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Warszawy 8, 35-959 Rzeszow, Poland; mbatsch@prz.edu.pl

Abstract: This paper presents a method for obtaining the shape and area of a sofa. The proposed
approach is based on a discrete solution to the equation, which states the necessary conditions for
the existence of envelopes. Based on provided examples, it was proved that the method can be used
for deriving the solutions of the posed problem. The method offers an area calculation accuracy of
1.5× 10−8.
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1. Introduction

The moving sofa problem was formulated for the first time by Moser [1] as: "What
is the largest area region which can be moved through a hallway of width one?". This is one
of the unsolved mathematical problems [2]. The essence is to find such a shape of the
maximum area that can be moved around a ninety-degree corner while a planar case
is under consideration. The simplicity of the formulation of the problem, which allows
anyone to understand it, and advanced calculation techniques used for analyses have
retained the scientific interest of researchers until today.

One of the first proposed solutions was a sofa built from circular arcs and straight lines,
the area of which was AH = π/2 + 2/π = 2.2074 . . . [3]. However, this solution was not
optimal, as proved by Gerver [4], who proposed a sofa with the area AG = 2.2195316688 . . .
constructed from 18 analytically defined curves. This solution was probably the optimum
one, though it has not yet been proven globally. Over the years, various attempts at designing
other solutions have been made. The author in [5] presented a shape similar to the shape of
Gerver’s sofa obtained by the Monte Carlo method. Numerical analyses were also performed
for an ambidextrous sofa [6]. Gerver’s sofa was modelled with the aid of Boolean operations
performed for each discrete position of the hallway [7]. An improved upper bound for the
optimal solution, which should now be within the interval AG ≤ Aopt ≤ 2.37, has recently
been obtained [8]. Attempts were also made to describe this problem by means of variational
analysis [9].

The solution to the problem also found practical applications, i.e., while choosing the
shape of a trolley moving around the corner [10] or in mobile robot path planning—the
so-called “piano movers” problem [11–13].

The aim of this paper was to lay the foundation for further investigating the moving
sofa problem. In particular, we sought to obtain such a mathematical model of sofa
generation which could be used for searching the novel solutions of the problem or to
prove that the Gerver’s solution truly is an optimal one. For this purpose, the method
for obtaining the shape of the moving sofa is proposed. The method is based on discrete
solutions to the equations, stating necessary conditions of the existence of envelopes [14–16].
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2. Sofa Generation

Fixed coordinate system h was established, in which the region of hallway H =
{(xh, yh) ∈ R2 : yh ≤ |xh|+

√
2 ∧ yh ≥ |xh|} is bounded by two curves parametrised as

r̄(h)u = [x(h)u (tu), y(h)u (tu)]
T

and r̄(h)l = [x(h)l (tl), y(h)l (tl)]
T

(Figure 1).

Figure 1. Coordinate systems.

Position vectors of the upper and lower boundaries of the hallway are expressed by
Equations (1) and (2):

r̄(h)u (tu) =

[
x(h)u

y(h)u

]
=

[
tu

|tu|+
√

2

]
, (1)

r̄(h)l (tl) =

[
x(h)l
y(h)l

]
=

[
tl
|tl |

]
, (2)

where tu i tl are the hallway’s parameters. Moreover, coordinate system s connected
with the sofa moves along the trajectory defined by a parametric curve in the form of

r̄(h)t = [x(h)t (tt) y(h)t (tt)]
T

and rotates by ϕ(tt), where tt is the parameter of the path of
movement. In order to express the hallway’s boundaries in the coordinate system connected
with the sofa, we may use Equation (3)

r̄(s)u,l =

[
cos ϕ sin ϕ
− sin ϕ cos ϕ

]
·
([

x(h)u,l

y(h)u,l

]
+

[
x(h)t

−y(h)t

])
, (3)

where indexes u and l refer to the upper and lower boundaries of the hallway, respec-
tively. Equation (3) describes one parameter family of curves with parameter tt. After
transformation, we obtain (4) and (5):

r̄(s)u =

[
x(s)u

y(s)u

]
=

cos ϕ
(

x(h)t + x(h)u

)
+ sin ϕ

(
y(h)t − y(h)u

)
sin ϕ

(
x(h)t + x(h)u

)
− cos ϕ

(
y(h)t − y(h)u

), (4)

r̄(s)l =

[
x(s)l
y(s)l

]
=

cos ϕ
(

x(h)t + x(h)l

)
+ sin ϕ

(
y(h)t − y(h)l

)
sin ϕ

(
x(h)t + x(h)l

)
− cos ϕ

(
y(h)t − y(h)l

). (5)
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The necessary condition for the existence of envelopes expressed as the perpendicular-
ity of the vector normal and a derivative of the vector of a family of curves with respect to
its parameter [14] takes the form of:

fu(tu, tt) =
∂x(s)u
∂tt
· ∂y(s)u

∂tu
− ∂x(s)u

∂tu
· ∂y(s)u

∂tt
= 0, (6)

fl(tl , tt) =
∂x(s)l
∂tt
·

∂y(s)l
∂tl
−

∂x(s)l
∂tl
·

∂y(s)l
∂tt

= 0. (7)

By calculating the partial derivatives of expressions (4) and (5) and putting them into (6)
and (7), we arrive at the envelope Equations (8) and (9):

fu(tu, tt) =
∂x(h)t
∂tt
± ∂y(h)t

∂tt
∓
√

2
∂ϕ

∂tt
− 2

∂ϕ

∂tt
tu −

∂ϕ

∂tt
x(h)t ±

∂ϕ

∂tt
y(h)t = 0, (8)

fl(tl , tt) =
∂x(h)t
∂tt
± ∂y(h)t

∂tt
− 2

∂ϕ

∂tt
tl −

∂ϕ

∂tt
x(h)t ±

∂ϕ

∂tt
y(h)t = 0, (9)

wherein the upper sign stands for the right-hand side and the lower sign stands for the
left-hand side. The solutions to Equations (8) and (9), with the assumption that ∂ϕ/∂tt 6= 0,
are parameters (10) and (11):

tu = ± 1

2
∂ϕ

∂tt

(
∂x(h)t
∂tt
± ∂y(h)t

∂tt
−
√

2
∂ϕ

∂tt
∓ ∂ϕ

∂tt
x(h)t +

∂ϕ

∂tt
y(h)t

)
, (10)

tl = ±
1

2
∂ϕ

∂tt

(
∂x(h)t
∂tt
± ∂y(h)t

∂tt
∓ ∂ϕ

∂tt
x(h)t +

∂ϕ

∂tt
y(h)t

)
. (11)

Taking into account the above results in Equations (4) and (5), we obtain the envelopes of
the consecutive positions of the hallway boundaries in the sofa’s coordinate system (12)
and (13):

r̄(s)su (tt) = r̄(s)u (tu(tt), tt), (12)

r̄(s)sl (tt) = r̄(s)l (tl(tt), tt). (13)

The above equations stand while the derivatives ∂r̄(h)u /∂tu and ∂r̄(h)l /∂tl exist. Otherwise, as
for point tu = 0, the envelope can be represented by the curve defined as (14) (Appendix A,
Theorem A1)

r̄(s)scu(tt) = r̄(s)u (tu = 0, tt). (14)

Assuming that the sofa’s path of movement and angle of rotation are given in a
discrete way as a set of points x(h)ti

, y(h)ti
and ϕi, where i = 1, 2, . . . , n, and taking finite

differences quotients instead of derivatives, solutions to envelope Equations (10) and (11)
can be expressed as (15) and (16):

tui = ±
1

2∆ϕi

(
∆x(h)ti

± ∆y(h)ti
−
√

2∆ϕi ∓ ∆ϕix
(h)
ti

+ ∆ϕiy
(h)
ti

)
, (15)

tli = ±
1

2∆ϕi

(
∆x(h)ti

± ∆y(h)ti
∓ ∆ϕix

(h)
ti

+ ∆ϕiy
(h)
ti

)
. (16)



Symmetry 2022, 14, 1409 4 of 9

Taking the above equations into (1) and (2), and subsequently into (4) and (5), the discrete
representation of curves which bound the region of sofa (17) and (18) can be established:

r̄(s)sui =

[
x(s)sui

y(s)sui

]
=

cos ϕi

(
x(h)ti

+ tui

)
+ sin ϕi

(
y(h)ti
− (±tui +

√
2)
)

sin ϕi

(
x(h)ti

+ tui

)
− cos ϕi

(
y(h)ti
− (±tui +

√
2)
), (17)

r̄(s)sli
=

x(s)sli
y(s)sli

 =

cos ϕi

(
x(h)ti

+ tli

)
+ sin ϕ

(
y(h)ti
∓ tli

)
sin ϕi

(
x(h)ti

+ tli

)
− cos ϕ

(
y(h)ti
∓ tli

). (18)

Moreover, Equation (14) takes the discrete form (19)

r̄(s)scui =

[
x(s)scui

y(s)scui

]
=

x(h)ti
cos ϕi + sin ϕi

(
y(h)ti
−
√

2
)

x(h)ti
sin ϕi − cos ϕi

(
y(h)ti
−
√

2
). (19)

Finally, it can be said that the region of sofa is S = {(xs, ys) ∈ R2 : ys ≤ y(s)sui ∧ ys ≥
y(s)sli
∧ ys ≤ y(s)scui}, where it should be within the region limited by the initial and the final

position of the hallway S ⊆ B = {(xs, ys) ∈ R2 : ys ≤ y(s)u1 ∧ ys ≤ y(s)un ∧ ys ≥ y(s)l1
∧ ys ≥

y(s)ln
∧ xs ≥ x(s)l1

∧ xs ≤ x(s)ln
}, where:

y(s)u1 = sin ϕ1

(
x(h)t1

+ tu

)
− cos ϕ1

(
y(h)t1
− (|tu|+

√
2)
)

,

y(s)un = sin ϕn

(
x(h)tn

+ tu

)
− cos ϕn

(
y(h)tn
− (|tu|+

√
2)
)

,

x(s)l1
= cos ϕ1

(
x(h)t1

+ tl

)
+ sin ϕ1

(
y(h)t1
− |tl |

)
,

y(s)l1
= sin ϕ1

(
x(h)t1

+ tl

)
− cos ϕ1

(
y(h)t1
− |tl |

)
,

x(s)ln
= cos ϕn

(
x(h)tn

+ tl

)
+ sin ϕn

(
y(h)tn
− |tl |

)
,

y(s)ln
= sin ϕn

(
x(h)tn

+ tl

)
− cos ϕn

(
y(h)tn
− |tl |

)
.

(20)

The shape of the sofa is obtained based on discrete curves bounding its region by means of
standard curve intersection detection algorithms. The area of the sofa can be calculated as
the area of a polygon with multiple numbers of sides; if the symmetrical case is considered
(Appendix A, Theorem A2) in order to accelerate the calculations, they can be run for half
of the sofa only.

3. Application of the Proposed Method
3.1. Gerver’s Solution

Generating the shape of the sofa proposed by Gerver [4] starts by defining the path
of movement and angle of rotation. This was accomplished by the discretisation of
Equation (25) from study [17]. Therefore, values xi, yi, ϕi where i = 1, 2, . . . , n were ob-
tained. Subsequently, the path of the movement was transformed into the coordinate
system used in the present study with the aid of Equation (21).[

x(h)ti

y(h)ti

]
=

[
cos( 3

4 π) sin( 3
4 π)

− sin( 3
4 π) cos( 3

4 π)

]
·
[

cos ϕi sin ϕi
− sin ϕi cos ϕi

]([
xn/2

0

]
−
[

xi
yi

])
+

[
0√
2

]
. (21)

The results are presented in Figure 2a,b.
The path of movement is symmetrical with respect to axis yh, while the angle of

rotation is an odd function. Based on the above, according to Section 2, the envelopes of
hallway (Figure 2c) were established for half of the sofa. Taking into account conditions (20),
the shape of one half of the sofa was obtained (Figure 2d). The calculation time for n = 6000
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was 2.65 s, and the resulting area of the sofa A = 2.2195316631 . . . differs by only 5.7× 10−9

from the area obtained by Gerver: AG = 2.2195316688 . . . [4].

Figure 2. Gerver’s sofa: (a) path of movement; (b) angle of rotation; (c) envelopes of hallway; and
(d) shape of sofa.

3.2. Romik’s Solution

In order to arrive at the shape of sofa as proposed by Romik, its path of movement
and angle of rotation were discretised based on Equation (47) from [17]. As in Section 3.1,
they were transformed with the aid of Equation (21). The resulting path of the movement
and rotation angle are shown on Figure 3a,b.

Figure 3. Romik’s sofa: (a) path of movement; (b) angle of rotation; (c) envelopes of hallway; and
(d) shape of sofa.
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Since Romik’s solution is also symmetrical, calculations were limited to one half of
the sofa. The envelopes of the hallway are shown in Figure 3c). Figure 3d presents the
shape generated in this manner. To derive the ambidextrous sofa, an intersection with its
reflection on either side of axis ys = −1/2 was performed (Figure 4).

Figure 4. Ambidextrous Romik’s sofa.

The area of the ambidextrous sofa generated with the aid of the proposed method is
A = 1.644955233409673 . . . (for n = 6000) and differs by 1.5× 10−8 from Romik’s analytical
solution AR = 1.644955218425440 . . . [17].

3.3. Asymmetrical Sofa

In order to demonstrate whether the proposed method is capable of generating a
sofa of an asymmetric shape, the path of movement was defined by cubic spline inter-
polation over three points: A = (xA, yA) = (−0.4230,−0.4230 +

√
2), B = (xB, yB) =

(0.1940, 2.2642), C = (xC, yC) = (0.7, 0.7 +
√

2), while the angle of the rotation was a linear
function in the form of ϕ =

(
π/2

xC−xA

)
x(h)t − π/4−

(
π/2

xC−xA

)
xA, as shown in Figure 5a,b.

The envelopes of the hallway and the shape of the sofa are presented in Figure 5c,d. The
area of the sofa amounts to A = 2.16023196188 . . . and is smaller than in Gerver’s solution.

Figure 5. Asymmetrical sofa: (a) path of movement; (b) angle of rotation; (c) envelopes of hallway;
and (d) shape of sofa.
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4. Conclusions

Based on the provided examples, it was concluded that the proposed method may be
successfully used for generating sofas. The calculation accuracy defined as the difference
between the analytically and numerically obtained areas is presented in Figure 6.

Figure 6. Numerical error of area calculation.

It can be observed that the calculation error is small, therefore the method is considered
as correct.

Moreover, the method could be used for designing a mathematical model in which
functions of the path of movement and the angle of rotation are obtained in order to
maximise the sofa’s area. Another potential application of the designed method is to prove
that a truly optimal solution must be symmetrical. For that purpose, one can formulate a
functional describing the area of the sofa and construct a proof that the extremum is only
reached when the path of movement is symmetric and there is an odd parity of the angle
of rotation (in other words, the sofa is symmetric, as can be seen in Theorem A2). One can
try to achieve this by undermining, on the basis of the above assumptions, the system of
Euler equations, which is a necessary condition for the existence of an extremum.

Nevertheless, the sofa with the maximum area is that proposed by Gerver; not only is
it highly likely to be the optimal solution to the posed problem, but it is also possible to
design a neat piece of furniture offering space for rather a large coffee table (Figure 7).

Figure 7. A visualisation of the optimal design of the sofa.

Funding: This work was supported by the Rzeszów University of Technology.

Institutional Review Board Statement: Not applicable.
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Appendix A. Auxiliary Theorems

Theorem A1. The envelope of the family of curves described by Equation (4) is a piecewise curve

in the form r̄(s)su (tt) =

{
r̄(s)u (tu(tt), tt), for tu 6= 0
r̄(s)u (tu = 0, tt), for tu = 0

, where tu(tt) is the solution to envelope

Equation (6).

Proof. While the case for tu 6= 0 is obvious, since it directly results from the necessary
condition of envelope existence (6), it is problematic to determine the envelope when the
derivative does not exist as in the case of point tu = 0. It is assumed that the corner
of curve (1) is rounded by a tangent circle with radius r, parametrised as follows r̄(h)u =

[tu −
√

r2 − t2
u +
√

2 + r
√

2]
T

. The above parametric form can be brought to an implicit
one (yu−

√
2− r

√
2)2 + x2

u− r2 = 0, wherein when r → 0, it defines point xu = 0, yu =
√

2.
The family of curves can be obtained using the parametric representation of a circle in
Equation (4). After differentiation, the necessary condition for the existence of the envelope
(6) takes the form of (A1)

∂y(h)t
∂tt
− ∂ϕ

∂tt
x(h)t +

tu

(
∂x(h)t
∂tt

+
∂ϕ

∂tt
y(h)t

)
√

r2 − tu
2

−

√
2

∂ϕ

∂tt
tu√

r2 − tu
2
−

√
2

∂ϕ

∂tt
r tu√

r2 − tu
2
= 0. (A1)

Assuming that A =
∂y(h)t
∂tt
− ∂ϕ

∂tt
x(h)t and B = tu

(
∂x(h)t

∂tt
+ y(h)t

∂ϕ
∂tt
−
√

2 ∂ϕ
∂tt
−
√

2 ∂ϕ
∂tt

r
)

the so-

lution to Equation (A1) is tu = ± Ar√
A2+B2 . For an infinitesimal circle radius r, the above

solution approaches zero, which can be expressed as lim
r→0

tu = 0. It follows that, for

tu = 0, the envelope of the family of curves (4) can indeed be represented by equation
r̄(s)su (tt) = r̄(s)u (tu = 0, tt), which completes the proof.

Theorem A2. If the sofa’s path of movement is symmetrical along the yh axis and the rotation
angle ϕ is an odd function of parameter tt, the sofa is symmetrical along ys axis.

Proof. Assumptions regarding the symmetry of the path of movement and odd par-
ity of the angle of rotation can be written out as x(h)t (−tt) = −x(h)t (tt) ∧ y(h)t (−tt) =

y(h)t (tt) ∧ ϕ(tt) = −ϕ(−tt). After differentiation with respect to the tt parameter, the fol-

lowing relations between derivatives can be obtained x′(h)t (−tt) = x′(h)t (tt) ∧ y′(h)t (−tt) =

−y′(h)t (tt) ∧ ϕ′(−tt) = −ϕ′(tt). Taking the above equalities into (10) and (11), and then

into (12) and (13), the equalities x(s)suL(tt) = −x(s)suR(−tt) ∧ y(s)suL(tt) = y(s)suR(−tt) ∧ x(s)slL(tt) =

−x(s)slR(−tt) ∧ y(s)slL(tt) = y(s)slR(−tt) can be obtained, where index R and L refers to the
right- (upper sign) and left-hand side (lower sign) of sofa, respectively. Furthermore,
the use of conditions supplied at the beginning of the proof in (14) leads to equality
x(s)scu(−tt) = −x(s)scu(tt) ∧ y(s)scu(−tt) = y(s)scu(tt), which proves the thesis on the symmetry of
the sofa.
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