j · 1Sλ,ω

}∥∥∥∥∥
2

2

+ φλ
p
∑

j=1
|β j|,

β̃ = β̂λk + λkδ(k), where δ(k) =
(

β̂λk − β̂λk−1

)
/(λk−1 − λk)

for j = 1, . . . , p do
if sgn

(
β̃ j

)
6= sgn

(
β̂λk

j

)
then

β̂∗∗ ← β̂Alasso

else

β̂∗∗ ← Q
(

β̃
)
+

Q(β̃)−Q(β̂λk−1 )
β̃−β̂λk−1

(
β̃− β̂λk−1

)
Set k = k + 1
until k = h
Output: β̂∗j = β̂∗∗j /ω̂j

Algorithm 2. The improved algorithm for the relaxed adaptive lasso.

Input: Adaptive lasso estimator β̂Alasso, OLS estimator β̂OLS,
weight vector ω̂ = 1/|β̂OLS|γ
Precompute: X# = XSλ,ω /ω̂, Let Sλ,ω be the active set of the adaptive lasso

Initialization: Define β̂Lasso = arg min
β

∥∥∥∥∥Y−
p
∑

j=1

(
X#

j

)T
β

∥∥∥∥∥
2

2

+ λ
p
∑

j=1
|β j|

for j = 1, . . . , p do
if j ∈ Sλ,ω then

compute β̂OLS =
(

XSλ,ω XT
Sλ,ω

)−1
XSλ,ω Y,

β̂Lasso =

(
X#

Sλ,ω

(
X#

Sλ,ω

)T
)−1(

X
#

Sλ,ω Y− λsgn
(

β̂Lasso))
else

Stop iterations
until j = p
Output: β̂Alasso = β̂Lasso/ω̂, β̂∗ = φβ̂Alasso + (1− φ)β̂OLS

2.3. Asymptotic Results

To investigate the asymptotic property, we make the following two assumptions about
the architecture used in the setup of Fu and Knight [18]:

1
n

n

∑
i=1

xixT
i → Σ, (11)

where Σ is a positive definite matrix. Furthermore,

1
n

max
1≤i≤n

xT
i xi → 0. (12)

Without loss of generality, the sparse constant vector β is defined as the true coefficient
of the model. We assume that the number of nonzero estimators selected into the real
model is q, that is β =

(
β1, . . . , βq, 0, 0, . . .

)
, where β j 6= 0 only for j = 1, . . . , q and β j = 0

for j = q + 1, . . . , p. The true model is, hence, S∗ = {1, . . . , q}. The covariance matrix
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Σ = 1
n XXT can be written in block-wise form, i.e., Σ =

(
Σ11 Σ12
Σ21 Σ22

)
, where Σ11 is a q× q

matrix. The random loss L(λ, ω) of the adaptive lasso is defined as

L(λ, ω) = E
(

Y− XT β̂Alasso
)2
− σ2. (13)

The loss L(λ, φ, ω) of the relaxed adaptive lasso is analogously defined as

L(λ, φ, ω) = E
(

Y− XT β̂∗
)2
− σ2. (14)

We discover that the relaxed adaptive lasso estimator has the same rapid convergence
rate as the relaxed lasso estimator when the exponential growth rate of the size p is ignored.
Additionally, the adaptive lasso has a slower pace than both of them but is slightly faster
than the lasso estimator. We make the following assumptions concerning asymptotic results
for low-dimensional sparse solutions to demonstrate the above conclusion.

Assumption 1. The number of predictors p = pn increases exponentially with the number of
observations n, that is, there exist some c > 0, 0 < s < 1 such that pn ∼ secn.

We cannot rule out the possibility that the remaining pn − q noise factors are linked
with the response. A square matrix is said to be diagonally dominant if the magnitude
of the diagonal entry in each row of the matrix is greater than or equal to the sum of the
magnitudes of all the other (nondiagonal) entries in that row.

Assumption 2. Σ and Σ−1 are diagonally dominant at some constant c < 0, for all n ∈ N.

Notably, when the diagonal is positive, the diagonally dominating symmetric matrix is
positive definite. Based on this premise, the inverse matrix of Σ can guarantee its existence.

Assumption 3. We limit the penalty parameter λ to the range L,

L = {λ ≥ 0 : cepn ≤ n}, (15)

if and only if there exists an arbitrarily large c > 0.

Assumption 3 holds true if the exponent of the number of variables in the selected
model is less than the sample size n. Using λ values in the range L, relaxed lasso, adaptive
lasso, and relaxed adaptive lasso can obtain consistent variable selection and a specified
number of nonzero coefficients.

Lemma 1. Assume that predictor variables are independent of each other, λn, n ∈ N is the
penalty parameter of the adaptive lasso, and its order is λn = O

(
n

s−1−2γ
2

)
for n → ∞. Under

Assumptions 1–3,
P(∃k > q : k ∈ Sλn)→ 1, n→ ∞. (16)

As a result of Lemma 1, the chance of at least one noise variable being evaluated as
nonzero is close to one. We prove Theorem 1 by utilizing the conclusion of Lemma 1 on the
order of the penalty parameter.

Lemma 2. Let lim inf
n→∞

n∗
n →

1
A with A ≥ 2, n∗ being the number of observations. Then, under

Assumptions 1–3,

sup
λ∈L,γ>0

|L(λ, φ, ω)− Ln∗(λ, φ, ω)| = Op

(
n−1 log2 n

)
, n→ ∞. (17)
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We want to investigate the computational cost of the specified parameters by examin-
ing the order of the relaxed adaptive lasso loss function. Lemma 2 is a technique that will
assist us in proving Theorem 3.

Lemma 3. Assume that predictor variables are independent of each other, λn, n ∈ N is the penalty
parameter of the relaxed adaptive lasso, and ns+1λ3

n → ∞ for n→ ∞. Under Assumptions 1–3,

P(∃k > q : k ∈ Sλn)→ 0. (18)

As a result of Lemma 3, the noise variable can be predicted to be 0. If the penalty
parameter ensures that λ3

n converges to 0 at a slower rate than ns+1, the noise variable can
be precisely evaluated as nonzero with a probability approaching 0. In addition, Lemma 3
helps to prove Theorem 3 by describing the order of the penalty parameter of the relaxed
adaptive lasso.

Theorem 1 addresses the question of whether the adaptive lasso can sustain a faster
convergence rate as the number of noise variables increases rapidly and the convergence
speed exceeds that of the lasso. The addition of the weight parameter enables the adaptive
lasso to gain oracle qualities while also increasing the algorithm’s rate of convergence.

Theorem 1. Assume that predictor variables are independent of each other. Under Assumptions 1–3,
Σ = 1 for any t > 0 and n→ ∞. The convergence rate of the adaptive lasso is as follows:

P
(

inf
λ∈L

L(λ, ω) > tn−r
)
→ 1, ∀r > 1 + 2γ− s. (19)

On the other hand, Theorem 2 establishes that the convergence rate of the relaxed
adaptive lasso is equivalent to that of the relaxed lasso. Theorem 2 resolves the question of
whether the convergence rate of the relaxed adaptive lasso is consistent with that of the
relaxed lasso by establishing that the convergence rate of the relaxed adaptive lasso is not
related to the noise variable’s growth rate r or the parameter s that determines the growth
rate.

Theorem 2. Assume that predictor variables are independent of each other. Under Assumptions 1–3,
for n→ ∞, the convergence rate of the relaxed adaptive lasso is as follows:

inf
λ∈L,φ∈[0,1],γ>0

L(λ, φ, ω) = Op

(
n−1

)
. (20)

The shade in Figure 1 represents the rate at which various models converge. The rate
of the relaxed adaptive lasso is the same as that of the relaxed lasso; this indicates that the
convergence rate of the relaxed adaptive lasso is unaffected by the rapid increase in the
noise variable, and it can still retain a high rate. Although the adaptive lasso’s convergence
rate is suboptimal, it is faster than the lasso’s due to the presence of the weight vector. The
addition of an excessive number of noise variables slows the Lasso estimator, regardless of
how the penalty parameter is chosen [11].

The convergence rate of the relaxed adaptive lasso is as robust as the rate of the relaxed
lasso, i.e., it is unaffected by noise factors. Theorem 3 demonstrates that cross-validation
selection of the parameters λ, φ can still maintain a rapid rate.
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Figure 1. Comparison of convergence rates between the relaxed adaptive lasso, relaxed lasso, adaptive
lasso, and ordinary lasso. Both the relaxed adaptive lasso and the relaxed lasso have the same rate
Op(n−1), regardless of s. Adaptive lasso has a rate of Op(n−r) only if r > 1 + 2γ− s. Additionally,
the rate of the lasso is Op(n−r) only if r > 1− s.

Franklin [22] indicated that K-fold cross-validation includes K partitions and each
partition consists of ñ observation data, where ñ

n →
1
K for n → ∞. When building an

estimator on a different set of observations than R, define the empirical loss of observations
as LR,ñ(λ, φ, ω) for R = 1, . . . , K. Let Lcv(λ, φ, ω) be the empirical loss function,

Lcv(λ, φ, ω) = K−1
K

∑
R=1

LR,ñ(λ, φ, ω). (21)

The selection of λ̂, φ̂ and ω̂ is performed by minimizing the loss function Lcv(λ, φ, ω),
that is, (

λ̂, φ̂, ω̂
)
= arg min Lcv(λ, φ, ω). (22)

This article uses five-fold cross-validation in the numerical study.

Theorem 3. Under Assumptions 1–3, the convergence rate of K-fold cross-validation with
2 ≤ K < ∞ holds that

L
(
λ̂, φ̂, ω̂

)
= Op

(
n−1 log2 n

)
. (23)

Therefore, when K-fold cross-validation is used to determine the relaxed adaptive
lasso’s penalty parameters λ, φ, the convergence speed may maintain a relatively ideal
outcome. As a result, if using cross-validation to select the penalty parameters, the optimal
rate and consistent variable selection under the oracle selection of penalty parameters may
be nearly achieved.

Theorem 4. If λn
n → λ0 ≥ 0, then β· 1S

p→ β in the relaxed adaptive lasso estimator; moreover, if
φλn = o(n), β̂∗ is consistent.

Theorem 4 indicates that the relaxed adaptive lasso estimator is consistent under
the condition φλn = o(n). β̂∗ does not have to be root-n consistent; nonetheless, the
consistency of the relaxed adaptive lasso is determined by the conclusion drawn from
probability convergence.
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3. Simulation
3.1. Setup

We present a numerical study in this section to compare the performance of the
relaxed adaptive lasso to that of the lasso, relaxed lasso, and adaptive lasso. Based on
the simulation setup of Meinshausen [11], we considered the linear model y = xT β + ε,
where x =

(
x1, . . . , xp

)
is the predictor vector and random error ε is an independent and

identically distributed random variable with mean 0 and variance σ2. The remaining
parameter settings and procedures are as follows.

i. Given sample size n = 100, 500, 1000 and data dimension p = 20, 50.
ii. The true regression coefficient β ∈ Rp has its first q = 10(q ≤ p) signal variables

taking nonzero coefficients equally spaced from 0.5 to 10 in the sense that β j 6= 0 for
all j ≤ q and the remaining p− q coefficients are zero.

iii. The design matrix X ∈ Rn×p is generated from a normal distribution N(0, Σ), where
covariance matrix Σ = cov(x) =

(
cij
)

p×p has entries cij = 1, i = j = 1, . . . , p and

cij = ρ|i−j|, i 6= j. The correlation between predictor variables is set to ρ = 0.5.
iv. The theoretical signal-to-noise ratio in this simulation is defined as SNR = Var

(
xT β

)
/σ2.

We discuss either SNR=0.2 for low or SNR=0.8 for high to calculate the variance of ε
so that the response variable Y generated from the linear regression model follows
Nn
(

xT β, σ2 I
)
.

v. We compute the weight of the adaptive lasso via the ridge regression estimator
with γ = 1. For each method, five-fold cross-validation is used to select the penalty
parameters, and the loss function to apply for cross-validation is chosen by minimizing
the prediction error on the test set. Furthermore, we pick the least complex model that
is comparable in accuracy to the best model under the “one-standard-error” criterion
Franklin [22].

For each of the settings above, this process is repeated a total of 100 times to compute
the following evaluation metrics, and the average results are recorded.

3.2. Evaluation Metrics

The data are split randomly into a training set and a test set. Suppose that x0 ∈ Rp

is drawn from the row of the testing design matrix X, and ŷ0 denotes its connected re-
sponse value by fitting the model. Additionally, let β̂0 denote the corresponding estimated
coefficient of the predictor variable x0.

Mean-square error:

MSE = E(ytest − ŷ0)
2 = E

(
ytest − xT

0 β̂0

)2
. (24)

This value assesses the accuracy of the model prediction. A good model has the
highest prediction accuracy in the sense that its prediction error, MSE, is minimized. The
following metrics were developed by Hastie et al. [12].

Relative accuracy:

RA
(

β̂
)
=

E
(
xT

0 β̂0 − xT
0 β
)2

E
(
xT

0 β
)2 =

(
β̂0 − β

)T
Σ
(

β̂0 − β
)

βTΣβ
. (25)

Relative test error:

RTE
(

β̂
)
=

E
(
ytest − xT

0 β̂0
)2

σ2 =

(
β̂0 − β

)T
Σ
(

β̂0 − β
)
+ σ2

σ2 . (26)



Symmetry 2022, 14, 1422 11 of 19

Proportion of variance explained:

PVE
(

β̂
)
= 1−

E
(
ytest − xT

0 β̂0
)2

Var(ytest)
= 1−

(
β̂0 − β

)T
Σ
(

β̂0 − β
)
+ σ2

βTΣβ + σ2 . (27)

Number of nonzeros: The average number of nonzero estimated coefficients,

∥∥β̂nonzero
∥∥

0 =
p

∑
j=1

1{β̂ j 6=0}. (28)

where 1{β̂ j 6=0} =

{
1, β̂ j 6= 0
0, β̂ j = 0

. An ideal score should be close to the number of true

nonzero coefficients q.
Furthermore, in addition to the assessment of prediction accuracy, we explore the last

metric to measure the right variable recovery. This metric quantifies the degree to which
the valid solution β̂ to the convex optimization problem in Equation (5) matches the true
coefficient β.

3.3. Summary of Results

Table 1 summarizes the average results of simulation for lasso, relaxed lasso, adaptive
lasso and relaxed adaptive lasso with SNR = 0.2. We find that the relaxed adaptive lasso has
the best RR, RTE, PVE and MSE scores on average. In other words, the proposed method
achieves the maximum prediction accuracy in the majority of cases, despite occasions
where the adaptive lasso’s MSE is somewhat better than that of the relaxed adaptive lasso.
Specifically, the adaptive lasso yields a much smaller MSE due to the small sample size
(e.g., n = 100). However, when the sample size is increased to n = 1000, the relaxed
adaptive lasso outperforms all other methods owing to the feature of large samples in
which parametric estimators converge in probability to true parameters.

In Table 2, excellent performance is observed for all methods when the SNR is in-
creased to 0.8. As expected, relaxed adaptive lasso maintains its competitive edge and
achieves overall good performance. In particular, it roughly maintains the correct number
of nonzero variables as the number of observations n increases. For (n, p) = (100, 20) and
(n, p) = (100, 50), it holds up to five and four variables, respectively. For (n, p) = (1000, 20)
and (n, p) = (1000, 50), up to nine and eight, respectively, approach the number of truly
valid features q = 10. This illustrates that the sparsity pattern of estimators in the relaxed
adaptive lasso achieves the proper variable recovery when n is quite large. In contrast,
the relaxed lasso and adaptive lasso shrink too many coefficients toward zero; as a result,
fewer variables remain in the resulting model. Therefore, we conclude that as the number
of observations n grows rapidly, the number of variables preserved in the model grows as
well, and it is possible to select the important variables approximately correctly, i.e., having
proper variable recovery.
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Table 1. Simulation results for SNR = 0.2.

p n Method RR RTE PVE MSE Number of Nonzeros

20

100

Lasso 0.997 1.206 0.4 96.2 1
Rlasso 0.997 1.205 0.6 95.4 1
Alasso 0.995 1.205 0.8 94.5 1

Radlasso 0.986 1.203 2.4 100.1 2

500

Lasso 0.990 1.199 1.6 91.4 4
Rlasso 0.987 1.198 2.1 90.3 2
Alasso 0.989 1.198 1.9 90.5 3

Radlasso 0.974 1.196 4.3 86.5 6

1000

Lasso 0.987 1.197 2.1 90.2 5
Rlasso 0.983 1.196 2.9 89.6 3
Alasso 0.985 1.197 2.4 90.1 4

Radlasso 0.974 1.195 4.4 86.8 7

50

100

Lasso 0.998 1.197 0.4 99.7 1
Rlasso 0.997 1.197 0.5 99.9 1
Alasso 0.993 1.196 1.2 98.8 2

Radlasso 0.985 1.195 2.3 106.8 2

500

Lasso 0.992 1.200 1.4 93.4 4
Rlasso 0.986 1.199 2.3 92.5 2
Alasso 0.988 1.199 1.9 91.6 3

Radlasso 0.976 1.197 4.0 90.6 5

1000

Lasso 0.987 1.195 2.1 88.8 5
Rlasso 0.982 1.195 2.9 88.0 3
Alasso 0.985 1.195 2.5 88.4 4

Radlasso 0.974 1.193 4.3 86.5 6

Table 2. Simulation results for SNR = 0.8.

p n Method RR RTE PVE MSE Number of Nonzeros

20

100

Lasso 0.980 1.789 8.8 75.1 5
Rlasso 0.972 1.783 12.1 73.8 3
Alasso 0.975 1.785 11.1 72.8 4

Radlasso 0.960 1.773 17.8 75.2 5

500

Lasso 0.969 1.781 13.8 61.5 7
Rlasso 0.962 1.775 17.1 60.7 5
Alasso 0.967 1.780 14.7 61.9 6

Radlasso 0.956 1.771 19.7 58.8 9

1000

Lasso 0.966 1.762 14.8 59.3 8
Rlasso 0.959 1.756 17.8 58.5 6
Alasso 0.964 1.760 15.9 59.3 7

Radlasso 0.956 1.753 19.4 57.1 9

50

100

Lasso 0.985 1.784 6.7 75.5 4
Rlasso 0.978 1.779 9.4 73.4 3
Alasso 0.974 1.775 11.4 69.7 6

Radlasso 0.963 1.766 16.2 83.3 4

500

Lasso 0.970 1.773 13.1 62.9 7
Rlasso 0.963 1.767 16.6 61.5 5
Alasso 0.967 1.770 14.6 61.9 6

Radlasso 0.958 1.763 18.7 60.4 7

1000

Lasso 0.967 1.774 14.6 59.7 8
Rlasso 0.960 1.768 17.9 58.7 6
Alasso 0.964 1.772 15.8 59.4 7

Radlasso 0.957 1.765 19.3 57.6 8
NOTE: The MSE and PVE values in the table are 100 and 1000 times larger to emphasize the distinction between
these methods.
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4. Application to Real Data
4.1. Dataset

The real dataset used in this study is from the CSMAR Database, which contains
11 research series on stocks, companies, funds, the economy, industries, etc. It is widely
recognized as one of the most professional and accurate databases available for research
purposes. Our data include a total of 2137 records, with each record corresponding to the
financial data of one listed company in 2021. The training set is made up of the first 1496
observations, and the test set is made up of the rest. The response variable is the R&D
investment of the company, and the predictor variables include 86 factors that may have an
effect on the firm’s R&D investment, such as fixed-assets depreciation, accounts receivable
and payroll payable. To compare the model selection performance of the method proposed
in this paper to that of the other three methods, the aforementioned methods are used to fit
the model on the training set, and the prediction accuracy of these models is measured in
terms of the MSE on the test set. It is shown in the following that the relaxed adaptive lasso
has the highest prediction accuracy with the smallest MSE value.

4.2. Analysis Results

As can be seen in Table 3, the MSE values of the lasso and adaptive lasso are, respec-
tively, as large as 0.521 and 0.575, indicating that they have the worst prediction accuracy.
The relaxed lasso performs somewhat better than the lasso and the adaptive lasso in terms
of MSE. As expected, the relaxed adaptive lasso estimator’s prediction accuracy remains
satisfactory, with the smallest MSE of 0.429. In Table 4, a total of 10 variables are selected
by the relaxed adaptive lasso. It has shown that Cash Paid to and for Employees, Cash
Paid for Commodities or Labor, Business Taxes and Surcharges are identified as the three
most influential factors on R&D investment. As a result, we can conclude that relaxed
adaptive lasso leads to the simplest model with the highest prediction accuracy among the
four foregoing methods.

Table 3. Prediction accuracy for R&D investment study.

Method Lasso Rlasso Alasso Radlasso

MSE 0.521 0.485 0.575 0.429

Table 4. Variables selected by Radlasso.

Order Number Explanatory Variable Coefficient

x10 Cash Flow from Operations 0.008
x13 Net Increase in Cash and Cash Equivalents 0.048
x15 Net Accounts Receivable 0.208
x26 Non-Current Assets −0.214
x48 Business Taxes and Surcharges −0.265
x67 Interest Income 0.130
x70 Profit and Loss from Asset Disposal 0.154
x73 Cash Paid for Commodities or Labor 0.386
x74 Cash Paid to and for Employees 0.569
x83 Cash Flow from Financing Activities Net Amount −0.080

Among the most important explanatory variables affecting R&D investment, Cash
Paid to and for Employees measures the company’s actual benefits and rewards; Cash
Paid for Commodities or Labor measures the overall payment ability of the company;
and Business Taxes and Surcharges measure the tax burden of the company’s operation.
According to the estimator coefficients estimated by the simplified model, firms with high
Cash Paid to and for Employees and Cash Paid for Commodities or Labor tend to spend
more on R&D (the positive coefficient on the response variable), whereas Business Taxes
and Surcharges have a negative influence on the company’s R&D investment. From the
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results of the analysis, it is not surprising that companies focused on welfare take more
advantage of innovative technology because generous compensation not only improves
employees’ work motivation but also helps to retain and recruit talent. Furthermore, strong
payment ability implies the high profitability of companies with successful operations,
allowing them to spend massive amounts of money on R&D. Note that a heavy tax burden
may result in a lower investment cost for a company. In general, increasing R&D input is
highly influenced by a few selected variables, the three most important of which are the
company’s welfare, payment ability and tax burden.

5. Conclusions

In this article, we have proposed a two-stage variable selection method called relaxed
adaptive lasso as a combination of relaxed lasso and adaptive lasso estimation. From the
proof of the theorem, we conclude that the relaxed adaptive lasso has the same convergence
rate as the relaxed lasso with Op

(
n−1) and that both are faster than adaptive lasso and

ordinary lasso in the low-dimensional setting. Furthermore, the relaxed adaptive lasso has
the property of consistency, which means that the probability of selecting the true model
approaches one under the condition of φλn = o(n). The simulation study has shown that
the proposed method has comparable prediction accuracy and accurate variable recovery
as the number of observations increases. In practical applications, the conclusion has been
confirmed by the analysis of the financial data of the listed company.

We have shown the asymptotic property of the relaxed adaptive lasso in the linear
model. For further research, it is suggested to extend the theory and methodology to the
generalized linear model [23]. In addition, the model does not handle the high-dimensional
case well, where the variable dimension is much larger than the sample size. We propose
to combine the existing idea with two-stage variable selection methods such as Sure
Independence Screening (SIS) [24] and Distance Correlation Based SIS (DC-SIS) [25] to
overcome this challenge.
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Appendix A. Appendix Proof of Lemma 1

Proof. First, define the adaptive lasso estimator β̂Alasso on the set S∗ = {1, . . . , q} as

β̂Alasso = arg min
β

n−1
n

∑
i=1

(
Yi − ∑

k∈S∗

βkXk
i

)2

+ λn

n

∑
i=1

ŵj|β j|,

where the estimator shrinks to 0 outside the interval S∗, ŵ = 1/|β̂|γ. According to Mein-
shausen [11], we similarly define the residuals under the adaptive lasso estimator β̂Alasso

Di = Yi − ∑
b∈S∗

β̂AlassoXb
i .
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Thus,

P(∃k > q : k ∈ Sλn) ≥ P

(
max
k>q

n−1
n

∑
i=1

DiXk
i > λn|β̂k|−γ

)
. (A1)

Consider the distribution of the gradient when k > q,

n−1
n

∑
i=1

DiXk
i ∼ N

(
0, n−2

n

∑
i=1

D2
i

)
.

The expected value of the averaged squared residuals is larger than σ2(n−q)
n for any

λ > 0, so

P

(
n−1

n

∑
i=1

D2
i >

σ2

2

)
→ 1, n→ ∞.

If n−1
n
∑

i=1
D2

i = σ2

2 , then n−1
n
∑

i=1
DiXk

i ∼ N
(

0, σ2

2n

)
; thus, for c, d > 0,

P

(
max
k>q

n−1
n

∑
i=1

DiXk
i > λn|β̂k|−γ

)
≥ dλ−1

n |β̂k|γ exp
(
−tnλ2

n β̂
−2γ
k

)
.

There are pn − q variables when k > q. Consider the boundary of the gradient for
pn − q noise variables:

P

(
max
k>q

n−1
n

∑
i=1

DiXk
i > λn|β̂k|−γ

)
≤ exp

(
−(pn − q)dλ−1

n |β̂k|γ exp
(
−tnλ2

n β̂
−2γ
k

))
.

Note that
nλ2

n β̂
−2γ
k = n2γ+1λ2

nO(1).

We set the order of the parameter λn in adaptive lasso to λn = O
(

n
s−1−2γ

2

)
, then

n2γ+1λ2
n = O(ns); so, we have n2γ+1λ2

n → ∞. According to Assumption 1, pn ∼ secn. Thus,
for some g > 0,

λ−1
n |β̂k|γ → λ−1

n n−γ,

λ−1
n n−γ ∼ n

1−s
2 → ∞,

so

P

(
max
k>q

n−1
n

∑
i=1

RiXk
i > λn|β̂k|−γ

)
→ 0, n→ ∞.

which, using (A1), completes the proof.

Appendix B. Appendix Proof of Lemma 2

Proof. Assume that S1, . . . , Sh is the collection of models estimated by the adaptive lasso
and let λk, k = 1, . . . , h(λ1 < . . . < λh) be the largest one such that Sk = Sλ. For all
k ∈ {1, . . . , h}, φ is a constant with a value between 0 and 1, according to the definition of a
convex function, the relaxed adaptive lasso solution on the set B1, . . . Bn is given as

Bk =
{

β = φβ̂Alasso + (1− φ)β̂OLS
}

. (A2)
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The estimate β̂Alasso is the adaptive lasso estimate for penalty parameter λk, and β̂OLS

is the corresponding OLS estimator. Give the loss function as follows,

L(λ, φ, ω) = E

Y− ∑
k∈{1,...,p}

β̂∗k Xk

2

.

Substituting into formula (A2) yields

L(λ, φ, ω) = E

Y− ∑
k∈{1,...,p}

β̂OLSXk − φ
(

β̂Alasso − β̂OLS
)

Xk

2

.

For any λ, set Mλ = Y− ∑
k∈{1,...,p}

β̂OLSXk, Nλ =

(
∑

k∈{1,...,p}
β̂Alasso − ∑

k∈{1,...,p}
β̂OLS

)
Xk.

Then
L(λ, φ, ω) = E

(
M2

λ

)
− 2φE(MλNλ) + φE

(
N2

λ

)
.

Let M2
λ = x. According to Bernstein’s inequality, there are some m > 0. For any ε > 0,

P

 1
n ∑ xi − Ex <

d
n

log(1− δ) +

√√√√2var(x)log
(

1
δ

)
n

 ≥ 1− δ.

Let δ = 1
n , we have

P
(

En∗
(

M2
λ

)
− E

(
M2

λ

)
> −m(n∗)−1 log n

)
= P

(
n− n∗

nn∗ ∑ M2
λ > −m(n∗)−1 log n

)
≥ 1− 1

n
,

so
lim sup

n→∞
P
(
|En∗

(
M2

λ

)
− E

(
M2

λ

)
| > m(n∗)−1 log n

)
< ε.

The same can be obtained:

lim sup
n→∞

P
(
|En∗(MλNλ)− E(MλNλ)| > m(n∗)−1 log n

)
< ε,

lim sup
n→∞

P
(
|En∗

(
N2

λ

)
− E

(
N2

λ

)
| > m(n∗)−1 log n

)
< ε.

Hence, there exists some m > 0 for every ε > 0 such that

lim sup
n→∞

P

(
sup
λ,ω
|L(λ, φ, ω)− Ln∗(λ, φ, ω)| < h sup

λ∈{λ1,...,λh},ω
|L(λi, φ, ω)− Ln∗(λi, φ, ω)|

)
> 1− ε,

so
lim sup

n→∞
P
(
|L(λ, φ, ω)− Ln∗(λ, φ, ω)| > m(n∗)−1 log2 n

)
< ε,

which completes the proof.

Appendix C. Appendix Proof of Lemma 3

Proof. Using Bonferroni’s inequality, it can be written as

P(∃k > q : k ∈ Sλn) = P

(
p

∑
k=q+1

∪k ∈ Sλn

)
≤

p

∑
k=q+1

P(k ∈ Sλn).
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By Lemma 1, it follows that

p

∑
k=q+1

P(k ∈ Sλn) ≤
p

∑
k=q+1

dλ−1
n exp

(
−tnλ2

n

)
= O

(
n−1−sλ−3

n

)
, s > 0.

Let λn be a sequence with ns+1λ3
n → ∞, n→ ∞ and

p

∑
k=q+1

P(k ∈ Sλn) ≤ O
(

n−1−sλ−3
n

)
→ 0,

which completes the proof.

Appendix D. Appendix Proof of Theorem 1

Proof. Let θ = β− β̂λ∗ , δλ = β̂λ − β̂λ∗ then(
β̂λ

k − βk

)2
= θ2

k − 2θkδλ
k +

(
δλ

k

)2
.

For n→ ∞ and any ε > 0, we have |θk| > (1− ε)λ∗ with probability converging to 1;
then, |θk| < (1 + ε)λ∗. Hence, for all k ≤ q, there is(

β̂λ
k − βk

)2
≥ (1− ε)2λ2

∗ + 2(1 + ε)λ∗δ
λ
k +

(
δλ

k

)2
,

then (
β̂λ

k − βk

)2
≥ (1− ε)2λ2

∗ − 2
(

1− ε2
)

λ∗(λ∗ − λ) + (1− ε)2(λ∗ − λ)2.

Therefore, with probability converging to 1 for n→ ∞, we can obtain

inf
λ≥λ∗

L(λ) ≥
[
(1− ε)2 + 2

√
q
(

1− ε2
)
+ q(1− ε)2

]2
λ2
∗.

According to Lemma 1: λn ∼ n
s−1−2γ

2 ,

inf
λ≥λ∗

L(λ) ∼ Op
(
n−r), ∀r > 1 + 2γ− s,

which completes the proof.

Appendix E. Appendix Proof of Theorem 2

Proof. Denote the set of nonzero coefficients of β by S∗ = {1, . . . , q}. Define event E as

∃λ : Sλ = S∗.

Let t > 0, then

P
(

inf
λ,φ,ω

L(λ, φ, ω) > tn−1
)
≤ P

(
inf

λ,φ,ω
L(λ, φ, ω) > tn−1|E

)
P(E) + P(Ec).

Assume that λ∗ is the smallest value for the penalty parameter that prevents any noise
variable from entering the selected variable, for all k > q,

λ∗ = min
λ≥0

{
λ|β̂λ

k = 0, ∀k > q
}

.
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Let L∗ be the loss of the OLS estimator. It follows that

P
(

inf
λ,φ,ω

L(λ, φ, ω) > tn−1
)
≤ P

(
L∗ > tn−1

)
+ P(Ec).

We have P(Ec)→ 0 for n→ ∞. According to the properties of the OLS estimator,

lim sup
n→∞

P
(

L∗ > tn−1
)
< ε,

which completes the proof.

Appendix F. Appendix Proof of Theorem 3

Proof. For any g > 0, under
(
λ̂, φ̂, ω̂

)
, we obtain

P
(

L
(
λ̂, φ̂, ω̂

)
> gn−1 log2 n

)
≤ 2ε.

Then, the loss function is

P
(

L
(
λ̂, φ̂, ω̂

)
> gn−1 log2 n

)
≤ P

(
Lcv
(
λ̂, φ̂, ω̂

)
> gn−1 log2 n

)
≤ 2P

(
sup

∣∣L(λ̂, φ̂, ω̂
)
− Lcv

(
λ̂, φ̂, ω̂

)∣∣ > 1
2

gn−1 log2 n
)

+ P
(

inf L
(
λ̂, φ̂, ω̂

)
>

1
2

gn−1 log2 n
)

.

By Lemma 2, for each ε > 0, there exists g > 0,

lim sup
n→∞

P
(

L
(
λ̂, φ̂, ω̂

)
> gn−1 log2 n

)
< ε,

which completes the proof.

Appendix G. Appendix Proof of Theorem 4

Proof. According to Theorem 1 of Fu and Knight [18], we have β· 1S
p→ β.

Define Vn
(

β̂n
)
= 1

n

n
∑

i=1

(
Yi − xT

i {β· 1S}
)2

+ φλn
n

p
∑

j=1
|β j|, note that

Vn
(

β̂n
)
≥ 1

n

n

∑
i=1

(
Yi − xT

i βi

)2
= V(0)

n
(

β̂n
)
.

So arg min
(

V(0)
n
(

β̂n
))

= Op(1), also Vn
(

β̂n
)
≥ V(0)

n
(

β̂n
)
, so

arg min
(

V(0)
n
(

β̂n
))

= arg min
(
Vn
(

β̂n
))

= Op(1).

We have β̂n = Op(1) and

Vn
(

β̂n
)
=

1
n

n

∑
i=1

(
εi + xT

i
(

β−
{

β̂n· 1S
}))2

+
φλn

n

p

∑
j=1
|β j|.

According to the point-by-point convergence principle and Lemma 3,

lim
n→∞

V
(

β̂n
)
=

φλn

n

p

∑
j=1
|β j|,
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then,

Vn
(

β̂n
)
= Eε2

i − 2
1
n

n

∑
i=1

εixT
i
({

β̂n· 1S
}
− β

)
+ lim

n→∞
V
(

β̂n
)

= σ2 + V
(

β̂n
)
,

so sup|Vn
(

β̂n
)
−V

(
β̂n
)
− σ2| p→ 0. Then

arg min(Vn)
p→ arg min(V),

β̂n
p→ β,

which proves the consistency.
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