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Abstract: A generalized delay stage structure prey-predator model with fear effect and prey refuge
is considered in this paper via introducing fractional-order and fear effect induced by immature
predators. Hopf bifurcation and control of this system are investigated though regarding the delay
as the parameter. Firstly, by using the method of linearization and Laplace transform, the roots of
the characteristic equation of the linearized system of the original system are discussed, and the
sufficient conditions for the system exhibits an unstable state of symmetrical periodic oscillation
(Hopf bifurcation) are explored. Secondly, a linear delay feedback controller is added to the system to
increase the stability domain successfully. Thirdly, numerical simulations are performed to validate
the theoretical analysis, and the various impacts on the dynamical behavior of the system occurring
by fear effects, prey refuge, and each fractional-order are illustrated, respectively. Furthermore, the
influence of feedback gain on the bifurcation critical point is analyzed. Finally, an analysis based
on the results and in-depth research about this system under the biological background is stated in
the conclusion.

Keywords: stage structure; fear effect; fractional-order delay system; Hopf bifurcation; feedback control

1. Introduction

The series of prey-predator models are paid widespread attention because they reflect
the ecological phenomenon existing in the real world generally. The dynamic behavior of
those models are investigated in-depth and a large number of valuable results have been
obtained in the past few decades [1–4]. To keep the ecological balance, it is necessary to
increase the survival rate of the prey in some ecosystems. The prey refuge is a suitable
method to protect the prey population [5]. Prey-predator models with prey refuge are
brought into focus and many worthy results are obtained [6–8].

Generally, the growth of many species are divided into two stages, immaturity and
maturity, and the characteristics and behaviors of the different stage are quite distinguishing.
For example, the predatory ability of mature predators is stronger than immature predators.
In the past few years, researchers found that the prey-predator model with multi-stage
structure is more reasonable than the one-stage model for describing the relationship
between species [9–11].

Fear effect is another factor that impacts the dynamic behaviors of prey-predator
models besides stage structure. For instance, the fear to predators could affect the birth rate
of the prey, thereby affecting the population density of the prey [12]. Investigations have
shown that the fear induced by the predator has an even greater effect on the prey than the
direct killing [13–15]. Biologists discovered that many prey species have the inborn ability
to identify predators in addition to acquired learning [16]. This means the fear effect may
come from not only mature predators but also immature.
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In many fields such as physics, mechanics, biology, chemistry, communication engi-
neering, and control engineering, the evolution of a system not only depends on the current
state but also be influenced by the past state. Therefore, it is of great significance to consider
the delay in the system [17,18]. Because the population density of predator depends on the
consumption of prey in the past partly, it is widely recognized for considering the delay
in the prey-predator model. The effect of delay on the system has two sides: on the one
hand, the enormous delay of the predator may lead to the extinction of the predator and
the prey [19], on the other hand, the proper time delay can also increase the stability of the
dynamical system [20,21].

Fractional calculus theory considers the mathematical properties and applications of
differential and integral of arbitrary order. Fractional calculus operators have non-locality
and are suitable for describing real-life materials and processes with memory and genetic
properties [22–25], which are often ignored in classical integer-order models. Fractional
calculus has a long history [26,27]. However, in the past three centuries, due to the compu-
tational complexity and the lack of practical background, the development of fractional
calculus was very slow. Until the past few years, fractional calculus received extensive
attention with the rapid development of computer technology and became an active re-
search field. In biological models, the densities of species are in flux. It is related to both
the current moment and some past state of the species. Those properties of the biological
model coincide with the “memory” characteristic of fractional differentiation. Since each
species has different degree of dependence on the past, incommensurate fractional models
are more realistic.

Stability and bifurcation are important issues in the research of fractional-order dif-
ferential equation models. Hopf bifurcation is widely focused on because it reflects the
properties of periodic solutions near the steady-state of nonlinear systems [28–31]. How-
ever, the appearance of Hopf bifurcation is also a sign that the system appears periodic
oscillation and enters an unstable state from a stable state. The Hopf bifurcation control of
fractional systems has received more and more attention [32–34]. In Ding et al. [33], the dy-
namics of a fractional-order memristor-based chaotic system with delay were investigated.
The authors confirmed that the delay feedback controller was valid in controlling chaos
and Hopf bifurcation in the controlled system. Zheng et al. [34] proposed a linear delay
feedback controller to put off the onset of Hopf bifurcation for a fractional-order paddy
ecosystem. They observed that the delay could affect the dynamics of the system heavily,
and the feedback gain and the fractional-order had significant impacts on the control effect.

For some integer-order delay prey-predator models, the Hopf bifurcation and con-
trol of their corresponding fractional-order models have never been studied in-depth, for
example, the Crowley–Martin prey-predator model with fear effect and prey refuge [35].
Otherwise, many research considered that only mature predators could give rise to fear ef-
fect [35,36]. In fact, the fear effect may come from both mature and immature predators [16].
Inspired by these ideas, the incommensurate fractional-order and the fear factor induced
by the immature predators are introduced to the Crowley–Martin prey-predator model [35]
in this paper, and Hopf bifurcation and control of the generalized model are investigated
by theoretical and numerical method.

The main contributions of this paper include: (1) By adding the fear factor induced
by immature predators and introducing the fractional orders, an integer-order delay stage
structure prey-predator model with fear effect and prey refuge is generalized. The existence
conditions of the coexistence equilibrium point of the proposed system are deduced. (2) The
conditions of emergence of Hopf bifurcation for the generalized system are determined. In
other words, the critical value of delay that the system switches from asymptotical stability
to symmetric periodic oscillation is deduced. (3) A linear delay feedback controller is added
to put off the emergence of the Hopf bifurcation for the proposed system, and the stability
domain of the system has increased. (4) From an ecological point of view, the effects of two
fear factors, prey refuge, three fractional-orders, and the feedback gain to the bifurcation
critical value of delay are analyzed in virtue of numeric simulations, respectively.
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The organization of this paper is as follows. In Section 2, some definitions of fractional
calculus and some basic knowledge are presented. In Section 3, the mathematical model is
generalized, and the existence of the coexistence equilibrium point of the model is analyzed.
In Section 4, Hopf bifurcation of the generalized system and the control of bifurcation
of the controlled system are explored, respectively. In Section 5, numerical simulations
are performed to further illustrate our theoretical results, and the influences of two fear
effects, prey refuge, and fractional-order to the bifurcation of the system are given. Finally,
a necessary conclusion explains the results and in-depth research about this system under
the biological background.

2. Preliminary Knowledge

In this section, some basic definitions about fractional-order calculus and Hopf bifur-
cation used in the following sections are given.

Definition 1 (Riemann–Liouville Fractional Integral [37,38]). Fractional integral of order α
for the function f (t) : [a, ∞)→ R can be expressed as follows:

a Iα
t f (t) =

1
Γ(α)

∫ t

a

f (τ)
(t− τ)1−α

dτ, t > a, (1)

where α, a ∈ R, α > 0, Γ(·) is Eulers Gamma function.

Definition 2 (Caputo Fractional Derivative [37,38]). The Caputo fractional-order derivative is
defined by

C
a Dα

t f (t) =
1

Γ(n− α)

∫ t

a

f (n)(τ)
(t− τ)α−n+1 dτ, n− 1 < α ≤ n, (2)

where f (t) ∈ Cn([a, ∞), R). In particularly, if 0 < α ≤ 1, a = 0, Equation (2) can be written as:

C
0 Dα

t f (t) =
1

Γ(1− α)

∫ t

0

f
′
(τ)

(t− τ)α
dτ, 0 < α ≤ 1, t > 0. (3)

Definition 3 (Laplace Transform of Fractional Derivation [39]). The Laplace transform of
Caputo fractional derivation of order α (n− 1 < α ≤ n) for the function f (t) ∈ Cn([a, ∞), R) is

L
{

C
aDα

t f (t); s
}
= sαF(s)−

n−1

∑
k=0

sα−k−1 f (k)(a), (4)

where F(s) is the Laplace transform of f (t), and f k(a) (k = 0, 1, ..., n− 1) are the initial conditions.
Obviously, if f k(a) = 0 for k = 0, 1, ..., n− 1, Equation (4) can be written as

L
{

C
aDα

t f (t); s
}
= sαF(s). (5)

Definition 4 ([40]). Consider the following n-dimensional fractional-order system with delay

C
a Dα

t ui(t) = fi(u1(t), · · · , un(t); τ), i = 1, 2, · · · , n, (6)

where 0 < α ≤ 1 and the delay τ ≥ 0. System (6) undergos Hopf bifurcation at the equilibrium
u∗ = (u∗1 , u∗2 , ..., u∗n) when τ = τ0 if the following three conditions are satisfied:

C1: All the eigenvalues λj (j = 1, 2, ..., n) of the coefficient matrix J of the linearized system of
Equation (6) with τ = 0 satisfy |arg(λj)| > απ

2 .
C2: The characteristic equation of the linearized system of Equation (6) has a pair of purely

imaginary roots s = ±iω0 when τ = τ0.
C3: Re

[
ds(τ)

dτ

]
|(τ=τ0,ω=ω0)

> 0, where Re[·] denotes the real part of the complex number.
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Remark 1. (C3) in Definition 4 is the so-called transversality condition.

3. Model Description

Xiao et al. [41] studied the following Beddington–DeAngelis prey-predator model
with stage structure and prey refuge

ẋ(t) = x(t)(r− cx(t))− α(1−m)x(t)y2(t)
1+a(1−m)x(t)+by2(t)

,

ẏ1(t) =
αβ(1−m)x(t−τ)y2(t−τ)

1+a(1−m)x(t−τ)+by2(t−τ)
− ny1(t)− d1y1(t),

ẏ2(t) = ny1(t)− d2y2(t),

(7)

where x(t), y1(t), and y2(t) represent the population densities of prey, immature predator,
and mature predator at time t, respectively. r is the birth rate of prey. d1 and d2 represent
the natural mortality of immature predators and mature predators, respectively. c is the
intraspecific competition rate of the prey. m ∈ [0, 1) is the prey refuge rate, and n represents
the proportion of immature predators that grow into mature predators. a and b refer to the
processing time of the mature predator and the strength of the interaction. α and β refer
to the capture rate of the prey and the conversion rate of nutrients into the production of
predator species, respectively. τ represents the delay due to the gestation of the mature
predator. The authors investigated the local stability of the equilibrium point of the system
and the influence of prey refuge on the densities of predator species and prey species.

In 2021, Wang and Hu [35] improved this model and discussed a Crowley–Martin
prey-predator model with fear effect and prey refuge as follows

ẋ(t) = rx(t)
1+ky2(t)

− d0x(t)− cx2(t)− α(1−m)x(t)y2(t)
1+a(1−m)x(t)+by2(t)+ab(1−m)x(t)y2(t)

,

ẏ1(t) =
βα(1−m)x(t−τ)y2(t−τ)

1+a(1−m)x(t−τ)+by2(t−τ)+ab(1−m)x(t−τ)y2(t−τ)
− ny1(t)− d1y1(t),

ẏ2(t) = ny1(t)− d2y2(t),

(8)

where k is the prey’s fear factor induced by mature predators and d0 represents the natural
mortality of prey. The existence and stability of the equilibrium point of the system Equation
(8) have been established in [35].

Considering that the evolution of prey-predators system related to both the current
moment and some past state of the species, and each species has different degree of
dependence on the past, incommensurate fractional-orders are added to the system (8).
Otherwise, inspired by the reference [16], the prey’s fear effect is thought about not only
mature predator but also immature predator. Thus, the system Equation (8) is generalized
as the follows:

Dq1 x(t) = rx(t)
1+k1y1(t)+k2y2(t)

− d0x(t)− cx2(t)− α(1−m)x(t)y2(t)
1+a(1−m)x(t)+by2(t)+ab(1−m)x(t)y2(t)

,

Dq2 y1(t) =
βα(1−m)x(t−τ)y2(t−τ)

1+a(1−m)x(t−τ)+by2(t−τ)+ab(1−m)x(t−τ)y2(t−τ)
− ny1(t)− d1y1(t),

Dq3 y2(t) = ny1(t)− d2y2(t),

(9)

where qi ∈ (0, 1] (i = 1, 2, 3) is fractional-order. k1 and k2 are the prey’s fear factors induced
by immature predators and mature predators, respectively.

Obviously, the system has a zero equilibrium point E0 = (0, 0, 0). When r > d0,
the system has a predator-extinction equilibrium point E1 = ( r−d0

c , 0, 0).In fact, we are
interested in the stability and stability switch at the coexistence equilibrium point of the
system (9). Thus, it is necessary to find the conditions in that system (9) has a positive value
equilibrium point.

Lemma 1. When the following four conditions are satisfied, the system (9) has a unique coexistence
equilibrium point E∗ = (x∗, y∗1 , y∗2) (x∗ > 0, y∗1 > 0, y∗2 > 0)

(H1) c ≥ a(r− d0)(1−m);
(H2) r > d0;
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(H3) nβα > d2a(n + d1);
(H4) d2c(n + d1) < (r− d0)(nβα− d2a(n + d1))(1−m).

Proof. In fact, system (9) exists an coexistence equilibrium point E∗ = (x∗, y∗1 , y∗2) means
the following equation set has positive solution

r
1+k1y1+k2y2

− d0 − cx− α(1−m)y2
1+a(1−m)x+by2+ab(1−m)xy2

= 0,
βα(1−m)xy2

1+a(1−m)x+by2+ab(1−m)xy2
− ny1 − d1y1 = 0,

ny1 − d2y2 = 0.

(10)

It is easy to obtain y1 = d2
n y2, and substituting y1 into the first and second equations

of Equation (10), one has
rn

n+k1d2y2+nk2y2
− d0 − cx− α(1−m)y2

1+a(1−m)x+by2+ab(1−m)xy2
= 0,

βα(1−m)x
1+a(1−m)x+by2+ab(1−m)xy2

− d2 − d1d2
n = 0.

(11)

Let  F(x, y2) := rn
n+k1d2y2+nk2y2

− d0 − cx− α(1−m)y2
1+a(1−m)x+by2+ab(1−m)xy2

,

G(x, y2) := βα(1−m)x
1+a(1−m)x+by2+ab(1−m)xy2

− d2 − d1d2
n ,

(12)

if curve F(x, y2) = 0 intersects curve G(x, y2) = 0 in the first quadrant, then system (10)
has positive solution. According to the first equation of Equation (12), one has

dy2

dx
= − Fx

Fy2

=

α(1−m)2y2a(1+by2)

(1+a(1−m)x+by2+ab(1−m)xy2)
2 − c

r(k2+
k1d2

n )

(1+k2y2+
k1d2y2

n )2
+ α(1−m)

(1+x(1−m)a)(by2+1)2

. (13)

In the first quadrant, if dy2
dx < 0 then

α(1−m)2y2a(1 + by2)

(1 + a(1−m)x + by2 + ab(1−m)xy2)
2 < c. (14)

From F(x, y2) = 0, one can get

α(1−m)2y2a(1 + by2)

(1 + a(1−m)x + by2 + ab(1−m)xy2)
2 =

( rn
n+k1d2y2+nk2y2

− d0 − cx)a(1−m)

1 + a(1−m)x
. (15)

Substituting Equation (15) into inequation Equation (14), one has

l1xy2 + l2x + l3y2 + l4
(1 + a(1−m)x)(n + nk2y2 + k1d2y2)

> 0, (16)

where

l1 = 2ac(1−m)(k1d2 + nk2), l2 = 2acn(1−m),
l3 = (k1d2 + nk2)(c + ad0(1−m)), l4 = n(c + a(d0 − r)(1−m)).

For all x > 0, y2 > 0, if l4 = n(c + a(d0 − r)(1−m)) > 0, that is

c > a(r− d0)(1−m),

then the inequation Equation (16) is established, and it means dy2
dx < 0.

If y2 = 0, then x(1) = r−d0
c , and when x(1) > 0, there is r > d0.
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When x = 0, there is
Ay2

2 + By2 + C = 0, (17)

where

A = (d2k1 + k2n)((1−m)α + bd0),
B = ((1−m)α + d0(b + k2)− br)n + d0d2k1,
C = n(d0 − r).

Obviously, if
r > d0,

Equation (17) has only one positive root y2
(1).

According to second equation of Equation (12), in the first quadrant, one has

dy2

dx
= − Gx

Gy2

=
βα(1−m)(1 + by2)

βαb(1−m)(1 + a(1−m)x)x
> 0. (18)

If y2 = 0, then x(2) = d2(n+d1)
(1−m)(nβα−d2a(n+d1))

. When

nβα > d2a(n + d1),

d2c(n + d1) < (r− d0)(nβα− d2a(n + d1))(1−m),

it is easy to obtain 0 < x(2) < x(1).
Therefore, if (H1)−(H4) are satisfied, F(x, y2) and G(x, y2) have a unique intersection

(x∗, y2
∗) in the first quadrant, and then y1

∗ > 0 can be obtained by the third equation of
Equation (10).

4. Hopf Bifurcation Analysis and Control of System (9)

We are interested in the dynamical properties at the coexistence equilibrium point
(x∗, y1

∗, y2
∗) of system (9). In this section, the Hopf bifurcation and control are analyzed in

details.

4.1. Hopf Bifurcation Analysis of System (9)

Using the transformation u(t) = x(t)− x∗, v(t) = y1(t)− y1
∗, w(t) = y2(t)− y2

∗, and
linearizing the converted system, we can have

Dq1 u(t) = a11u(t) + a12v(t) + a13w(t),
Dq2 v(t) = a21u(t− τ) + a22v(t) + a23w(t− τ),
Dq3 w(t) = a31v(t) + a32w(t),

(19)

where

a11 = r
1+k1y1

∗+k2y2
∗ − d0 − 2cx∗ − α(1−m)y2

∗

(1+x∗(1−m)a)2(by2
∗+1)

, a12 = − rx∗k1
(1+k1y1

∗+k2y2
∗)2 ,

a13 = − rx∗k2
(1+k1y1

∗+k2y2
∗)2 −

α(1−m)x∗

(1+x∗(1−m)a)(by2
∗+1)2 , a21 = βα(1−m)y2

∗

(1+x∗(1−m)a)2(by2
∗+1)

,

a22 = −n− d1, a23 = βα(1−m)x∗

(1+x∗(1−m)a)(by2
∗+1)2 , a31 = n, a32 = −d2.

According to Definition 4, we analyze the conditions of emergence of Hopf bifurcation
for system (9) at the coexistence equilibrium point.

Lemma 2. When τ = 0, all the eigenvalues λj (j = 1, 2, 3) of the coefficient matrix of the linearized
system (19) have negative real parts, if the following assumptions (H5)−(H7) hold,

(H5) a11 + a22 + a32 < 0,
(H6) −a11a22a32 + a11a23a31 + a12a21a32 − a13a21a12 > 0,
(H7) (−a11 − a22 − a32)(a11a22 + a11a32 − a12a21 + a22a32 − a23a31) > (−a11a22a32 +

a11a23a31 + a12a21a32 − a13a21a31).
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Proof. When τ = 0, the coefficient matrix A of the system (19) is

A =

 a11 a12 a13
a21 a22 a23
0 a31 a32

,

the corresponding characteristic equation of A is

λ3 + (−a11 − a22 − a32)λ
2 + (a11a22 + a11a32 − a12a21

+ a22k32 − a23k31)λ + (−a11a23a31 + a12a21a32 − a13a21a31) = 0.
(20)

If the assumptions (H5)−(H7) are true, according to the Routh-Hurwitz criterion, all
the characteristic roots of Equation (20) have negative real parts, that is, the characteristic
root λj(j = 1, 2, 3) satisfies |arg(λj)| >

qπ
2 (q = max(q1, q2, q3)).

Taking Laplace transform [42] to system (19), one has
sq1 F1(s) = a11F1(s) + a12F2(s) + a13F3(s),
sq2 F2(s) = a21e−sτ F1(s) + a22F2(s) + a23e−sτ F3(s),
sq3 F3(s) = a31F2(s) + a32F3(s).

(21)

The characteristic equation of Equation (21) is∣∣∣∣∣∣
sq1 − a11 −a12 −a13
−a21e−sτ sq2 − a22 −a23e−sτ

0 −a31 sq3 − a32

∣∣∣∣∣∣ = 0. (22)

Equation (22) can be written as

U1(s) + U2(s)e−sτ = 0, (23)

where

U1(s) =sq1+q2+q3 − a22sq1+q3 − a32sq1+q2 + a22a32sq1 − a11sq2+q3

+ a11a22sq3 + a11a32sq2 − a11a22a32,

U2(s) =− a23a31sq1 − a12a21sq3 + a11a23a31 − a13a21a31 + a12a21a32.

In order to find the critical value of delay that the stability of system (19) switches, one
can assume

(A1) |U1(0)| < |U2(0)|;
Assume that s = iω = ω(cos π

2 + i sin π
2 ) (ω > 0) is a root of Equation (23), substitut-

ing it into Equation (23) and separating the real and imaginary parts, we have{
α1 cos ωτ + α2 sin ωτ = −α3,
α2 cos ωτ − α1 sin ωτ = −α4,

(24)

where

α1 = Re(U2(iω)), α2 = Im(U2(iω)), α3 = Re(U1(iω)), α4 = Im(U1(iω)),

the exact expressions of αi (i = 1, 2, 3, 4) are defined in Appendix A.
Solving Equation (24), it is easy to obtain the following result, sin ωτ = α1α4−α2α3

α1
2+α2

2 = Im(U1(iω)·U2(iω))
|U2(iω)|2 ,

cos ωτ = − α3α1+α2α4
α1

2+α2
2 = − Re(U1(iω)·U2(iω))

|U2(iω)|2 ,
(25)
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By Equation (23), we can get

|U1(iω)| = |U2(iω)|.

It is easy to know that

|U2(iω)| − |U1(iω)| ≤ |U2(iω)| −
(
|(iω)q1+q2+q3 | − |U1(iω)− (iω)q1+q2+q3 |

)
= −(iω)q1+q2+q3 + |U2(iω)|+ |U1(iω)− (iω)q1+q2+q3 |.

Therefore
lim

ω→+∞
(|U2(iω)| − |U1(iω)|) = −∞.

According to assumption (A1), the equation |U1(iω)| = |U2(iω)| has at least one
positive root.

Combining with the formula sin2 ωτ + cos2 ωτ = 1, the value of ω can be solved.
Without loss of generality, we assume that all positive roots are ωk (k = 1, 2, ..., K). By
substituting each ωk into Equation (25) and the corresponding critical value of τk can be
obtained (for the exact mathematical expressions, please refer to [40]). In relation to the
actual meaning of delay, we only pay attention to the value of τ when Hopf bifurcation
occurs firstly, so the bifurcation critical value of delay is

τ0 = min{τk}, k = 0, 1, 2, ...K, (26)

the critical value of frequency corresponding to τ0 is denoted as ω0.
According to Definition 4, we need to verify the transversality condition at the critical

point (τ0, ω0). Thus, it is necessary to give the following hypothesis
(H8) A1B1+A2B2

B2
1+B2

2
> 0,

the expressions of Ai, Bi (i = 1, 2) is in Appendix B.

Lemma 3. If the hypothesis (H8) holds, let s(τ) = γ(τ) + iω(τ) be the root of Equation (23) near
τ = τj satisfying γ(τj) = 0, ω(τj) = ω0, then the following transversality conditions established

Re
[

ds(τ)
dτ

]
|(τ=τ0,ω=ω0)

> 0. (27)

Proof. According to the implicit function derivation rule, deriving τ on both sides of
Equation (23) respectively, one gets

U′1(s)
ds
dτ

+ U′2(s)e
−sτ ds

dτ
+ U2(s)e−sτ(−τ

ds
dτ
− s) = 0,

where U′i (s) is the derivative of Ui(s) (i = 1, 2). Hence,

ds
dτ

=
A(s)
B(s)

, (28)

where

A(s) = U2(s)se−sτ ,
B(s) = U′1(s) + U′2(s)e

−sτ −U2(s)τe−sτ .

It can be deduced from Equation (28) that

Re
[

ds(τ)
dτ

]
|(τ=τ0,ω=ω0)

=
A1B1 + A2B2

B2
1 + B2

2
, (29)
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where A1, A2 are the real and imaginary parts of A(s), B1, B2 are the real and imaginary
parts of B(s). In terms of (H8), one has

Re
[

ds(τ)
dτ

]
|(τ=τ0,ω=ω0)

> 0.

The proof of Lemma 3 is finished.

Based on Lemmas 2 and 3, we can get the following theorem:

Theorem 1. If (H1)−(H8) and (A1) hold, then the coexistence equilibrium point of system (9) is
asymptotically stable when τ ∈ [0, τ0), and system (9) undergoes Hopf bifurcation at the coexistence
equilibrium point when τ = τ0. τ0 is the critical value of delay defined by Equation (26).

4.2. Hopf Bifurcation Control of System (9)

In this section, we focus on the control of Hopf bifurcation of system (9). From an eco-
logical point of view, it is more effective to control the stability of the system by regulating
the population density of mature predators than by regulating the population density of
immature predators, as the mature predators play a dominant role in the ecosystem. A
linear delay feedback controller L[y2(t)− y2(t− τ)] is added to the third equation of system
(9) to control the emergence of Hopf bifurcation, i.e., the stability domain is regulated by
controlling the population density of mature predators. The controlled system is

Dq1 x(t) = rx(t)
1+k1y1(t)+k2y2(t)

− d0x(t)− cx2(t)− α(1−m)x(t)y2(t)
1+a(1−m)x(t)+by2(t)+ab(1−m)x(t)y2(t)

,

Dq2 y1(t) =
βα(1−m)x(t−τ)y2(t−τ)

1+a(1−m)x(t−τ)+by2(t−τ)+ab(1−m)x(t−τ)y2(t−τ)
− ny1(t)− d1y1(t),

Dq3 y2(t) = ny1(t)− d2y2(t) + L[y2(t)− y2(t− τ)],
(30)

where L ∈ R is the feedback control gain.
Making a transformation u(t) = x(t)− x∗, v(t) = y1(t)− y∗1 , w(t) = y2(t)− y∗2 , and

doing the linearization at zero equilibrium point to Equation (30), the linearization system
of controlled system (30) can be achieved

Dq1 u(t) = a11u(t) + a12v(t) + a13w(t),
Dq2 v(t) = a21u(t− τ) + a22v(t) + a23w(t− τ),
Dq3 w(t) = a31v(t) + a32w(t) + L[w(t)− w(t− τ)],

(31)

where aij (i, j = 1, 2, 3) is same as Equation (19).
Taking Laplace transform to system (31), one can get the characteristic equation

as following ∣∣∣∣∣∣
sq1 − a11 −a12 −a13
−a21e−sτ sq2 − a22 −a23e−sτ

0 −a31 sq3 − a32 − L + Le−sτ

∣∣∣∣∣∣ = 0. (32)

Obviously, Equation (32) is equivalent to

V1(s) + V2(s)e−sτ + V3e−2sτ = 0, (33)

where

V1(s) =sq1+q2+q3 − a22sq1+q3 − a32sq1+q2 − a11sq2+q3 − Lsq1+q2 + La22sq1

+ La11sq2 + a22a32sq1 + a11a32sq2 + a11a22sq3 − a11a22a32 − La11a22,

V2(s) =Lsq1+q2 − La22sq1 − La11sq2 − a23a31sq1 − a12a21sq3 + La11a22

+ La12a21 + a11a23a31 + a12a21a32 − a13a21a31,

V3 =− La12a21.



Symmetry 2022, 14, 1408 10 of 22

Multiplying esτ on both sides of Equation (33), one gets

V1(s)esτ + V2(s) + V3e−sτ = 0. (34)

In order to find the critical value of delay that the stability of system (30) switches, one
can assume

(A2) |V1(0)| − |V2(0) + V3| < 0;
Let s = iω = ω(cos π

2 + i sin π
2 )(ω > 0) as a root of Equation (34), substituting it into

Equation (34) and separating the real and imaginary parts, one has:{
(β1 + β3) cos ωτ − β2 sin ωτ = −γ1,
β2 cos ωτ + (β1 − β3) sin ωτ = −γ2,

(35)

where

β1 = Re(V1(iω)), β2 = Im(V1(iω)), β3 = V3, γ1 = Re(V2(iω)), γ2 = Im(V2(iω)),

the exact expressions of βi (i = 1, 2, 3) and γi (i = 1, 2) are given in Appendix C.
By Equation (34), it can get

|V1(iω)| = |V2(iω) + V3e−iωτ |.

Set G(ω) = |V1(iω)| − |V2(iω) + V3e−iωτ |, then

G(ω) = |V1(iω)− (iω)q1+q2+q3 + (iω)q1+q2+q3 | − |V2(iω) + V3e−iωτ |
≥ |(iω)q1+q2+q3 | − |V1(iω)− (iω)q1+q2+q3 | − |V2(iω) + V3e−iωτ |
= ωq1+q2+q3 − |V1(iω)− (iω)q1+q2+q3 | − |V2(iω) + V3e−iωτ |.

Therefore,
lim

ω→+∞
G(ω) = ∞.

According to assumption (A2), the equation G(ω) = 0 has at least one positive root.
Same as Section 4.1, we can obtain the minimum bifurcation critical point (τ∗0 , ω∗0 ) of

the controlled system (30).
It is necessary to get the transversality condition, thus we make the following assumption
(H9) C1D1+C2D2

D2
1+D2

2
> 0,

the expressions of Ci, Di (i = 1, 2) are in Appendix D.

Lemma 4. If the hypothesis (H9) holds, let s(τ) = δ(τ) + iω(τ) be the root of Equation (33) near
τ = τj satisfying δ(τj) = 0, ω(τj) = ω∗0 , then the following transversality condition satisfied

Re
[

ds(τ)
dτ

]
|(τ=τ∗0 ,ω=ω∗0 )

> 0.

Proof. Deriving on both sides of Equation (33) for the variable τ, one gets

V′1(s)
ds
dτ

+ V′2(s)e
−sτ ds

dτ
+ V2(s)e−sτ(−τ

ds
dτ
− s) + V3e−2sτ(−2τ

ds
dτ
− 2s) = 0,

where V′i (s) is the derivative of Vi(s) (i = 1, 2). Hence,

ds
dτ

=
C(s)
D(s)

, (36)

where
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C(s) = s[V2(s)e−sτ + 2V3e−2sτ ],

D(s) = V′1(s) + [V′2(s)−V2(s)τ]e−sτ − 2V3τe−2sτ .

It can be deduced from Equation (36) that

Re
[

ds(τ)
dτ

]
|(τ=τ∗0 ,ω=ω∗0 )

=
C1D1 + C2D2

D2
1 + D2

2
, (37)

where C1, C2 are the real and imaginary parts of C(s), D1, D2 are the real and imaginary
parts of D(s).

Obviously, if hypothesis (H9) is true, then the transversality condition is true. The
proof of Lemma 4 is finished.

Based on Lemmas 2 and 4, we can get the following theorem:

Theorem 2. If (H1)−(H7), (H9) and (A2) hold, the coexistence equilibrium point of controlled
system (30) is asymptotically stable when τ ∈ [0, τ∗0 ), controlled system (30) undergoes Hopf
bifurcation at the coexistence equilibrium point when τ = τ∗0 .

Remark 2. The influence of the linear delay feedback controller on the stability domain of system (9)
is direct because the formula for calculating the delay critical value includes L (see Appendixes C and D).

5. Numerical Simulations

In this section, we use the Adama-Bashforth-Moulton predictive correction method [43]
to validate the feasibility of theoretical analysis.

5.1. Example 1

For better comparison, the parameters of system (9) refer to the literature [35]: r = 0.34,
a = 1, b = 1, c = 0.3, α = 1, β = 0.8, m = 0.05, n = 0.8, d0 = 0.1, d1 = 0.1, d2 = 0.1,
k1 = 0.05, k2 = 0.1, and fractional-orders are chosen as q1 = 0.98, q2 = 0.92, q3 = 0.95, then
system (9) is

D0.98x(t) = 0.3x(t)
1+0.05y1(t)+0.1y2(t)

− 0.1x(t)− 0.3x2(t)− 0.95x(t)y2(t)
1+0.95x(t)+y2(t)+0.95x(t)y2(t)

,

D0.92y1(t) =
0.76x(t−τ)y2(t−τ)

1+0.95x(t−τ)+y2(t−τ)+0.95x(t−τ)y2(t−τ)
− 0.9y1(t),

D0.95y2(t) = 0.8y1(t)− 0.1y2(t).

(38)

It can be verified that (H1)−(H8) and (A1) hold. It is easy to obtain that the coexistence
equilibrium point is (x∗, y∗1 , y∗2) = (0.2130, 0.0246, 0.1968), the bifurcation critical point is

(τ0 = 35.533, ω0 = 0.038858), and transversality condition Re
[

ds(τ)
dτ

]
|(τ0=35.533,ω0=0.038858) =

0.0000899288 > 0. By means of Theorem 1, the coexistence equilibrium point (x∗, y∗1 , y∗2) is
asymptotically stable when τ ∈ [0, τ0), and Hopf bifurcation occurs when τ ≥ τ0. These
results are illustrated in Figures 1 and 2 by choosing τ = 34.99 and τ = 36.01, respectively.
Moreover, we can see from Figure 2 that the system is in an unstable state of symmetrical
periodic oscillation.

In what follows, the influences on bifurcation critical value of delay coursed by the
fear factors k1, k2, and the prey refuge rate m are discussed through numerical simulations,
respectively. Furthermore, numerical simulations show that the fractional-order qi (i = 1, 2, 3)
has different effects on the stability region of system (38).

Case 1. The influences of fear factors on the stability region
In this paper, the fear factor is considered as two cases caused by mature predators

and immature predators, respectively, i.e., k1 and k2. We are interested in which one makes
an important role in the stability of system (38). When all parameters and fractional-orders
remain unchanged except k1, let k1 increases continuously, we can get different bifurcation
critical points (τ0, ω0) presented in Table 1:
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Figure 1. Waveform plots and phase portrait of system (38) with τ = 34.99 < τ0 = 35.533.

Figure 2. Waveform plots and phase portrait of system (38) with τ = 36.01 > τ0 = 35.533.

Next, in a similar way, remain all parameters and fractional-orders unchanged except
k2, and let k2 increases continuously, we also get different bifurcation critical points (τ0, ω0)
presented in Table 2:

It can be viewed in Figure 3 that the occurrence of the Hopf bifurcation is put off
slightly as k1 increases. However, the relationship between the critical value of delay τ0
and fear factor k2 shows a U-shaped curve. What calls for special attention is when k2
increases from 0.1 to 0.6, τ0 descends by 9%. From the perspective of ecology, if the fear of
predators is greater, the instability of the system will be more obvious, and the critical value
of delay will decrease. In other words, the occurrence of Hopf bifurcation is advanced and
the stability state is broken. However, when the intensity of the fear effect reaches a certain
level, the limit effect will be produced, and the critical value of delay will decrease more
and more weakly. On the other hand, Figure 3 shows that the fear effect on the stability
region of the system mainly comes from mature predators.
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Table 1. The relationship between k1 and τ0.

k1 ω0 τ0 Transversality Condition

0.05 0.038858 35.533 0.0000899288
0.1 0.038850 35.608 0.0000900460
0.2 0.038833 35.757 0.0000902623
0.3 0.038815 35.906 0.0000904556
0.4 0.038796 36.054 0.0000906266
0.5 0.038776 36.202 0.0000907763
0.6 0.038755 36.348 0.0000909056
0.7 0.038732 36.494 0.0000910151
0.8 0.038709 36.640 0.0000911057
0.9 0.038685 36.784 0.0000911781
0.99 0.038663 36.914 0.0000912283

Table 2. The relationship between k2 and τ0.

k2 ω0 τ0 Transversality Condition

0.1 0.038858 35.533 0.0000899288
0.2 0.039765 34.178 0.0000966910
0.3 0.040387 33.304 0.0001012262
0.4 0.040800 32.752 0.0001040106
0.5 0.041056 32.429 0.0001054188
0.6 0.041191 32.276 0.0001057446
0.7 0.041229 32.255 0.0001052195
0.8 0.041192 32.338 0.0001040259
0.9 0.041092 32.507 0.0001023092
0.99 0.040958 32.721 0.0001004132

Figure 3. (a) k2 = 0.1, τ0 varies with the increase of k1. (b) k1 = 0.05, τ0 varies with the increase of k1.

Case 2. The influence of prey refuge rate on the stability region
Prey refuge is an effective measure of ecosystem regulation. We are interested in how

the prey refuge rate m influences the stability of system (38). Same as Case 1, remain all the
parameters and fractional-orders unchanged except m, let m increases continuously, we
can get different bifurcation critical points (τ0, ω0) presented in Table 3.

It can be noticed easily from Table 3 and Figure 4 that when m increases from 0.05 to
0.12, the critical value of delay τ0 increases from 35.533 to 262.802, i.e., the stability region
of the system becomes 7.4 times the original. That is to say, to system (38), m has extremely
influence on stability at the coexistence
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Table 3. The relationship between m and τ0.

m ω0 τ0 Transversality Condition

0.05 0.038858 35.533 0.0000899288
0.06 0.036354 40.349 0.0000686956
0.07 0.033570 46.673 0.0000499478
0.08 0.030428 55.381 0.0000338849
0.09 0.026812 68.210 0.0000207164
0.10 0.022526 89.220 0.0000106555
0.11 0.017200 130.850 0.0000038985
0.12 0.009920 262.802 0.0000005387

equilibrium point, and it is a useful method to keep the ecosystem (38) stable develop-
ment by changing the degree of prey refuge.
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Figure 4. τ0 varies with the increase of m.

Case 3. The influence of fractional-orders on the stability region
Let q1 = 1, q2 = 1, q3 = 1 and k1 = 0, the system (38) becomes an integer-order system

corresponding to system (8). The coexistence equilibrium point is (0.2131, 0.0247, 0.1974),
and the bifurcation critical point is (τ0 = 22.77, ω0 = 0.0501), which is consistent with the
results in Wang [35]. If q1 = 0.98, q2 = 0.92, q3 = 0.95 and k1 = 0, the bifurcation critical
point is (τ0 = 35.46, ω0 = 0.0389). These results validate that when other parameters of
the model are consistent, the delay critical value of the emergence of Hopf bifurcation
in the fractional-order system is obviously larger than that in the integer-order system,
and the stability domain of the system expands from [0, 22.77) to [0, 35.46). Otherwise,
Tables 4–6 further illustrate that fractional-order can effectively expand the stability domain
of the system.

Next, we want to know which fractional-order has the obvious effect on the stability
of the system (38). The main idea is to keep two fractional-orders unchanged and vary the
third one. Tables 4–6 show the different bifurcation critical points (τ0, ω0) along with qi
(i = 1, 2, 3) varying, respectively. The varying curves are drawn in Figure 5 to compare the
distinguishing influences to the stability region.
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Table 4. The relationship between q1 and τ0 (q2 = 0.92, q3 = 0.95).

q1 ω0 τ0 Transversality Condition

0.63 0.001594 1641.098 0.0000000631
0.67 0.002666 951.636 0.0000001883
0.71 0.004259 573.477 0.0000005115
0.75 0.006541 355.943 0.0000012877
0.79 0.009698 226.110 0.0000030445
0.83 0.013900 146.548 0.0000068265
0.87 0.019235 96.960 0.0000145882
0.91 0.025648 65.706 0.0000296835
0.95 0.032949 45.759 0.0000571911
0.98 0.038858 35.533 0.0000899288
0.99 0.040891 32.769 0.0001037719

1 0.042951 30.268 0.0001192876

Table 5. The relationship between q2 and τ0 (q1 = 0.98, q3 = 0.95).

q2 ω0 τ0 Transversality Condition

0.63 0.033009 46.423 0.0000585174
0.67 0.034213 43.729 0.0000646623
0.71 0.035273 41.558 0.0000702717
0.75 0.036199 39.808 0.0000752912
0.79 0.037000 38.400 0.0000796967
0.83 0.037686 37.275 0.0000834898
0.87 0.038266 36.382 0.0000866934
0.91 0.038751 35.681 0.0000893461
0.95 0.039149 35.141 0.0000914972
0.98 0.039398 34.824 0.0000928146
0.99 0.039472 34.733 0.0000932021

1 0.039542 34.649 0.0000935654

Table 6. The relationship between q3 and τ0 (q1 = 0.98, q2 = 0.92).

q3 ω0 τ0 Transversality Condition

0.63 0.010074 236.261 0.0000029780
0.67 0.013125 170.912 0.0000057800
0.71 0.016401 128.390 0.0000102249
0.75 0.019836 99.378 0.0000167187
0.79 0.023394 78.732 0.0000256033
0.83 0.027064 63.492 0.0000371544
0.87 0.030851 51.884 0.0000515967
0.91 0.034772 42.804 0.0000691252
0.95 0.038858 35.533 0.0000899288
0.98 0.042054 30.971 0.0001078058
0.99 0.043148 29.589 0.0001142184

1 0.044259 28.269 0.0001208652

It can be seen from Tables 4–6 and Figure 5 that q1 has an important influence over
q2 and q3 on the stability of system (38). That is to say, in an ecosystem such as model
Equation (38), the prey is the main fact that affects the stability of the ecosystem. It can
be expressed that the change of prey affects the population density not only of prey but
also of predator, which intensifies the turbulence of the ecosystem. Moreover, immature
predators have more influence than mature predators when fractional-order is less than 0.8
in this ecosystem. It can be seen that when the three fractional-orders tend to 1, respectively,
the critical value of delay changes gradually converge. This further shows that it is more
practical to use fractional-order to explain the evolution of the ecosystem.
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Figure 5. (a) q2 = 0.92, q3 = 0.95, τ0 varies with the increase of q1. (b) q1 = 0.98, q3 = 0.95, τ0 varies
with the increase of q1. (c) q1 = 0.98, q2 = 0.92, τ0 varies with the increase of q1.

5.2. Example 2

Now, we add a linear delay feedback controller to the system to control the emergence
of Hopf bifurcation. All the parameters of the controller system are the same as system
(38), and the feedback gain is selected as L = −0.01, then the controlled system can be
described as


D0.98x(t) = 0.3x(t)

1+0.05y1(t)+0.1y2(t)
− 0.1x(t)− 0.3x2(t)− 0.95x(t)y2(t)

1+0.95x(t)+y2(t)+0.95x(t)y2(t)
,

D0.92y1(t) =
0.76x(t−τ)y2(t−τ)

1+0.95x(t−τ)+y2(t−τ)+0.95x(t−τ)y2(t−τ)
− 0.9y1(t),

D0.95y2(t) = 0.8y1(t)− 0.1y2(t) + L(y2(t)− y2(t− τ)).

(39)

The bifurcation critical point of controlled system (39) is
(ω∗0 = 0.028071, τ∗0 = 61.544). This means the emergence of Hopf bifurcation is put
off obviously, and the stability region is enlarged successfully. The influence of feedback
gain L on the bifurcation critical point is illustrated by numeric simulations in Table 7 and
Figure 6.

Table 7. The relationship between L and τ∗0 .

L ω∗
0 τ∗

0 Transversality Condition

−0.003 0.036053 40.542 0.0000654495
−0.005 0.034009 44.827 0.0000512848
−0.007 0.031796 50.214 0.0000388544
−0.010 0.028071 61.544 0.0000234772
−0.013 0.023680 80.183 0.0000120318
−0.015 0.020215 101.259 0.0000065762
−0.018 0.013707 172.017 0.0000015764
−0.020 0.007774 344.276 0.0000002167

It can be seen from Figure 6 that as the feedback gain decreases, the system converges
to a steady state faster. In other words, the smaller the feedback gain, the better the control
effect of the controller to the Hopf bifurcation.
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Figure 6. Waveform plots of system (39) with τ = 50, feedback gains are L = −0.002, L = −0.007 and
L = −0.012, respectively. The control effect increases as the feedback gain decreases.

6. Conclusions

In this paper, the dynamic behaviors of a fractional-order delay stage structure prey-
predator model with two fear effects and prey refuge are explored by the linearized method
and Laplace transform of fractional-order delay differential equation. Firstly, the conditions
for the existence of the coexistence equilibrium point of the system (9) is deduced through
the implicit function derivation rule and the function monotonicity theory. Secondly, the
stability of the coexistence equilibrium point of the system (9) is investigated with the delay
as parameter, and sufficient conditions for the emergence of Hopf bifurcation of the system
(9) are obtained. Thirdly, a linear delay feedback controller is added to the system (9) to
control the emergence of Hopf bifurcation, and the result states that the system can be
controlled successfully by selecting an appropriate feedback gain. Finally, two examples
are introduced to validate the theoretical results with the help of numerical simulation.

Moreover, some numerical simulations are performed to explore the influence facts
of stability of system (9). The results show that fear factors k1, k2, prey refuge rate m and
fractional-orders qi (i = 1, 2, 3) have distinguish effects to the bifurcation critical value
of delay τ, and then affect the stability region of the system. These results have some
implications for the regulation and management of ecosystems described in system (9).

However, because of lacking the complete theory of fractional-order differential equa-
tion, all the theoretical analyses in this paper are performed on the linearization system of
original system (9) and the rationality of theoretical analysis is verified by numerical simu-
lation. We are trying to study the stability of fractional differential equations theoretically
in the next work as it is a challenging problem.
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Appendix A

Computation of the expressions α1, α2, α3 and α4 in Equation (24)

α1 =−ωq1 cos(
q1π

2
)a23a31 −ωq3 cos(

q3π

2
)a12a21 + a11a23a31 + a12a21a32 − a13a21a31,

α2 =−ωq1 sin(
q1π

2
)a23a31 −ωq3 sin(

q3π

2
)a12a21,

α3 =ωq1+q2+q3 cos(
π(q1 + q2 + q3)

2
)−ωq1+q2 cos(

π(q1 + q2)

2
)a32 + ωq1 cos(

q1π

2
)a22a32

−ωq1+q3 cos(
π(q1 + q3)

2
)a22 + a11(ω

q2 cos(
q2π

2
)a32 + a22(ω

q3 cos(
q3π

2
)− a32))

−ωq2+q3 cos(
π(q2 + q3)

2
)a11,

α4 =ωq1 sin(
q1π

2
)a22a32 + ωq3 sin(

q3π

2
)a11a22 + ωq2 sin(

q2π

2
)a11a32

−ωq1+q3 sin(
π(q1 + q3)

2
)a22 −ωq1+q2 sin(

π(q1 + q2)

2
)a32

−ωq2+q3 sin(
π(q2 + q3)

2
)a11 + ωq1+q2+q3 sin(

π(q1 + q2 + q3)

2
).

Appendix B

Computation of the expressions A1, B1, A2 and B2 in Equation (29)

A1 =ω0[−ω0
q1 a23a31 sin(− q1π

2
+ ω0τ0) + ((a12a32 − a13a31)a21 + a11a23a31) sin(ω0τ0)

−ω0
q3 a12a21 sin(− q3π

2
+ ω0τ0)],

B1 =τ0a31a23ω0
q1 cos(− q1π

2
+ ω0τ0) + τ0a21a12ω0

q3 cos(− q3π

2
+ ω0τ0)

+ q1a31a23ω0
q1−1 sin(− q1π

2
+ ω0τ0) + q3a21a12ω0

q3−1 sin(− q3π

2
+ ω0τ0)

+ ω0
q1−1+q2+q3(q1 + q2 + q3) sin(

π(q1 + q2 + q3)

2
)

− a32ω0
q1−1+q2(q1 + q2) sin(

π(q1 + q2)

2
)−ω0

q1−1+q3 a22(q1 + q3) sin(
π(q1 + q3)

2
)

−ω0
q2−1+q3 a11(q2 + q3) sin(

π(q2 + q3)

2
) + ω0

q1−1 sin(
q1π

2
)q1a22a32

+ ω0
q2−1 sin(

q2π

2
)q2a11a32 + ω0

q3−1 sin(
q3π

2
)q3a11a22

− τ0(a11a23a31 − a21(−a12a32 + a13a31)) cos(ω0τ0),

A2 =ω0[−ω0
q1 a23a31 cos(− q1π

2
+ ω0τ0) + ((a12a32 − a13a31)a21 + a11a23a31) cos(ω0τ0)

−ω0
q3 a12a21 cos(− q3π

2
+ ω0τ0)],

B2 =q1a31a23ω0
q1−1 cos(− q1π

2
+ ω0τ0) + q3a21a12ω0

q3−1 cos(− q3π

2
+ ω0τ0)

− τ0a31a23ω0
q1 sin(− q1π

2
+ ω0τ0)− τ0a21a12ω0

q3 sin(− q3π

2
+ ω0τ0)
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−ω0
q1−1+q2+q3(q1 + q2 + q3) cos(

π(q1 + q2 + q3)

2
)

+ a32ω0
q1−1+q2(q1 + q2) cos(

π(q1 + q2)

2
) + ω0

q1−1+q3 a22(q1 + q3) cos(
π(q1 + q3)

2
)

+ ω0
q2−1+q3 a11(q2 + q3) cos(

π(q2 + q3)

2
)−ω0

q1−1 cos(
q1π

2
)q1a22a32

−ω0
q2−1 cos(

q2π

2
)q2a11a32 −ω0

q3−1 cos(
q3π

2
)q3a11a22

+ τ0(a11a23a31 − a21(−a12a32 + a13a31)) sin(ω0τ0).

Appendix C

Computation of the expressions β1, β2, β3, γ1 and γ2 in Equation (35)

β1 =ωq1+q2+q3 cos(
π(q1 + q2 + q3)

2
)−ωq1+q2(L + a32) cos(

π(q1 + q2)

2
)

−ωq1+q3 cos(
π(q1 + q3)

2
)a22 −ωq2+q3 cos(

π(q2 + q3)

2
)a11

+ (ωq2(L + a32) cos(
q2π

2
)− a22(−ωq3 cos(

q3π

2
) + L + a32))a11

+ ωq1 a22(L + a32) cos(
q1π

2
),

β2 =−ωq1+q2(L + a32) sin(
π(q1 + q2)

2
)−ωq1+q3 sin(

π(q1 + q3)

2
)a22

+ ωq1 a22(L + a32) sin(
q1π

2
) + sin(

q2π

2
)(L + a32)a11ωq2 + sin(

q3π

2
)ωq3 a11a22

+ ωq1+q2+q3 sin(
π(q1 + q2 + q3)

2
)−ωq2+q3 sin(

π(q2 + q3)

2
)a11,

β3 =− La12a21,

γ1 =−ωq1(La22 + a23a31) cos(
q1π

2
)− Lωq2 cos(

q2π

2
)a11 −ωq3 cos(

q3π

2
)a12a21

+ (La22 + a23a31)a11 + a21(L + a32)a12 + ωq1+q2 cos(
π(q1 + q2)

2
)L− a13a21a31,

γ2 =Lωq1+q2 sin(
π(q1 + q2)

2
)−ωq1(La22 + a23a31) sin(

q1π

2
)− Lωq2 sin(

q2π

2
)a11

−ωq3 sin(
q3π

2
)a12a21.

Appendix D

Computation of the expressions C1, D1, C2 and D2 in Equation (37)

C1 =−ω∗0 [−L(ω∗0 )
q1+q2 sin(

(−q1 − q2)π

2
+ ω∗0 τ∗0 ) + L(ω∗0 )

q2 a11 sin(− q2π

2
+ ω∗0 τ∗0 )

+ (ω∗0 )
q1(La22 + a23a31) sin(− q1π

2
+ ω∗0 τ∗0 ) + (ω∗0 )

q3 a12a21 sin(− q3π

2
+ ω∗0 τ∗0 )

+ 2 sin(2ω∗0 τ∗0 )La12a21 − sin(ω∗0 τ∗0 )((a11a22 + a12a21)L + (a12a32 − a13a31)a21

+ a11a23a31)],

D1 =− L(ω∗0 )
q1−1+q2(q1 + q2) sin(

(−q1 − q2)π

2
+ ω∗0 τ∗0 ) + (ω∗0 )

q3−1 sin(
q3π

2
)q3a11a22

− L(ω∗0 )
q1+q2 cos(

(−q1 − q2)π

2
+ ω∗0 τ∗0 )τ

∗
0 + a12a21(ω

∗
0 )

q3−1q3 sin(− q3π

2
+ ω∗0 τ∗0 )

+ (La22 + a23a31)τ
∗
0 (ω

∗
0 )

q1 cos(− q1π

2
+ ω∗0 τ∗0 ) + (L + a32)(ω

∗
0 )

q2−1a11q2 sin(
q2π

2
)

+ (La22 + a23a31)(ω
∗
0 )

q1−1q1 sin(− q1π

2
+ ω∗0 τ∗0 ) + τ∗0 (ω

∗
0 )

q2 La11 cos(− q2π

2
+ ω∗0 τ∗0 )

+ a12a21τ∗0 (ω
∗
0 )

q3 cos(− q3π

2
+ ω∗0 τ∗0 ) + (ω∗0 )

q2−1q2La11 sin(− q2π

2
+ ω∗0 τ∗0 )
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+ (ω∗0 )
q1−1+q2+q3(q1 + q2 + q3) sin(

π(q1 + q2 + q3)

2
)

− (ω∗0 )
q1−1+q2(q1 + q2)(L + a32) sin(

π(q1 + q2)

2
)

− a22(ω
∗
0 )

q1−1+q3(q1 + q3) sin(
π(q1 + q3)

2
) + a22(ω

∗
0 )

q1−1(L + a32)q1 sin(
q1π

2
)

− (ω∗0 )
q2−1+q3 a11(q2 + q3) sin(

π(q2 + q3)

2
)

− τ∗0 (cos(ω∗0 τ∗0 )((a11a22 + a12a21)L + a11a23a31 − a21(−a12a32 + a13a31))

− 2 cos(2ω∗0 τ∗0 )La12a21),

C2 =−ω∗0 [−L(ω∗0 )
q1+q2 cos(

(−q1 − q2)π

2
+ ω∗0 τ∗0 ) + 2 cos(2ω∗0 τ∗0 )La12a21

+ L(ω∗0 )
q2 a11 cos(− q2π

2
+ ω∗0 τ∗0 ) + (ω∗0 )

q3 a12a21 cos(− q3π

2
+ ω∗0 τ∗0 )

− cos(ω∗0 τ∗0 )((a11a22 + a12a21)L + (a12a32 − a13a31)a21 + a11a23a31)

+ (ω∗0 )
q1(La22 + a23a31) cos(− q1π

2
+ ω∗0 τ∗0 )],

D2 =− L(ω∗0 )
q1−1+q2(q1 + q2) cos(

(−q1 − q2)π

2
+ ω∗0 τ∗0 )

+ L(ω∗0 )
q1+q2 sin(

(−q1 − q2)π

2
+ ω∗0 τ∗0 )τ

∗
0 − a12a21τ∗0 (ω

∗
0 )

q3 sin(− q3π

2
+ ω∗0 τ∗0 )

+ (La22 + a23a31)(ω
∗
0 )

q1−1q1 cos(− q1π

2
+ ω∗0 τ∗0 )

− (La22 + a23a31)τ
∗
0 (ω

∗
0 )

q1 sin(− q1π

2
+ ω∗0 τ∗0 ) + (ω∗0 )

q2−1q2La11 cos(− q2π

2
+ ω∗0 τ∗0 )

+ a12a21(ω
∗
0 )

q3−1q3 cos(− q3π

2
+ ω∗0 τ∗0 )− τ∗0 (ω

∗
0 )

q2 La11 sin(− q2π

2
+ ω∗0 τ∗0 )

− (ω∗0 )
q1−1+q2+q3(q1 + q2 + q3) cos(

π(q1 + q2 + q3)

2
)

+ (ω∗0 )
q1−1+q2(q1 + q2)(L + a32) cos(

π(q1 + q2)

2
)− (ω∗0 )

q3−1 cos(
q3π

2
)q3a11a22

+ a22(ω
∗
0 )

q1−1+q3(q1 + q3) cos(
π(q1 + q3)

2
)− (L + a32)(ω

∗
0 )

q2−1a11q2 cos(
q2π

2
)

+ (ω∗0 )
q2−1+q3 a11(q2 + q3) cos(

π(q2 + q3)

2
)− a22(ω

∗
0 )

q1−1(L + a32)q1 cos(
q1π

2
)

+ τ∗0 (sin(ω∗0 τ∗0 )((a11a22 + a12a21)L + a11a23a31 − a21(−a12a32 + a13a31))

− 2 sin(2ω∗0 τ∗0 )La12a21).
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