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Abstract: Usually, the quasi-normal fluctuations in practical applications are described via symmetric
uncertainty variables, which is a common phenomenon in the manufacturing industry. However, it is
relatively scarce in the literature to discuss two-fold uncertainty due to the its complexity. To deal
with roughness and ambiguity to accommodate inherent uncertainties, fuzzy rough programming
approaches are put forward. In this paper, we pay attention to exploring two kinds of programming
problems, namely fuzzy rough single-objective programming and fuzzy rough multi-objective pro-
gramming, in which objective functions and/or constraints involve fuzzy rough variables (FRV). In
accordance with the related existing research of FRVs, such as the chance measure and the expected
value (EV) operator, this paper further discusses the EV model, convexity theory, and the crisp
equivalent model of fuzzy rough programming. After that, combined with the latest published NIA-S
fuzzy simulation technique, a new fuzzy rough simulation algorithm is developed to calculate the
EVs of complicated functions for handling the presented fuzzy rough programming problems. In the
end, the two types of numerical examples are provided for demonstration.

Keywords: fuzzy rough variable; expected value model; convexity theory; fuzzy rough programming;
fuzzy rough simulation

1. Introduction

Mathematical programming is frequently used as a method employed by the stake-
holders in a variety of decision-making and optimization problems. Countless academics
and practitioners have conducted specific studies in a wide range of areas [1–3]. A tradi-
tional mathematical programming problem aims to maximize (minimize) an objective or
several objective functions with a series of constraints, where the coefficients existing in
the objective or constraint functions are all exactly known crisp values. This usually comes
down to a single-objective programming (SOP) problem or a multi-objective programming
(MOP) problem. Whereafter, relying on the classical mathematical programming methods
or the hybrid algorithms, these models can be well settled. However, in many practical sce-
narios, it is difficult to offer the coefficients any accurate values due to the reality that some
of the related data are incomplete, inexistent, or unavailable [4,5]. From the optimization
point of view, this opens a new field of research called “uncertain programming”. As an op-
timization theory in uncertain environments, it includes several subtopics, for instance,
stochastic programming, fuzzy programming, and rough programming [6,7].

Given this uncertain information, many researchers studied the uncertain program-
ming in different situations. Taking into account the randomization of relevant parameters
in the economic dispatch of a micro-grid, Shuai et al. [8] offered a new approximate dynamic
programming method to operate the micro-grid under these uncertainties, and showed its
good performance in dealing with the historical forecast data to minimize the detrimental
impacts of inexact prediction on the operating system with numerical analysis. In order
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to simplify a model’s establishment in an expert system or a knowledge-based system,
Chung et al. [9] put forward a new fuzzy multiple choice goal programming model to
resolve a kind of linear MOP problem, and verified its effectiveness in reducing computa-
tional complexity during the solutions and practicability in providing satisfactory solutions.
Hamzehee et al. [10] introduced a set of MOP problems under the rough environments
and further categorized them into five types depending on the location of roughness in
the decision set or the objectives. In the above models, the uncertainties, i.e., roughness,
randomness and fuzziness, are treated as several single parts. Nevertheless, in a realistic
decision-making process, some hybrid uncertain situations often appear.

Fuzzy set theory and rough set theory from the uncertain theory are known as two
widely used tools for dealing with different kinds of ambiguous, insufficient, and inexact
informational data [11,12]. Whereas, in real-life systems, sort of uncertain problems exist
around us in which roughness and fuzziness take place simultaneously. For instance,
the demand in a supply–demand problem may be a fuzzy variable but the EV of it is
actually a rough variable, which means that the maximum and minimum average demand
quantity varies within a different interval, respectively. In 1990, Dubois and Prade [13]
came up with a fundamental concept of the fuzzy rough sets by structuring the upper
and lower approximation operators of the fuzzy sets as regards a fuzzy min–similarity
relation. Its inception provides a reliable theory base for the following research. So far,
this theory has been investigated from the views of theory and practice, for example,
a more general concept of a fuzzy rough set [14–17], the constructive definition of fuzzy
rough approximation operators [18,19], feature selection [20–22], as well as a wide range of
applications in attribute and data reduction [23,24], multi-attribute decision making [25],
and so on. Unlike the fuzzy rough set, Liu [26] put forward a fuzzy rough variable (FRV)
in 2002. It was considered as a measurable function from a rough space to the set of fuzzy
variables. In mathematical programming, this theory offers an effective tool for disposing
of the two types of uncertainty at the same time. Until now, the FRV has been explored in
some academic studies and practiced applications, such as some inequalities of FRVs [27],
a fuzzy rough DEA model [28], a useful way to process the fuzzy rough integer linear
fractional programming problem [29], a hybrid simulation algorithm for resolving the
uncertain problems with FRVs [30], and a kind of multi-objective decision-making model
containing FRVs, as well as its applications to inventory problems [31]. Obviously, it is
shown that the fuzzy rough set has been widely studied, especially in data mining, while
the FRV focusing on solving optimization problems has been paid less attention up to now.

Realistically, for a better description and application of the optimization issues, an FRV
can be effectively used to represent the uncertain phenomena in many practical decision-
making problems. Consequently, this branch of mathematical research dealing with uncer-
tainty optimization problems needs to be paid much attention to. Additionally, as single
objective and multiple objectives programming models are the commonly used program-
ming tools, in order to deal with the case where fuzzy information and rough factors arise
simultaneously in objective functions and/or constraints and fill the gap existing in the
prior research in which the most related one only proposes an equivalent model for Tr–Pos
constrained multi-objective linear programming with FRVs, in this paper, we pay attention
to two kinds of uncertain programming with FRV coefficients from the EV perspective,
called fuzzy rough single-objective programming (FRSOP) and fuzzy rough multi-objective
programming (FRMOP). According to the definition of FRV initiated by Liu [26], we further
propose the EV models of FRSOP and FRMOP respectively. As an extension of this theory,
the convexity theorem, some crisp equivalent models are discussed in detail. In addition,
on account of the difficulty in computing the EVs of such uncertain programming models
and the inexactness existing in the original fuzzy rough simulation in [26], this paper
involves an innovative technique in simulating the EVs of fuzzy numbers [32] and puts
forward a new fuzzy rough simulation for calculating the complicated EV functions, which
provides an effective way to take care of the fuzzy rough programming problems with the
help of the well developed solvers.
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The rest of this paper is outlined below. In Section 2, some essential definitions and
theorems of FRVs are reviewed with several examples. Then, an SOP problem and an
MOP one with FRVs are illustrated in Sections 3 and 4, followed by their corresponding EV
model, convexity theory, and crisp equivalent model respectively. Three transformation
methods of FRMOP into FRSOP are put forward in detail in Section 4. For a better solution,
the new fuzzy rough simulation is introduced, and some numerical examples of these two
kinds of fuzzy rough programming models are offered in Section 5. In Section 6, the overall
conclusions of this present paper are incorporated.

2. Fuzzy Rough Theory

Some necessary knowledge relevant to fuzzy rough theory, which provides theoretical
preparations for the rest of the present paper, is introduced in this section.

Definition 1 (Liu and Liu [33]). Assume that the triplet (Ω,P(Ω), Cr) is a credibility space,
where Ω is a nonempty set, P(Ω) is the power set of Ω, and Cr is the credibility measure. Then a
fuzzy variable ζ̃ is defined as a function from the credibility space to the real line R.

Definition 2 (Liu and Liu [33]). Assume that ζ̃ is a fuzzy variable and {ζ̃ ≤ σ} is a set in P(Ω)
from the credibility space. Then the credibility measure of {κ̃ ≤ σ} is given below:

Cr{ζ̃ ≤ σ} = 1
2
(Pos{ζ̃ ≤ σ}+ Nec{ζ̃ ≤ σ}), (1)

where Pos{ζ̃ ≤ σ} denotes the possibility that {κ̃ ≤ σ} occurs [34], and Nec{ζ̃ ≤ σ} denotes the
impossibility that the opposite event {κ̃ ≥ σ} occurs, i.e., Nec{ζ̃ ≤ σ} = 1− Pos{ζ̃ ≥ σ} [35].

Intuitively, as a reasonable measurement for theoretical or real-world applications,
EV has been an essential part to obtain a general evaluation. Therefore, according to a
credibility measure, for a fuzzy variable ζ̃, its EV could be calculated as below.

Definition 3 (Liu and Liu [33]). Assume that ζ̃ is a fuzzy variable. Then, the EV of ζ̃, E[ζ̃], is
given below:

E[ζ̃] =
∫ +∞

0
Cr{ζ̃ ≥ σ}dσ−

∫ 0

−∞
Cr{ζ̃ ≤ σ}dσ, (2)

on the condition that at least one integral is finite.

In the rest of the paper, triangular fuzzy numbers are introduced and serve as illustra-
tion examples for convenience, since their linear left and right shape functions are widely
applied in modeling the single or multiple programming of uncertainty decision systems.
In particular, we extend the relevant definitions and results for the symmetric fuzzy number
due to the quasi-normal fluctuations usually appearing in reality.

Example 1. Provide that a fuzzy variable ζ̃ = (a, b, c) is a triangular fuzzy number with member-
ship function:

µζ̃ =


σ− a
b− a

if a ≤ σ ≤ b

c− σ

c− b
if b < σ ≤ c.

(3)

Then, its expected value can be derived as E[ζ̃] = (a + 2b + c)/4 from Definitions 2 and 3.
In addition to the special case b− a = c− b, we call ζ̃ a symmetric fuzzy number [5] (note that the
symmetric fuzzy number in [5] is defined as a fuzzy variable with not only the same left and right
shape functions but same left and right spreads).
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Definition 4 (Liu [30]). Assume that (Λ,4,A, π) is a rough space, where A is a nonempty set,
4 is a subset of A, A is the σ-algebra subsets over Λ, and π is a real-valued set function. Then,
a rough variable τ̄ is defined as a function from the rough space to the real line R.

Definition 5 (Liu [26]). Assume that τ̄ is a rough variable, and {τ̄ ≤ ρ} is a set in A from the
rough space. Then the trust of the rough event {τ̄ ≤ ρ} is given below:

Tr{τ̄ ≤ ρ} = 1
2
(
Tr{τ̄ ≤ ρ}+ Tr{τ̄ ≤ ρ}

)
, (4)

in which Tr{τ̄ ≤ ρ} represents the upper trust of {τ̄ ≤ ρ}, and Tr{τ̄ ≤ ρ} represents the lower
trust of {τ̄ ≤ ρ}. They are given below:

Tr{τ̄ ≤ ρ} = π{τ̄ ≤ ρ}
π{Λ} ; Tr{τ̄ ≤ ρ} = π{{τ̄ ≤ ρ} ∩ ∆}

π{∆} . (5)

Definition 6 (Liu [30]). Assume that τ̄ is a rough variable. Then, the EV of τ̄, E[τ̄], is given below:

E[τ̄] =
∫ +∞

0
Tr{τ̄ ≥ $}d$−

∫ 0

−∞
Tr{τ̄ ≤ $}d$. (6)

Example 2. Provide that a rough variable τ̄ = ([b, c], [a, d]) with

Tr{τ̄ ≤ ρ} =



ρ− a
2(d− a)

if a ≤ ρ ≤ b

1
2

(
ρ− a
d− a

+
ρ− b
c− b

)
if b < ρ ≤ c

ρ + d− 2a
2(d− a)

if c < ρ ≤ d.

(7)

Then, its expected value can be derived as E[τ̄] = (a + b + c + d)/4 from Definitions 5 and 6.
In addition to the special case b− a = d− c, we may call τ̄ is a symmetric rough variable.

With regard to the various definitions of FRVs, we employ the definition developed
by Liu [26] in this present study as below.

Definition 7 (Liu [26]). Assume that (Λ, ∆,A, π) denotes a rough space, then an FRV ˜̄κ is called
a function from the rough space to the set of fuzzy variables. Then, we get a measurable function of
λ, i.e., Cr{ ˜̄κ(λ) ∈ C} for every Borel set C of R.

Theorem 1 (Liu [30]). Assume that ˜̄κ is an FRV defined on the rough space (Λ, ∆,A, π).
If E[ ˜̄κ(λ)] has finite EV for each λ ∈ Λ, then E[ ˜̄κ(·)] is a rough variable.

Definition 8 (Liu [26]). Assume that ˜̄κ is an FRV. Then, the EV of ˜̄κ is given below:

E[ ˜̄κ] =
∫ +∞

0
Tr
{

λ ∈ Λ
∣∣ E[ ˜̄κ(λ)] ≥ ρ

}
dρ−

∫ 0

−∞
Tr
{

λ ∈ Λ
∣∣ E[ ˜̄κ(λ)] ≤ ρ

}
dρ, (8)

in which E[ ˜̄κ(λ)] can be derived via Equation (2).

Remark 1. By Definition 7, both fuzzy variables and rough variables are special forms of FRVs.
If the non-empty set Λ contains only one element, it is easy to see that ˜̄κ will naturally degenerate to
a fuzzy variable, and subsequently the EV operator defined in Equation (8) is equal to Equation (2).
In the same way, assuming ˜̄κ(λ) is a real number not a fuzzy set, then ˜̄κ an FRV will degenerate to
a rough variable, and the EV operator in Equation (8) is correspondingly equivalent to Equation (6).
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Example 3. Provide that ˜̄κ = (τ̄, τ̄ + 1, τ̄ + 2) with τ̄ = ([2, 4], [0, 6]), where the triplet (m, n, o)
denotes a fuzzy variable, and ([m1, m2], [n1, n2]) denotes a rough variable. Apparently, it is
a symmetric fuzzy rough variable due to its intrinsic symmetry in view of Examples 1 and 2.
According to Definition 8, we have:

E[ ˜̄κ] =
∫ +∞

0
Tr
{

λ ∈ Λ
∣∣ E[ ˜̄κ(λ)] ≥ ρ

}
dρ−

∫ 0

−∞
Tr
{

λ ∈ Λ
∣∣ E[ ˜̄κ(λ)] ≤ ρ

}
dρ

=
∫ +∞

−∞
E[ ˜̄κ(λ)]Tr(dλ)

=
∫ +∞

−∞

[∫ +∞

0
Cr{ ˜̄κ(λ) ≥ σ}dσ −

∫ 0

−∞
Cr{ ˜̄κ(λ) ≤ σ}dσ

]
Tr(dλ)

=
∫ 6

0

λ + 2(λ + 1) + (λ + 2)
4

Tr(dλ)

=
∫ 6

0
Tr(dλ) +

∫ 6

0
λTr(dλ)

= 1 +
0 + 2 + 4 + 6

4
= 4.

Theorem 2 (Liu [26]). Assume that ˜̄κ1 and ˜̄κ2 are two FRVs with finite EVs, and ˜̄κ1(λ) and ˜̄κ2(λ)
are two independent fuzzy variables. Then, in regard to any real numbers m and n, there is:

E[m ˜̄κ1 + n ˜̄κ2] = mE[ ˜̄κ1] + nE[ ˜̄κ2]. (9)

Theorem 3 (Liu [30]). Assume that a fuzzy rough vector ˜̄κ = ( ˜̄κ1, ˜̄κ2, · · · , ˜̄κn) and f : Rn → R
is an n-ary real-valued function. Then, f ( ˜̄κ) is an FRV.

Theorem 4 (Liu [32]). Assume that ˜̄κ is a fuzzy rough vector and f : Rn → R is a measurable
function. Then, the EV of function f ( ˜̄κ), E[ f ( ˜̄κ)], is given below:

E[ f ( ˜̄κ)] =
∫ +∞

0
Tr
{

λ ∈ Λ
∣∣ E[ f ( ˜̄κ(λ))] ≥ ρ

}
dρ−

∫ 0

−∞
Tr
{

λ ∈ Λ
∣∣ E[ f ( ˜̄κ(λ))] ≤ ρ

}
dρ. (10)

3. Fuzzy Rough Single-Objective Programming

In conventional mathematical programming problems, an SOP model is usually re-
ferred to as a way of maximizing or minimizing a determinate objective, subject to a series
of constraints with crisp data. However, it is not reasonable in some state of uncertainty.
Considering the scenario of indetermination as well as hesitation existing in the practical
decision process, in this section, an FRSOP is studied from several aspects.

3.1. General Model

In reality, an SOP model has much practical applicable value. Combined with the SOP
and the fuzzy rough theory, a typical FRSOP is proposed, as shown below:

min
t

f (t, ˜̄κ)

subject to:

gs(t, ˜̄κ) ≤ 0, s = 1, 2, · · · , q,

(11)

where t = (t1, t2, · · · , tm) is a decision vector, ˜̄κ = ( ˜̄κ1, ˜̄κ2, · · · , ˜̄κn) is a fuzzy rough vector,
f (t, ˜̄κ) is the objective function, and gs(t, ˜̄κ), s = 1, 2, · · · , q, are a set of constraint functions.

Note that this model in (11) has no precise mathematical meaning. For the complicated
uncertain programming models, the EV operator is often used to calculate the objective
and constraint functions. Hence, according to the definition of FRVs [30], a fuzzy rough EV
model is presented as below:
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min

t
E[ f (t, ˜̄κ)]

subject to:

E[gs(t, ˜̄κ)] ≤ 0, s = 1, 2, · · · , q,

(12)

where E[ f (t, ˜̄κ)] is the expected objective function, and E[gs(t, ˜̄κ)], s = 1, 2, · · · , q, are
a collection of expected constraint functions. For model (12), the goal is to acquire a de-
cision vector t = (t1, t2, · · · , tm) with the minimum expected objective value E[ f (t, ˜̄κ)]
constrained by the expected constraints E[gs(t, ˜̄κ)] ≤ 0, s = 1, 2, · · · , q. So far, the EV
operator has been used to convert model (11) into a certain one, which is called the fuzzy
rough single-objective programming expected value model (FRSOP-EVM).

Definition 9. For the FRSOP-EVM in (12), the set,

F = {t ∈ Rm ∣∣ E[gs(t, ˜̄κ)] ≤ 0, s = 1, 2, · · · , q}, (13)

is called a feasible set. Then each element t in F can be called a feasible solution.

Definition 10. For the FRSOP-EVM in (12), a feasible solution t∗ can be called a global optimal
solution when it satisfies the following condition:

E[ f (t∗, ˜̄κ)] ≤ E[ f (t, ˜̄κ)], (14)

for all t ∈ F.

3.2. Convexity Theorem

Convexity plays a significant role in optimization theory, especially on seeking the
global optimal solution. A mathematical programming problem can be called convex if and
only if the objective function and the feasible set are all convex. Subsequently, the convexity
of a general FRSOP-EVM is discussed as below.

Theorem 5. Assume that ˜̄κ = ( ˜̄κ1, ˜̄κ2, · · · , ˜̄κn) is a fuzzy rough vector. If the objective function
f (t, ˜̄κ) and constraint functions gs(t, ˜̄κ), s = 1, 2, · · · , q, for each realization ˜̄κ, are convex in t.
Then the FRSOP-EVM (12) is called convex programming.

Proof. Given the fact that f (t, ˜̄κ) is a convex function in t, then for each realization ˜̄κ, we
can get the inequality:

f (θt1 + (1− θ)t2, ˜̄κ) ≤ θ f (t1, ˜̄κ) + (1− θ) f (t2, ˜̄κ)

with respect to solutions t1, t2 and scalar θ ∈ [0, 1]. In accordance with Theorem 2:

E[ f (θt1 + (1− θ)t2, ˜̄κ)] ≤ E[θ f (t1, ˜̄κ) + (1− θ) f (t2, ˜̄κ)] = θE[ f (t1, ˜̄κ)] + (1− θ)E[ f (t2, ˜̄κ)].

This demonstrates the convexity of the E[ f (t, ˜̄κ)] in t.
Then the convexity of the feasible set can be proven via the validation that θt1 +

(1 − θ)t2 is feasible for any feasible solutions t1 and t2 with the expected constraints
E[gs(t, ˜̄κ)] ≤ 0, s = 1, 2, · · · , q, and any scalar θ ∈ [0, 1]. In accordance with the convexity
of the constraint functions gs(t, ˜̄κ), s = 1, 2, · · · , q, we can get the inequality:

gs(θt1 + (1− θ)t2, ˜̄κ) ≤ θgs(t1, ˜̄κ) + (1− θ)gs(t2, ˜̄κ), (15)

for s = 1, 2, · · · , q, which yields that:

E[gs(θt1 + (1− θ)t2, ˜̄κ)] ≤ θE[gs(t1, ˜̄κ)] + (1− θ)E[gs(t2, ˜̄κ)] ≤ 0, (16)
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for s = 1, 2, · · · , q. This illustrates that θt1 + (1− θ)t2 is a feasible solution, and proves the
convexity of the feasible set. Therefore, a proof of a convex programming, i.e., the fuzzy
rough EV model (12) is completed.

3.3. Crisp Equivalent Model

Generally speaking, the EV is usually adopted to denote the mean value for each
rough quantity or fuzzy quantity in an uncertain programming. An EV model is helpful to
express a decision-maker’s preference to achieve a minimum mean objective value with a
series of constraints. For the purpose of solving the EV model containing FRVs, we next
discuss the crisp equivalent model of FRSOP-EVM.

Theorem 6. Assume that ˜̄κ1, ˜̄κ2, · · · , ˜̄κn are independent FRVs. If the objective and constraint
functions satisfy the following conditions that

f (t, ˜̄κ) = f0(t) + f1(t) ˜̄κ1 + · · ·+ fn(t) ˜̄κn

and
gs(t, ˜̄κ) = gs0(t) + gs1(x) ˜̄κ1 + · · ·+ gsn(t) ˜̄κn,

for all s = 1, 2, · · · , q, then the FRSOP-EVM in (12) has its crisp equivalent model as below:
min

t
f (t, E[ ˜̄κ])

subject to:

gs(t, E[ ˜̄κ]) ≤ 0, s = 1, 2, · · · , q,

(17)

where E[ ˜̄κ] = (E[ ˜̄κ1], E[ ˜̄κ2], · · · , E[ ˜̄κn]).

Proof. It can be directly drawn from the fuzzy rough EV linearity theorem (see Theorem 2).

4. Fuzzy Rough Multi-Objective Programming

From a practical viewpoint, many decision problems in our life involve multiple,
conflicting and nondominated objectives, which need to be considered at the same time to
find an optimal solution. This kind of problem arising in various fields has gained much
attention. In order to extend the fuzzy rough programming to the MOP problem, in this
section, an FRMOP problem is investigated in detail.

4.1. General Model

Given the actual requirements in real-life situations, another hybridization of MOP
and fuzzy rough theory is studied subsequently. As a theoretical extension of the proposed
FRSOP, the FRMOP is referred to as a way of optimizing a number of objectives constrained
by a series of constraints, i.e.,

min
t

( f1(t, ˜̄κ), f2(t, ˜̄κ), · · · , fl(t, ˜̄κ))

subject to:

gs(t, ˜̄κ) ≤ 0, s = 1, 2, · · · , q,

(18)

where t = (t1, t2, · · · , tm) is a decision vector, and ˜̄κ = ( ˜̄κ1, ˜̄κ2, · · · , ˜̄κn) is a fuzzy rough vec-
tor, fr(t, ˜̄κ), r = 1, 2, · · · , l, are various objective functions, and gs(t, ˜̄κ) ≤ 0, s = 1, 2, · · · , q,
are a series of fuzzy rough constraints.

Since the EV operator is an effective tool for the transformation of an uncertain
programming problem into a deterministic one, then under the fuzzy rough environments,
a novel EV model called the fuzzy rough multi-objective expected value model (FRMOP-
EVM) is put forward as follows:
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min

t
(E[ f1(t, ˜̄κ)], E[ f2(t, ˜̄κ)], · · · , E[ fl(t, ˜̄κ)])

subject to:

E[gs(t, ˜̄κ)] ≤ 0, s = 1, 2, · · · , q,

(19)

where E[ fr(t, ˜̄κ)], r = 1, 2, · · · , l, are the expected objective functions, and gs(t, ˜̄κ),
s = 1, 2, · · · , q, are the expected constraint functions. For model (19), the goal is to get
a decision vector t = (t1, t2, · · · , tm) with the minimum objective values E[ fr(t, ˜̄κ)] con-
strained by a series of expected constraints, i.e., E[gs(t, ˜̄κ)] ≤ 0, s = 1, 2, · · · , q.

Likewise, the set F = {t ∈ Rm
∣∣ E[gs(t, ˜̄κ)] ≤ 0, s = 1, 2, · · · , q} is called a feasible

set, and each element t ∈ F is called the feasible solution of model (19). Additionally,
for a general multi-objective decision-making problem in real world, the targets are usually
contradictory to each other. Characteristically, there is no such a global optimal solution for
the MOP problem that can simultaneously minimize all the objective functions E[ fr(t, ˜̄κ)]
(r = 1, 2, · · · , l). Therefore, the definition of a Pareto solution to this FRMOP problem
is necessary.

Definition 11. For the FRMOP-EVM in (19), a feasible solution t∗ can be called the Pareto
solution if there is no feasible solution t that satisfies the following condition:

E[ fr(t, ˜̄κ)] ≥ E[ fr(t∗, ˜̄κ)],

for r = 1, 2, · · · , l, and
E[ fi(t, ˜̄κ)] > E[ fi(t∗, ˜̄κ)],

for at least one index i ∈ {1, 2, · · · , l}.

4.2. Convexity Theorem

For an MOP problem, if the objective functions and feasible set are all convex, then it
can be called convex programming. The FRMOP-EVM in (19) is also a convex programming
model if it satisfies certain conditions, which are described below.

Theorem 7. Assume that ˜̄κ is a fuzzy rough vector. If the objective functions fr(t, ˜̄κ), r = 1, 2, · · · , l,
and constraint functions gs(t, ˜̄κ), s = 1, 2, · · · , q, for each realization ˜̄κ, are convex in t, then
FRMOP-EVM (19) is called convex programming.

Proof. Given the fact that the function fr(t, ˜̄κ) is convex in t, then for each fixed ˜̄κ, we can
get the inequality:

fr(θt1 + (1− θ)t2, ˜̄κ) ≤ θ fr(t1, ˜̄κ) + (1− θ) fr(t2, ˜̄κ),

with respect to solutions t1, t2 and scalar θ ∈ [0, 1]. In accordance with Theorem 2:

E[ fr(θt1 + (1− θ)t2, ˜̄κ)] ≤ θE[ fr(t1, ˜̄κ)] + (1− θ)E[ fr(t2, ˜̄κ)], (20)

for r = 1, 2, · · · , l. This demonstrates that the objective functions E[ fr(t, ˜̄κ)] in t are convex.
Then the convexity of feasible set can be proven via the validation that θt1 + (1− θ)t2

is feasible for any feasible solutions t1 and t2 with the expected constraints E[gs(t, ˜̄κ)] ≤ 0,
s = 1, 2, · · · , q, and any scalar θ ∈ [0, 1]. In accordance with the convexity of the constraint
functions gs(t, ˜̄κ), s = 1, 2, · · · , q, we can get the inequality:

gs(θt1 + (1− θ)t2, ˜̄κ) ≤ θgs(t1, ˜̄κ) + (1− θ)gs(t2, ˜̄κ), (21)

for s = 1, 2, · · · , q, which yields that:

E[gs(θt1 + (1− θ)t2, ˜̄κ)] ≤ θE[gs(t1, ˜̄κ)] + (1− θ)E[gs(t2, ˜̄κ)] ≤ 0, (22)
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for s = 1, 2, · · · , q. This illustrates that θt1 + (1− θ)t2 is a feasible solution, and proves
the convexity of the feasible set. Therefore, a proof of convex programming i.e., the EV
programming (19), is completed.

4.3. Compromise Model

To process the FRMOP problems, the concept of a compromise model is adopted to
obtain the Pareto solutions of the FRMOP-EVM in (19). Since one cannot minimize all
the objectives at the same time, establishing a reasonable value function is necessary for
the decision-makers. If there is a real preference function that can aggregate all objective
functions E[ fr(t, ˜̄κ)] (r = 1, 2, · · · , l), then minimizing this special function with the same
constraints can be achieved. Then the acquired SOP model is named the compromise model
and the solution is known as the compromise solution.

For the FRMOP-EVM, we can obtain the first compromise model via weighting the
objective functions E[ fr(t, ˜̄κ)] as follows:

min
t

l

∑
r=1

δrE[ fr(t, ˜̄κ)]

subject to:

E[gs(t, ˜̄κ)] ≤ 0, s = 1, 2, · · · , q,

(23)

where the weights δr > 0 and δ1 + δ2 + · · ·+ δl = 1, for instance, δr = 1/l, r = 1, 2, · · · , l.

Theorem 8. The optimal solution of the compromise model (23) is the Pareto solution of FRMOP-
EVM (19).

Proof. Assume that t∗ is an optimal solution of model (23). If t∗ is not a Pareto solution
of model (19), there must exist t

′
that satisfies E[ fr(t

′
, ˜̄κ)] ≤ E[ fr(t∗, ˜̄κ)] (r = 1, 2, . . . , l),

and there at least exists one index in {1, 2, . . . , l}, say i, that satisfies E[ fi(t
′
, ˜̄κ)] < E[ fi(t∗, ˜̄κ)].

It follows from δr > 0 for all r = 1, 2, · · · , l that

δiE[ fi(t
′
, ˜̄κ)] < δiE[ fi(t∗, ˜̄κ)] (24)

and
δrE[ fr(t

′
, ˜̄κ)] ≤ δrE[ fr(t∗, ˜̄κ)], ∀r 6= i. (25)

It follows that:
l

∑
r=1

δrE[ fr(t
′
, ˜̄κ)] <

l

∑
r=1

δrE[ fr(t∗, ˜̄κ)]. (26)

Obviously, this result conflict demonstrates that t∗ is the optimal solution of model (23).
Therefore, Theorem 8 holds.

For the FRMOP-EVM, the second method is to reduce the distance between the ob-
jective vector (E[ f1(t, ˜̄κ)], E[ f2(t, ˜̄κ)], · · · , E[ fl(t, ˜̄κ)]) and the ideal vector (E∗1 , E∗2 , · · · , E∗l ),
in which E∗r (r = 1, 2, · · · , l) is the minimum value of the rth objective function taking
no account of other objectives. Then, we can obtain the second compromise model by
adopting the Euclidean distance as:

min
t

√
(E[ f1(t, ˜̄κ)]− E∗1 )

2 + · · ·+
(
E[ fl(t, ˜̄κ)]− E∗l

)2

subject to:

E[gs(t, ˜̄κ)] ≤ 0, s = 1, 2, · · · , q.

(27)

Theorem 9. The optimal solution of the compromise model (27) is the Pareto solution of FRMOP-
EVM (19).
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Proof. The whole proof process can be dealt with in the same way as in Theorem 8.

The third one is inspired by Liu [26], who employed goal programming to model dual
uncertain decision systems. This method aims to minimize the deviations from the target
levels. Combining with the priority theory and target values of each objective function, we
have the following compromise model:

min
t

m
∑

i=1
Pi

l
∑

r=1
(urid+r + vrid−r )

subject to:

E[ fr(t, ˜̄κ)] + d−r − d+r = br, r = 1, 2, · · · , l

E[gs(t, ˜̄κ)] ≤ 0, s = 1, 2, · · · , q

d+r , d−r ≥ 0, r = 1, 2, · · · , l,

(28)

in which Pi is the priority factor that conveys the relative importance of multiple goals,
Pi � Pi+1, i = 1, 2, · · · , m, uri and vri are the weighting factors relevant to positive and
negative deviations for goal r with priority i appointed, d+r and d−r is the positive and
negative deviations from the target of goal r, br is the target value in accordance with goal
r, l is the quantity of goal constraints, and the quantity of constraints is denoted by q.

4.4. Crisp Equivalent Model

For processing the proposed FRMOP-EVM in (19), the crisp equivalent model as a vital
conversion way is also necessary. Based on the relevant theorems, we further explore the
corresponding crisp equivalent models of the above-mentioned three compromise models,
i.e., (23), (27) and (28). Subsequently, the converted crisp mathematical programming
models can be dealt with meta-heuristic algorithms or classical numerical approaches.

Theorem 10. Assume that ˜̄κ1, ˜̄κ2, . . . , ˜̄κn are independent FRVs. If the objective and constraint
functions satisfy the conditions that:

fr(t, ˜̄κ) = fr0(t) + fr1(t) ˜̄κ1 + · · ·+ frn(t) ˜̄κn,

for r = 1, 2, · · · , l, and

gs(t, ˜̄κ) = gs0(t) + gs1(t) ˜̄κ1 + · · ·+ gsn(t) ˜̄κn,

for s = 1, 2, · · · , q, then the FRMOP-EVM (19) has its crisp equivalent form as below:
min

t
( f1(t, E[ ˜̄κ]), f2(t, E[ ˜̄κ]), · · · , fl(t, E[ ˜̄κ]))

subject to:

gs(t, E[ ˜̄κ]) ≤ 0, s = 1, 2, · · · , q,

(29)

where E[ ˜̄κ] = (E[ ˜̄κ1], E[ ˜̄κ2], . . . , E[ ˜̄κn]).

Proof. Likewise, it can be drawn from the fuzzy rough EV linearity theorem (see Theorem 2)
straightly.

According to Theorem (10), the three compromise models of FRMOP-EVM in (19) are
further explicitly equalized, relying on the same principle. The results about their crisp
equivalent ones are shown below.
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The first compromise model (23) is equivalent to the model as below:
min

t

l

∑
r=1

δr fr(t, E[ ˜̄κ])

subject to:

gs(t, E[ ˜̄κ]) ≤ 0, s = 1, 2, · · · , q.

(30)

The second compromise model (27) is equivalent to the model as below:
min

t

√(
f1(t, E[ ˜̄κ])− E∗1

)2
+ · · ·+

(
fl(t, E[ ˜̄κ])− E∗l

)2

subject to:

gs(t, E[ ˜̄κ]) ≤ 0, s = 1, 2, · · · , q.

(31)

The third compromise model (28) is equivalent to the model as below:

min
t

m
∑

i=1
Pi

l
∑

r=1
(urid+r + vrid−r )

subject to:

fr(t, E[ ˜̄κ]) + d−r − d+r = br, r = 1, 2, · · · , l

gs(t, E[ ˜̄κ]) ≤ 0, s = 1, 2, · · · , q

d+r , d−r ≥ 0, r = 1, 2, · · · , l.

(32)

5. Solution

Based on the above findings, in this section, we aim to search for the optimal solutions
to the above fuzzy rough programming problems. As a general rule, a two-fold uncertain
model is not easier to compute directly given the existence of uncertain variables. For solv-
ing the models FRSOP-EVM in (12) and FRMOP-EVM in (19) efficiently, a new fuzzy rough
simulation algorithm is proposed for calculating the various EVs occurring in the crisp
equivalent models. Additionally, two kinds of numerical experiments are provided for
illustrating the solution of these models via the new simulation algorithm.

5.1. Fuzzy Rough Simulation

To process the above-mentioned models, one important problem is to compute the
EV E[ f ( ˜̄κ)]. On the one hand, based on Theorem 1, for each λ in Λ, E[ f ( ˜̄κ(λ))] is the
EV of a fuzzy variable. On the other hand, E[ f ( ˜̄κ)] is a rough variable which can be
computed according to Theorem 4. Therefore, combining the above two types of simulation
techniques (i.e., fuzzy and rough simulations) to create a fuzzy rough simulation can be an
efficient way [30].

5.1.1. NIA-S Based Fuzzy Simulation

Fuzzy simulation techniques have been widely adopted to simulate the EVs of various
functions of fuzzy variables in the fuzzy optimization problem. In this area, Liu and
Liu [33] presented a stochastic discretization-based simulation algorithm (SDA) to deal with
such problems. However, the computation of the EVs by adopting this fuzzy simulation
shows some flaws in computation accuracy [36]. Specifically, this algorithm is unable to
provide a satisfactory approximation within the specified time, especially on computing
the complex functions of fuzzy numbers. Subsequently, Li [36] put forward a numerical-
integration-based fuzzy simulation algorithm (NIA-G) to improve its performance on
large-size problems. Considering the unnecessary time consumption on the specified types
of fuzzy numbers, Liu et al. [32] simplified the simulation procedure via employing the
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analytical expressions of α-optimistic values, then presented an improved fuzzy simulation
algorithm called a numerical integration algorithm (NIA-S) with higher performance on
the stability, convergence and accuracy. It is worth noting that this novel fuzzy simulation
is suitable for simulating the EVs of strictly monotonic functions of one specified type
of fuzzy number, named regular fuzzy intervals [32,37], with continuous and strictly
decreasing functions, for instance, Gaussian, normal, trapezoidal and triangular fuzzy
numbers. Indeed, such regular fuzzy intervals are widely adopted for factual research
and application. For a better illustration, a theoretical basis of this fuzzy simulation is
shown below.

Definition 12 (Liu [26]). Assume that α ∈ [0, 1], then the α-optimistic value of a fuzzy variable ζ̃,
i.e., ζ̃sup(α) is defined as:

ζ̃sup(α) = sup{σ | Cr{ζ̃ ≥ σ} ≥ α}. (33)

Theorem 11 (Li [32]). Assume that ζ̃1, ζ̃2, · · · , ζ̃n are independent regular fuzzy intervals. Let
ζ̃ = (ζ̃1, ζ̃2, · · · , ζ̃n). If the function f : Rn → R is continuous and strictly increasing as regards
t1, t2, · · · , tk, and strictly decreasing as regards tk+1, tk+2, · · · , tn, thus for any α ∈ (0, 1], there is:

f (ζ̃)sup(α) = f
(
(ζ̃1)sup(α), · · · , (ζ̃k)sup(α), (ζ̃k+1)sup(1− α), · · · , (ζ̃n)sup(1− α)

)
. (34)

Theorem 12 (Li [32]). Assume that ζ̃1, ζ̃2, · · · , ζ̃n are independent regular fuzzy intervals. Let
ζ̃ = (ζ̃1, ζ̃2, · · · , ζ̃n). If the function f : Rn → R is continuous and strictly monotone function,
thus for any α ∈ (0, 1], the EV of f (ζ̃) is given as:

E[ f (ζ̃)] =
∫ 1

0
f (ζ̃)sup(α)dα. (35)

Relying on the above definition and theorems, the new fuzzy simulation algorithm
developed by Liu et al. [32] is shown in Algorithm 1.

Algorithm 1 (NIA-S based fuzzy simulation).

Step 1: Initialize the number of sample points Q.
Step 2: Set e = 0 and w = 1.
Step 3: Set α = w/Q. For each 1 ≤ j ≤ n, compute

xi =

(ζ̃i)sup(α) if 1 ≤ j ≤ k,

(ζ̃i)sup(1− α) if k ≤ j ≤ n.

Step 4: Compute f (t1, t2, · · · , tn) = f (ζ̃)sup(α) via Equation (34).
Step 5: Reset e = e + f (t1, t2, · · · , tn)/Q and w = w + 1.
Step 6: If w ≤ Q, go back to Step 3. Or else, stop and the obtained value e is the
simulated value of E[ f (ζ̃)].

5.1.2. NIA-S Based Fuzzy Rough Simulation

Given the good performance of NIA-S in simulating the EVs of fuzzy variables, in this
paper, we combine this newest fuzzy simulation with the rough simulation together to
create a novel numerical integrated fuzzy rough simulation. The detailed procedure of this
new algorithm is presented in Algorithm 2.
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Algorithm 2 (NIA-S based fuzzy rough simulation)

Step 1: Initialize parameter M.
Step 2: Set P = 0 and m = 1.
Step 3: Generate λ1, λ2, · · · , λM from the set of ∆ in accordance with the measure π.
Step 4: Generate λ1, λ2, · · · , λM from the set of Λ in accordance with the measure π.
Step 5: For 1 ≤ i ≤ M, denote the value yi = E[ f (x, ˜̄κ(λi))] + E[ f (x, ˜̄κ(λi))].
Step 6: Reset P = P + yi/(2M) and m = m + 1.
Step 7: If m ≤ M, go back to Step 4. Or else, return P as the simulated value
of E[ f (x, ˜̄κ)].

In this new fuzzy rough simulation, i.e., Algorithm 2, the calculation of E[ f (x, ˜̄κ(λ))]
in Step 4 is achieved through the fuzzy simulation, i.e., Algorithm 1. In fact, this com-
bination thought was initiated by Liu [30] who has made great contributions in fuzzy
and rough simulation techniques, and constructed the unique fuzzy rough simulation by
combining them together. However, since the part of fuzzy simulation was adopted by
Liu [30], originating from the work of [33], the same issues of fuzzy simulation as stated
previously have occurred in measuring the EVs of varying degrees of complexity functions
of fuzzy rough variables. To make a better expression and distinction, here the fuzzy rough
simulation developed by Liu [30] is referred to as SDA-FRS, which follows with its basic
idea of fuzzy simulation, i.e., a stochastic discretization algorithm. Similarly, the other
one put forward in this paper is referred to as NIAS-FRS based on the idea of a special
numerical integration algorithm. In the next section, a comparison between these two
algorithms is presented in detail.

Depending on the fuzzy rough simulation results, the general fuzzy rough program-
ming problems can be handled by combining the meta-heuristic algorithms, such as the
particle swarm optimization algorithm (i.e., PSOA), the simulated annealing algorithm
(i.e., SA) and the genetic algorithm (i.e., GA). Nevertheless, there are some special fuzzy
rough optimization problems in which the objective and constraint functions involving the
fuzzy rough coefficients are linear functions. Therefore, for dealing with such problems,
the fuzzy rough simulation can be combined with a well developed solver such as Lingo
and Gurobi to obtain the optimal solutions. In effect, this kind of programming model is
extensively used for actual decision-making problems. For a clear demonstration on the
effectiveness of the NIAS-FRS, in the following section, this kind of special fuzzy rough
programming problem is adopted.

5.2. Numerical Experiments

In this section, some simple but classical numerical experiments are offered to verify
the effectiveness of the presented fuzzy rough simulation and illustrate the solving process
of the fuzzy rough programming models mentioned above. Nevertheless, it is necessary
to address that the proposed methods can be extended to deal with the high-dimension
monotone functions with fuzzy rough variables. With that in mind, we strongly believe it
provides a valuable tool for estimating the expected value in practical problems without
implementing the time-consuming simulation process as before.

Let us consider the first kind of fuzzy rough programming problem, i.e., FRSOP-EVM:

min
t

E[ ˜̄κ1t1 + ˜̄κ2t2 + ˜̄κ3t3 + ˜̄κ4]

subject to:

E[ ˜̄κ3t1 + ˜̄κ4t2 + ˜̄κ1t3] ≥ 8

−3t1 − 2t2 ≤ −6

t1, t2, t3 ≥ 0,

(36)
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where ˜̄κ1, ˜̄κ2, ˜̄κ3 and ˜̄κ4 are independent fuzzy rough variables taking values of triangular
fuzzy numbers, i.e.,

˜̄κ1 = (τ̄1 − 1, τ̄1, τ̄1 + 1), with τ̄1 ∼ ([2, 3], [−1, 4]),

˜̄κ2 = (τ̄2 − 1, τ̄2 + 1, τ̄2 + 3), with τ̄2 ∼ ([1, 2], [0, 5]),

˜̄κ3 = (τ̄3 − 2, τ̄3 − 1, τ̄3), with τ̄3 ∼ ([1, 3], [0, 4]),

˜̄κ4 = (τ̄4, τ̄4 + 1, τ̄4 + 2), with τ̄4 ∼ ([2, 4], [0, 6]).

Example 4. The model in (36) can be then converted to its equivalent form on the basis of Theorem 6
as below: 

min
t

E[ ˜̄κ1]t1 + E[ ˜̄κ2]t2 + E[ ˜̄κ3]t3 + E[ ˜̄κ4]

subject to:

E[ ˜̄κ3]t1 + E[ ˜̄κ4]t2 + E[ ˜̄κ1]t3 ≥ 8

−3t1 − 2t2 ≤ −6

t1, t2, t3 ≥ 0.

(37)

After that, the crisp equivalent model can be deduced via Definition 8, then we have:

min
t

2t1 + 3t2 + t3 + 4

subject to:

t1 + 4t2 + 2t3 ≥ 8

−3t1 − 2t2 ≤ −6

t1, t2, t3 ≥ 0.

(38)

Finally, the exact optimal solution can be obtained as:

t∗1 = 2, t∗2 = 0, t∗3 = 3,

with the optimal objective value 11.

A comparison study between SDA-FRS and NIAS-FRS is conducted next. We executed
Algorithm 2 by varying Q from 100 to 2000 cycles in Matlab2017 on a Windows 10 platform.
We set the sample points in rough simulation M as 1000 which is usually utilized in previous
research. The simulated results are obtained as illustrated in Table 1, where the relative
error is the ratio of the difference between the simulated value and the exact value to the
exact value.

Table 1. Comparative results on fuzzy rough simulations.

Algorithm Sample Points in
Fuzzy Simulation (Q) Objective Value CPU Time (s) Relative Error

(%)

SDA-FRS [30]

100 10.9612 2.8314 0.3527
500 10.9826 29.4740 0.1582
1000 10.9914 88.1874 0.0782
2000 11.0057 335.2291 0.0518

NIAS-FRS

100 10.9781 0.1683 0.1991
500 11.0156 0.2351 0.1418
1000 11.0082 0.3243 0.0745
2000 10.9982 0.6320 0.0164

According to the data given by Table 1, it can be easily known that both the two
algorithms perform well in terms of accuracy, and NIAS-FRS is slightly better for its smaller
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relative error. As stated in [36], the SDA-FRS is efficient in dealing with the single fuzzy
number counterpart. With respect to computing time, the NIAS-FRS is noticeably better
than the SDA-FRS. Furthermore, with the increase of the number of sample points Q,
the NIAS-FRS still has a good performance on the calculation accuracy, which can be drawn
from the relative error in the table. This result indicates the reliability of this new algorithm.
To sum up, the NIAS-FRS, on the calculation of the EVs of FRVs, is feasible, effective
and has high accuracy.

In effect, the numerical experiment adopted above is a kind of special FRSOP-EVM
which can be computed directly based on the former mentioned theorems and definitions to
obtain its exact value. However, for a better comparison and verification of the NIAS-FRS
put forward in this paper, we employed such a programming model and solved it by
different methods.

Let us consider the second kind of fuzzy rough programming problem, i.e., FRMOP-EVM:

min
t

E[ ˜̄κ2t1 − ˜̄κ1t2]

min
t

E[− ˜̄κ4t1 − ˜̄κ2t2]

subject to:

2t1 + 3t2 ≤ 18

E[2t1 + ˜̄κ3t2] ≤ 10

t1, t2 ≥ 0,

(39)

where ˜̄κ1, ˜̄κ2, ˜̄κ3 and ˜̄κ4 are fuzzy rough variables defined in model (36).
On account of the speciality of this fuzzy rough multi-objective programming problem,

the exact optimal solutions of model (39) can also be gained via related theorems and
formulas, and the solver. Therefore, for a better illustration of the effectiveness of the
new proposed fuzzy rough simulation in dealing with the FRMOP problem, a comparison
between the exact optimal value and simulated optimal value of model (39) is given in the
first solving method.

Example 5. For resolving model (39), the first compromise method illustrated in (23) is adopted
and a new programming model is obtained as below:

min
t

δE[ ˜̄κ2t1 − ˜̄κ1t2] + (1− δ)E[− ˜̄κ4t1 − ˜̄κ2t2]

subject to:

2t1 + 3t2 ≤ 18

E[2t1 + ˜̄κ3t2] ≤ 10

t1, t2 ≥ 0,

(40)

where δ indicates the weight coefficient of the two objectives, and the values of δ are between 0 and 1.
Then, on the basis of Theorem 10 and model (30), the above models are converted to a crisp

equivalent model as follows:

min
t

δ(E[ ˜̄κ2]t1 − E[ ˜̄κ1]t2) + (1− δ)(−E[ ˜̄κ4]t1 − E[ ˜̄κ2]t2)

subject to:

2t1 + 3t2 ≤ 18

2t1 + E[ ˜̄κ3]t2 ≤ 10

t1, t2 ≥ 0.

(41)

Next, the EV E[ ˜̄κr] (r = 1, 2, 3, 4) in model (41) can be computed directly via Definition 8,
then we have the following deterministic model:
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min
t

(7δ− 4)t1 + (δ− 3)t2

subject to:

2t1 + 3t2 ≤ 18

2t1 + t2 ≤ 10

t1, t2 ≥ 0.

(42)

Whereafter, this model can be resolved via the well-developed solver or the classical numerical
methods for an exact value.

For purposes of comparison, in the software MATLAB, taking the parameters M = 1000
and Q = 1000, the simulated results can be obtained through the simulation algorithm
running, as listed in Table 2. With the variation of weight coefficient, the simulated optimal
solutions of t1 and t2, as well as the corresponding values of the first and second objective
functions, i.e., E[ ˜̄κ2t1 − ˜̄κ1t2] and E[− ˜̄κ4t1 − ˜̄κ2t2] are shown in the 2nd–5th rows. Moreover,
the 6th and 7th rows are the weighted sum of simulated objective values and the exact
objective values respectively. For a better comparison, the relative error between them is
offered in the 8th row, which clearly illustrates the effectiveness of the NIAS-FRS technique
in dealing with FRMOP problems. Additionally, the CPU time in the last row indicates the
running efficiency of the NIAS-FRS.

Table 2. Results of the simulation values and exact values for the first compromise model.

Weight Coefficient: δ 0 0.2 0.4 0.6 0.8 1

Optimal solution: t∗1 3.0108 3.0014 0.0000 0.0000 0.0000 0.0000
Optimal solution: t∗2 3.9928 3.9991 6.0000 6.0000 6.0000 6.0000
E1: E[ ˜̄κ2t∗1 − ˜̄κ1t∗2 ] 1.1825 1.1558 −12.0227 −11.7577 −11.8826 −11.9587
E2: E[− ˜̄κ4t∗1 − ˜̄κ2t∗2 ] −24.1820 −23.9437 −17.8993 −18.1397 −18.0652 −17.9578
δE1 + (1− δ)E2 −24.1820 −18.9238 −15.5486 −14.3105 −13.1191 −11.9587
Exact sum of weighted
objective values

−24.0000 −19.0000 −15.6000 −14.4000 −13.2000 −12.0000

Relative error (%) 0.0882 0.1470 0.1338 0.1514 0.1949 0.0807
CPU time (s) 0.4537 0.4536 0.4492 0.4407 0.4686 0.4521

Example 6. According to model (27), the second compromise model is presented as follows:

min
t

√
(E[ ˜̄κ2t1− ˜̄κ1t2]− E∗1 )

2+(E[− ˜̄κ4t1 − ˜̄κ2t2]−E∗2 )
2

subject to:

2t1 + 3t2 ≤ 18

E[2t1 + ˜̄κ3t2] ≤ 10

t1, t2 ≥ 0,

(43)

in which E∗1 and E∗2 represent the optimal values of the first and second objectives. Depending on
the results listed in Table 2, it is easy to know that E∗1 = −12 and E∗2 = −24.

In accordance with Theorem 10 and model (31), the crisp equivalent model is obtained as below:

min
t

√
(E[ ˜̄κ2]t1−E[ ˜̄κ1]t2 + 12)2+(−E[ ˜̄κ4]t1−E[ ˜̄κ2]t2+24)2

subject to:

2t1 + 3t2 ≤ 18

2t1 + E[ ˜̄κ3]t2 ≤ 10

t1, t2 ≥ 0.

(44)
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Next, the value of E[ ˜̄κr] (r = 1, 2, 3, 4) in model (44) can be obtained through the NFRS,
and then a traditional single-objective programming model can be further settled via the well
developed solver. Finally, the optimal solution is:

t∗1 = 0.6067, t∗2 = 5.5955,

whose objective value is 5.6830. Furthermore, we have:

E[ ˜̄κ2t1 − ˜̄κ1t2] = −9.6650,

E[− ˜̄κ4t1 − ˜̄κ2t2] = −18.8188.

Example 7. For solving the FRMOP problem illustrated in (39), the third transformation method
is available, and then a fuzzy rough EV programming problem is obtained as below:

lexmin
t
{d−1 , d−2 }

subject to:

E[ ˜̄κ2t1 − ˜̄κ1t2] + d−1 − d+1 = b1

E[− ˜̄κ4t1 − ˜̄κ2t2] + d−2 − d+2 = b2

2t1 + 3t2 ≤ 18

E[2t1 + ˜̄κ3t2] ≤ 10

t1, t2 ≥ 0

d+r , d−r ≥ 0, r = 1, 2,

(45)

in which d−r and d+r are the negative and positive deviations from the target of goal r (r = 1, 2),
and br (r = 1, 2) is the target value in accordance with goal r. Note that the “lexmin” represents
lexicographically minimizing the objective vector, which reflects the hierarchy of importance among
these incompatible objectives.

Then model (45) can be further transformed into a crisp one in accordance with Theorem 10
and model (32) as: 

lexmin
t
{d−1 , d−2 }

subject to:

E[ ˜̄κ2]t1 − E[ ˜̄κ1]t2 + d−1 − d+1 = b1

−E[ ˜̄κ4]x1 − E[ ˜̄κ2]t2 + d−2 − d+2 = b2

2t1 + 3t2 ≤ 18

2t1 + E[ ˜̄κ3]t2 ≤ 10

t1, t2 ≥ 0

d+r , d−r ≥ 0, r = 1, 2.

(46)

After that, the values of E[ ˜̄κr] (r = 1, 2, 3, 4) can be calculated by the new presented NIAS-
FRS. Assume that the target value of the first goal (i.e., E[ ˜̄κ2t1 − ˜̄κ1t2]) is −8, and the second one
(i.e., E[− ˜̄κ4t1 − ˜̄κ2t2]) is −22. Then solver in Matlab is utilized to obtain the optimal solution:

t∗1 = 0.9549, t∗2 = 5.3634.

This result satisfies the first goal, but it is off by 2.1347 for the second one.

6. Conclusions

It is believed that fuzzy rough SOP and MOP can be applied much more widely in
real-world applications, since single/multiple objectives and fuzzy rough phenomena
extensively appear in all kinds of real-life decision-making problems. Given the practical
needs, this paper introduced two kinds of uncertain programming with fuzzy rough
variables, referred to as FRSOP and FRMOP. For the sake of exploring such fuzzy rough
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programmings more specifically, the general EV models (i.e., FRSOP-EVM and FRMOP-
EVM) are put forward respectively. Based on these two EV models, the convexity theorems
are discussed further, which expands the research on fuzzy rough theory. As for the
solutions to these two types of fuzzy rough mathematical programming problems, a crisp
equivalent model of FRSOP-EVM and three compromise models and their corresponding
crisp equivalent ones of FRMOP-EVM are presented in detail. Particularly, a new fuzzy
rough simulation technique (i.e., NIAS-FRS) for computing the EV is designed, since the
computation may be difficult in some complicated functions. To verify the accuracy and
efficiency of the presented methods, numerical examples are shown at the end. Obviously,
this paper provides an efficient solution method for dealing with the common fuzzy rough
programming problems, which are scant in the existing research.

The main contributions of our work are concluded below: (1) Two kinds of fuzzy rough
programming models are proposed for modeling the single-objective and multi-objective
optimization problems with fuzzy rough parameters, which provide a useful theoretical
framework for dealing with uncertain programming problems in practice; (2) Some crisp
equivalent mathematical programming models of the EV models are put forward, which
can be easily handled through the classical numerical methods or the well developed solver;
(3) For the computation of EVs, a reliable and efficient fuzzy rough simulation is designed,
offering a sufficient tool for dealing with fuzzy rough programming models.

Frankly, the numerical examples given in Section 5 are some simple fuzzy rough
programming models where the objective functions and constraint functions involving
fuzzy rough parameters are linear. Only this kind of problem is taken into account in this
paper owing to its wide applications in actual life. Whereas, considering the generality in
dealing with the complicated problems, combining the fuzzy rough simulation with the
classical mathematical programming methods or the meta-heuristic algorithms is desirable
to be designed in a future study, just as Liu and Liu [38] developed a hybrid intelligent
algorithm to resolve the general fuzzy random programming problem. Furthermore,
given that the fuzzy rough programming studied in this paper is from an EV perspective,
the other research perspectives can be further explored in the future, such as from a chance-
constrained programming view, or a dependent-chance programming view.
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