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1. Introduction

In recent decades, fixed point theory has been extended to numerous abstract spaces,
and it has been successfully applied to the study of a wide range of scientific problems,
bridging the gap between theoretical and practical techniques and even covering extremely
complex computing problems. The study and calculation of solutions to differential equa-
tions, integral equations, dynamical systems, models in economics and related subjects,
game theory, physics, engineering, computer science, and neural networks are all examples
of fixed point theory applications. They are also important tools for researching nonlinear
systems because they give a framework for elevating some basic aspects of linear model
solutions in order to deduce the response of nonlinear systems whose solutions are located
as the fixed points of a specific operator. The most famous and celebrated fixed point
theorem, known as the Banach contraction principle [1], was proved in 1922 by Polish
mathematician Banach. The fundamental Banach contraction principle, which has been
modified and improved in numerous directions, is the core conclusion of metric fixed point
theory (see [2–9]).

On the other hand, Matthews [10] introduced the notion of partial metric space in
1994, which is based on the observation that in a metric type definition, the distance of a
point from itself may not be essentially zero. In doing so, he was essentially motivated by
the study of denotational semantics of data-flow networks. He also proved a Banach-type
fixed point theorem on a complete partial metric space, which is an extended version of the
Banach contraction principle. In the continuation of this generalization, Asadi et al. [11]
gave an idea of M-metric space as a modified version of partial metric space and proved a
fixed point theorem for the same in 2014. Later, Mlaiki et al. [12] generalized M-metric space
as well as b-metric space by introducing Mb-metric space. Özgür et al. [13] generalized
the notion of M-metric space by introducing the notion of Mb-metric space in 2018. In the
recent past (in 2019), Asim et al. [2] extended the class of Mb-metric space by introducing
the class of rectangular Mb-metric space (denoted by Rmb-metric space) and utilized the
same to prove a fixed point theorem.

Turinici [14] first proposed the theory of order-theoretic fixed point outcomes in 1986.
Ran and Reurings [15] produced a new, more natural formulation of the Banach contraction
principle shortly after and used his result to explain the existence and uniqueness of a
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system of linear equation solutions. Nieto and Rodriguez-Lopez [16,17] closely followed
this paper. On such topics, there is currently a great deal of research effort underway, and
one might look to these works (see [18–33]) and the papers cited therein.

Inspired by the foregoing observations, we prove some existence and uniqueness com-
mon fixed point results in Rmb-metric space endowed with an ordered relation. We improve
upon the relatively weaker notions of completeness and continuity. The completeness of X
is merely required on any subspace of X containing f (X).

2. Preliminaries

The following concepts, definitions, and auxiliary results are required in our upcoming
discussions before we can present our results.

In 2012, Asadi et al. [11] introduced the following definition of M-metric space.

Definition 1 ([11]). Let X be a non-empty set. A mapping m : X× X → R+ is called M-metric
if m satisfies the following (for all a, b, c ∈ X):

(1) m(a, a) = m(a, b) = m(b, b) if and only if a = b,
(2) ma,b ≤ m(a, b),
(3) m(a, b) = m(b, a),
(4) (m(a, b)−ma,b) ≤ (m(a, c)−ma,c) + (m(c, b)−mc,b).

Then, the pair (X, m) is said to be an M-metric space, where ma,b = min{m(a, a), m(b, b)}.

After two years, Mlaiki et al. [12] introduced the following definition of Mb-metric space.

Definition 2 ([12]). Let X be a non-empty set. A mapping mb : X×X → R+ is called Mb-metric
with coefficient s ≥ 1, if mb satisfies the following (for all a, b, c ∈ X):

(1) mb(a, a) = mb(a, b) = mb(b, b) if and only if a = b,
(2) mba,b

≤ mb(a, b),
(3) mb(a, b) = mb(b, a),
(4) (mb(a, b)−mba,b

) ≤ s[(mb(a, c)−mba,c) + (mb(c, b)−mbc,b
)]−mb(c, c).

Then, the pair (X, mb) is said to be an Mb-metric space, where mba,b
= min{mb(a, a),

mb(b, b)}.

Özgür et al. [13] introduced the following definition of rectangular M-metric space.

Definition 3 ([13]). Let X be a non-empty set. A mapping mr : X × X → R+ is said to be
a rectangular M-metric if mr satisfies the following (for all a, b ∈ X and all distinct u, v ∈
X \ {a, b},):
(1) mr(a, a) = mr(a, b) = mr(b, b) if and only if a = b,
(2) mra,b ≤ mr(a, b),
(3) mr(a, b) = mr(b, a),
(4) (mr(a, b)−mra,b) ≤ (mr(a, u)−mra,u) + (mr(u, v)−mru,v) + (mr(v, b)−mrv,b).

Then, the pair (X, mr) is said to be a rectangular M-metric space,
where mra,b = min{mr(a, a), mr(b, b)}.

In 2019, Asim et al. [2] proposed the concept of Rmb-metric space as a generalization
of both rectangular M-metric space as well as Mb-metric space.

Definition 4 ([2]). Let X be a non-empty set. A mapping rmb : X × X → R+ is said to be
Mb-metric with coefficient s ≥ 1 if rmb satisfies the following (for all a, b, c ∈ X and all distinct
u, v ∈ X \ {a, b}):
(1rmb)rmb(a, a) = mr(a, b) = rmb(b, b) if and only if a = b,
(2rmb)mrba,b

≤ rmb(a, b),
(3rmb)rmb(a, b) = rmb(b, a),
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(4rmb)(rmb(a, b)− rmba,b
) ≤ s[(rmb(a, u)− rmba,u ) + (rmb(u, v)− rmbu,v ) + (rmb(v, b)− rmbv,b

)]− rmb(u, u)− rmb(v, v).

Then, the pair (X, rmb) is said to be an Rmb-metric space, where rmba,b
= min{rmb(a, a),

rmb(b, b)}.

Remark 1. If ξ(a, b) = s ≥ 1, then (X, rξ) is said to be a rectangular b-metric space.

Now, we adopt an example of an Rmb-metric space.

Example 1. Define rmb : X × X → R+ on X = [0, ∞) with any positive integer p > 1, by (for
all a, b ∈ X):

rmb(a, b) = max{a, b}p + |a− b|p.

Then, (X, rmb) is an Rmb-metric space with coefficient s = 3p−1. By routine calculation, one
can easily check that (X, rmb) is not rectangular M-metric space.

Definition 5. Let (X, rmb) be an Rmb-metric space. A sequence {an} ⊆ X is considered to be
convergent to a ∈ X if and only if

lim
n→∞

(rmb(an, a)−mrban ,a) = 0.

Definition 6. Let (X, rmb) be an Rmb-metric space. A sequence {an} in (X, rmb) is considered to
be Cauchy if and only if

lim
n,m→∞

(rmb(an, am)−mrban ,am
) and lim

n,m→∞
(Mrban ,am

−mrban ,am
)

exist and are finite.

Definition 7. An Rmb-metric space (X, rmb) is considered to be complete if and only if every
Cauchy in (X, rmb) is convergent to a point in (X, rmb).

Let ( f , g) denote a pair of self-mappings defined on an X( 6= ∅) such that f a = ga = a∗

for a, a∗ ∈ X. Then, the point a is called the coincidence point, a∗ is called the point of
coincidence, and if a = a∗, then a is said to be a common fixed point of ( f , g). A binary op-
eration ‘ �’ on X is said to be partial ordered if it is reflexive, antisymmetric, and transitive.
We say ‘a’ is related to ‘b’ if a � b (or b � a). An ordered set is defined as X( 6= ∅) plus ‘ �’
and is typically expressed by (X,�). The triplet (X, d,�) is said to be a partial ordered
metric space or ordered metric space if (X,�) is an ordered set and (X, d) is a metric space.
Throughout the paper, the symbols ↑, ↓, and ↑↓ represent increasing, decreasing, and
monotonic sequences, respectively.

The following definition is a generalized form of the definition defined in [27].

Definition 8. If (X, rmb) is an Rmb-metric space and (X,�) is an ordered set, the triple (X, rmb,�)
is termed an ordered Rmb- metric space. Moreover, if either a � b or b � a, two elements a, b ∈ X
are said to be comparable. We abbreviate this as a ≺� b. for clarity.

Definition 9 ([22]). Let ( f , g) be self-mappings on an ordered set (X,�).
(1) f considered to be g-increasing if ga � gb⇒ f a � f b, for all a, b ∈ X,
(2) f considered to be g-decreasing if ga � gb⇒ f a � f b, for all a, b ∈ X,
(3) If f is either g-increasing or g-decreasing, f considered to be g-monotone.

The following definitions (Definition 10 and Definition 11) improve the definitions
presented in [21].

Definition 10 ([21]). Let ( f , g) be self-mappings on (X, rmb,�) and a ∈ X. Then, f is called
(g,O)- continuous (or (g,O)-continuous or (g,O)-continuous) at a ∈ X if f an

rmb−→ f a, for every
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sequence {an} ⊂ X with gan ↑ ga (or gan ↓ ga or gan ↑↓ ga). Moreover, f is called (g,O)-
continuous (or (g,O)-continuous or (g,O)-continuous) if f an

rmb−→ f a, for every sequence {an} ⊂ X
with gan ↑ ga (or gan ↓ ga or gan ↑↓ ga) at every point of X.

Remark 2. In an ordered Rmb-metric space, continuity⇒ (g,O)-continuity⇒ (g,O)-continuity
as well as (g,O)-continuity.

Observe that on setting g = IX, the Definition 10 reduces to the O-continuous (resp.
O-continuous, O-continuous).

Definition 11. The ordered Rmb-metric space (X, rmb,�) stands for O-complete (or O-complete
or O-complete) if every increasing (or decreasing or monotone) Cauchy sequence in X converges to
a point of X.

Remark 3. From the above definition, it is clear that completeness implies O-completeness, which
implies O-completeness (together with O-completeness).

The following definitions are a modified version of [21,34,35], respectively.

Definition 12. Let ( f , g) be self-mappings on (X, rmb,�).
(i) The pair ( f , g) is said to be compatible if for a sequence {an} ⊆ X with lim

n→∞
gan = lim

n→∞
f an

implies lim
n→∞

rmb(g( f an), f (gan)) = 0.

(ii) The pair ( f , g) is said to be O-compatible (resp. O-compatible, O-compatible) if for a sequence
{an} ⊆ X with {gan} and { f an} are increasing (resp. decreasing, monotone) sequences such
that lim

n→∞
gan = lim

n→∞
f an implies lim

n→∞
rmb(g( f an), f (gan)) = 0.

(iii) The pair ( f , g) is said to be weakly compatible if f a = ga for a in X.

Remark 4. In (X, rmb,�), compatibility implies O-compatibility, which implies O-compatibility
(together with O-compatibility), which also implies weak compatibility.

Now, we define the generalized definition due to [20].

Definition 13. The ordered Rmb-metric space (X, rmb,�) is said to have the g-ICU property if the
g-image of every increasing convergent sequence {an} ⊆ X is bounded above by the g-image of its
limit (as an upper bound); that is,

an ↑ a ⇒ g(an) � g(a) ∀ n ∈ N0.

Observe that on setting g = IX , Definition 13 is reduced to the ICU property and still
remains a sharpened version of [21].

Definition 14. Let ( f , g) be self-mappings (X, rmb,�).
(i) (X, drmb,�) is considered to have the g-ICC property if every g-increasing convergent se-

quence {an} ⊆ X has a subsequence {ank} such that the g-image of every element of {ank} is
comparable with the limit of {an}.

an ↑ a ⇒ ∃ {ank} of {an} with gank ≺� ga ∀ k ∈ N0,

(ii) (X, rmb,�) is considered to have the g-DCC property if every g-decreasing convergent se-
quence {an} ⊆ X has a subsequence {ank} such that the g-image of every element of {ank} is
comparable with the limit of {an}; that is,

an ↓ a ⇒ ∃ {ank} of {an} with gank ≺� ga ∀ k ∈ N0,
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(iii) (X, rmb,�) is said to have a g-monotone-convergence-comparable (in short g-MCC) property
if every g-monotone convergent sequence {an} in X has a subsequence {ank} such that the
g-image of every term of {ank} is comparable with the limit of {an}, i.e.,

an ↑↓ a ⇒ ∃ {ank} of {an} with gank ≺� ga ∀ k ∈ N0.

On setting g = IX, Definition 14 (i) (or (ii) or (iii)) reduces to the ICC (or DCC or MCC)
property. Moreover, ICC (resp. DCC or MCC) is weaker then ICU (resp. DCL or MCB).
Further, Definition 14 (i) is relatively weaker than the notion described in Definition 13.

Definition 15 ([25]). Let (X,�) be an ordered, Y ⊆ X and g a self-mapping on X. Then Y is said
to be g-directed if for every pair a, b ∈ Y, there exists c ∈ X with a ≺� gc and b ≺� gc.

Lemma 1 ([20]). Let ( f , g) be a pair of weakly compatible self-mappings defined on X( 6= ∅). Then,
every point of coincidence of the pair ( f , g) remains a coincidence point.

Lemma 2 ([36]). Suppose a sequence {an} in (X, rmb,�) such that lim
n→∞

rmb(an, an+1) = 0. If

the sequence {an} is not a Cauchy, then ∃ ε > 0, and {ank} and {amk} of {an} such that

(1) nk > mk > k,
(2) rmb(amk , ank ) ≥ ε,
(3) rmb(amk , ank−1) < ε,
(4) The sequences rmb(amk , ank ), rmb(amk+1, ank ), rmb(amk , ank+1), rmb(amk+1, ank+1) tend to ε

when k→ ∞.

The aim of this article is to prove common fixed point results for a pair of self-mappings
satisfying ordered–theoretic contraction in the framework of Rmb-metric space. In doing so,
we improve Theorem 3.2 from Asim el al. [2] in the following four-respects:

(i) The self-mapping is replaced by a pair of self-mappings to prove unique common
fixed point results instead of fixed point results,

(ii) The weaker contraction is utilized—that is, ordered-theoretic contraction,
(iii) Relatively weaker notions of completeness and continuity are utilized,
(iv) The completeness of X is merely required on any subspace Y of X containing f (X).

3. Main Results

Now, we state and prove our main results as follows:

Theorem 1. Let (X, rmb,�) be an ordered Rmb-metric space with s ≥ 1 and Y an O-complete
subspace of X and f , g : X → X such that f is a g-increasing. Suppose the following conditions hold:

(i) ∃ a0 ∈ X with ga0 � f a0,
(ii) For all a, b ∈ X such that ga � gb, there exists λ ∈ [0, 1

s ) such that

rmb( f a, f b) ≤ λrmb(ga, gb) ∀ a, b ∈ X. (1)

(iii) f (X) ⊆ Y ⊆ g(X),
(iv) Either

(a) f is (g, O)-continuous or
(b) (Y, rmb,�) enjoys the g-ICC-property.

In these conditions, the pair ( f , g) has a coincidence point.

Proof. Choose a point a0 ∈ X such that ga0 � f a0. Since the mapping f is g-increasing and
f (X) ⊆ g(X), we can define increasing sequences {gan} and { f an} in Y such that for all
n ∈ N0

gan+1 = f an. (2)
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Notice that, the sequences {gan} and { f an} are in Y. If rmb(gan, gan+1) = 0 for some
n ∈ N0, then an is a coincidence point, which concludes the proof.

Henceforth, we assume that rmb(gan, gan+1) > 0 for all n ∈ N0. Now, we have to show
that lim

n→∞
rmb(gan−1, gan) = 0. By putting a = an and b = an−1 in condition (1), we get

rmb(gan+1, gan)) = rmb( f an, f an−1))

≤ λrmb(gan, gan−1)), (3)

for all n ∈ N0. Therefore, {rmb(gan−1, gan)} is a decreasing sequence of non-negative real
numbers so that

lim
n→∞

rmb(gan−1, gan) = α ≥ 0.

By taking the superior limit as n→ ∞ in inequality (3), we have

lim
n→∞

rmb(gan, gan+1) ≤ λ lim
n→∞

rmb(gan−1, gan)

which implies that α ≤ λα, a contraction unless α = 0, so that

lim
n→∞

rmb(gan, gan+1) = 0.

Similarly, from condition (1), we get

rmb(gan, gan) = rmb( f an−1, f an−1) ≤ λrmb(gan−1, gan−1) ≤ · · · ≤ λn−1rmb(ga0, ga0).

By taking the limit as n→ ∞, we get

lim
n→∞

rmb(gan, gan) = 0. (4)

Firstly, we show that an 6= am for any n 6= m. On the contrary, if an = am for some
n > m, then we have an+1 = f an = f am = am+1. On using (1) with a = am and b = am+1,
we have

rmb(am, am+1) = rmb(an, an+1) < rmb(an−1, an) < · · · < rmb(am, am+1),

which is a contradiction. This in turn shows that an 6= am for all n 6= m.
Now, we assert that {gan} is Cauchy sequence. In doing so, we distinguish two cases.
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Case 1. Firstly, let p be odd, that is, p = 2m + 1 for any m ≥ 1. Now, using (4rmb) for
any n ∈ N, we have(

rmb(gan, gan+p)− rmbgan ,gan+p

)
≤ s

[(
rmb(gan, gan+1)− rmbgan ,gan+1

)
+
(

rmb(gan+1, gan+2)− rmbgan+1,gan+2

)
+
(

rmb(gan+2, gan+p)− rmbgan+2,gan+p

)]
−rmb(gan+1, gan+1)− rmb(gan+2, gan+2)

≤ s[rmb(gan, gan+1) + rmb(gan+1, gan+2)

+rmb(gan+2, gan+p)]− rmb(gan+1, gan+1)

−rmb(gan+2, gan+2)

≤ s[λnrmb(ga0, ga1) + λn+1rmb(ga0, ga1)]

+srmb(gan+2, gan+2m+1)

−λn+1rmb(ga0, ga0)− λn+2rmb(ga0, ga0)

= s(λn + λn+1)rmb(ga0, ga1) + srmb(gan+2, gan+2m+1)

−(λn+1 + λn+2)rmb(ga0, ga0)

≤ s(λn + λn+1)rmb(ga0, ga1) + s2(λn+2 +

λn+3)rmb(ga0, ga1) + · · ·+ sm(λn+2m−2 +

λn+2m−1)rmb(ga0, ga1) + smλn+2mrmb(ga0, ga1)

−(λn+1 + λn+2 + λn+3 + · · · )rmb(ga0, ga0)

=
(
sλn(1 + sλ2 + s2λ4 + · · · ) + sλn+1(1 + sλ2 +

s2λ4 + · · · )
)
rmb(ga0, ga1)

=
1 + λ

1− sλ2 sλnrmb(ga0, ga1)−
λn+1

1− λ
rmb(ga0, ga0),

yielding thereby

rmb(gan, gan+2m+1)− rmbgan ,gan+2m+1
≤ 1 + λ

1− sλ2 sλnrmb(ga0, ga1)−
λn+1

1− λ
rmb(ga0, ga0). (5)

Letting n→ ∞ in (5), we conclude that

lim
n,m→∞

rmb(gan, gan+2m+1)− rmbgan ,gan+2m+1
= 0.
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Case 2. Secondly, assume that p is even, that is, p = 2m for any m ≥ 1. Then,(
rmb(gan, gan+p)− rmbgan ,gan+p

)
≤ s

[(
rmb(gan, gan+1)− rmbgan ,gan+1

)
+
(

rmb(gan+1, gan+2)− rmbgan+1,gan+2

)
+
(

rmb(gan+2, gan+p)− rmbgan+2,gan+p

)]
−rmb(gan+1, gan+1)− rmb(gan+2, gan+2)

≤ s[rmb(gan, gan+1) + rmb(gan+1, gan+2)

+rmb(gan+2, gan+p)]− rmb(gan+1, gan+1)

−rmb(gan+2, gan+2)

≤ s[λnrmb(ga0, ga1) + λn+1rmb(ga0, ga1)]

+srmb(gan+2, gan+2m)− λn+1rmb(ga0, ga0)

−λn+2rmb(ga0, ga0)

= s(λn + λn+1)rmb(ga0, ga1) + srmb(gan+2, gan+2m)

−(λn+1 + λn+2)rmb(ga0, ga0)

≤ s(λn + λn+1)rmb(ga0, ga1) + s2(λn+2 +

λn+3)rmb(ga0, ga1) + · · ·+ sm−1(λn+2m−4 +

λn+2m−3)rmb(ga0, ga1) + sm−1λn+2m−2rmb(ga0, ga2)

+sm−1λn+2m−2rmb(ga0, ga2)

−(λn+1 + λn+2 + λn+3 + · · · )rmb(ga0, ga0)

=
(
sλn(1 + sλ2 + s2λ4 + · · · )
+sλn+1(1 + sλ2 + s2λ4 + · · · )

)
rmb(ga0, ga1)

=
1 + λ

1− sλ2 sλnrξ(ga0, ga1) + sm−1λn+2m−2rmb(ga0, ga2)

− λn+1

1− λ
rmb(ga0, ga0),

so that

rmb(gan, gan+2m)− rmbgan ,gan+2m
≤ 1 + λ

1− sλ2 sλnrmb(ga0, ga1) + sm−1λn+2m−2rmb(ga0, ga2)

− λn+1

1− λ
rmb(ga0, ga0). (6)

Taking the limit as n→ ∞ in the inequality (6), we conclude that

lim
n,m→∞

rmb(gan, gan+2m)− rmbgan ,gan+2m
= 0.

Therefore, in both the cases, we have

lim
n,m→∞

(rmb(gan, gam)−mrbgan ,gam
) = 0.

On the other hand, without loss of generality, we may assume that

Mrbgan ,gam
= rmb(gan, gan).
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Hence, we obtain

Mrbgan ,gam
−mrbgan ,gam

≤ Mrbgan ,gam

= rmb(gan, gan)

≤ λnrmb(ga0, ga0).

Taking the limit of the above inequality as n→ ∞, we deduce that

lim
n,m→∞

(Mrbgan ,gam
−mrbgan ,gam

) = 0.

Therefore, the sequence, {gan} is Cauchy in Y. Since Y is O-complete, then there exists
some a ∈ Y such that

gan ↑ a. (7)

Owing to condition (1), there exists some z ∈ X such that a = gc, meaning that

gan ↑ gc. (8)

We can now show that z is a coincidence point of the pair ( f , g) by using the condition
(iv). Consider f to be (g, O)-continuous. We find this as a result of condition (8), in which
we have f an → f c, which (as a result of (2)) gives rise to gc = f c.

Alternately, assume that (Y, d,�) has the g-ICC-property. Then, there exists a subse-
quence {ank} of {an} such that gank � gc, ∀ k ∈ N. On setting a = ank , b = c in (1), we
have (for all k ∈ N0)

rmb(gank+1, f c) = rmb( f ank , f c) ≤ λrmb(gank , gc)), (9)

On using Equations (2) and (8) and taking the superior limit in (9) as k→ ∞, we have

rmb(gc, f c) ≤ λrmb(gc, gc),

which is a contradiction unless gc = f c. This concludes the proof.

By setting Y = g(X) in Theorem 1, we deduce a new result for the ordered–theoretic
coincidence point.

Corollary 1. Let (X, d,�) be an ordered Rmb-metric space and f , g : X → X such that f is a
g-increasing. Suppose the following conditions hold:

(i) There exists an a0 ∈ X such that ga0 � f a0,
(ii) For all a, b ∈ X such that ga � gb, there exists λ ∈ [0, 1

s ) such that

rmb( f a, f b) ≤ λrmb(ga, gb) ∀ a, b ∈ X.

(iii) f (X) ⊆ g(X),
(iv) Either

(a) f is (g, O)-continuous or
(b) g(X) is complete and enjoys the ICC-property.

Then, the pair ( f , g) has a coincidence point.

Choosing g = IX (where IX is an identity mapping) in the Theorem 1, we deduce the
generalized version of the Theorem 3.2 due to Asim el al. [2].

Corollary 2. Let (X, rmb,�) be an ordered complete Rmb-metric space with s ≥ 1 and f : X → X
such that f is increasing. Suppose the following conditions hold:

(1) There exists an a0 ∈ X such that a0 � f a0,
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(2) For all a, b ∈ X such that a � b, there exists λ ∈ [0, 1
s ) such that

rmb( f a, f b) ≤ λrmb(a, b) ∀ a, b ∈ X.

(3) Either

(a) f is O-continuous or
(b) (Y, rmb,�) enjoys the ICC-property.

Then, f has a fixed point.

Example 2. Consider X = (−1, 0]. Define rmb : X× X → R+ by (for all a, b ∈ X):

rmb(a, b) = max{a, b}2 + |a− b|2.

Note that every increasing Cauchy sequence is convergent in X. Therefore, (X, rmb,�) is an
O-complete Rmb-metric space with coefficient s = 3.

Now, we define an ordered relation on X:

a, b ∈ X, a � b⇔ a = b or
(

a, b ∈ {0} ∪
{
−1
n

: n = 2, 3, · · ·
}

and a ≤ b
)

,

where ≤ is the usual order. Define the mappings f , g : X → X as follows:

f a =


0, if a = 0
−1
4n , if a = −1/n, n = 2, 3, · · ·
−0.5, otherwise

ga =


0, if a = 0
−1
2n , if a = −1/n, n = 2, 3, · · ·
−0.5, otherwise

.

Observe that f is g-increasing and X has the g-ICC-property.
We distinguish two cases:
Case 1. Taking a = 1/n, (wherein n = 3, 4, · · · ) and b = 0. Then, from (1), we have

rmb( f a, f b) = max
{
−1
4n

, 0
}2

+

∣∣∣∣−1
4n
− 0
∣∣∣∣2

=
1
4

{
max

{
−1
2n

, 0
}2

+

∣∣∣∣−1
2n
− 0
∣∣∣∣2
}

=
1
4

rmb(ga, gb)

Case 2. Taking a = 1/n, b = 1/m m > n ≥ 3. Then, we have

rmb( f a, f b) = max
{
−1
4n

,
−1
4m

}2
+

∣∣∣∣−1
4n
− −1

4m

∣∣∣∣2
=

1
4

{
max

{
−1
2n

,
−1
2m

}2
+

∣∣∣∣−1
2n
− −1

2m

∣∣∣∣2
}

=
1
4

rmb(ga, gb)

If a = b, then condition (1) holds trivially. Thus, all the conditions of Theorems 1 are satisfied,
and also the pair ( f , g) has a unique common fixed point (namely a = 0).

Now, one can conclude that the present example is not applicable for the fixed point results of
Asim et al. [2], as the space (X, rmb,�) is not complete but O-complete Rmb-metric space. Moreover,
it is easy to check that the contraction condition used in [2] does not hold for any λ ∈ [0, 1

s ).

Now, we prove the result for a unique point of coincidence as follows:
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Theorem 2. In Theorem 1, if we consider that f (X) is g-directed, then ( f , g) has a unique point
of coincidence.

Proof. Suppose that the mapping f has two coincidence points, say a and b, i.e., f a = ga
and f b = gb. We have shown that ga = gb. Since f (X) is g-directed, there exists c ∈ X such
that gc is comparable to both f a and f b. Now, we assume that f a � gc and f b � gc.
Set c = c0. Since f (X) ⊆ g(X), one can define a sequence cn ⊂ X such that

gcn+1 = f cn and ga � gcn for all n ∈ N.

Using condition (1), we have (for all n ∈ N)

rmb(ga, gcn+1) = rmb( f a, f cn) ≤ λrmb(ga, gcn) < rmb(ga, gcn) (10)

Now, {rmb(ga, gcn)} is a decreasing sequence of non-negative real numbers. On the
contrary, assume that there exists r ≥ 0 such that

lim
n→∞

rmb(ga, gcn) = r.

Again, by employing the contraction condition (1), we obtain

lim
n→∞

rmb(ga, gcn) = lim
n→∞

λnrmb(ga, gc) = 0. (11)

Similarly, it is possible to demonstrate that

lim
n→∞

rmb(gb, gcn) = 0. (12)

On using Equations (11) and (12), we have

rmb(ga, gb) ≤ s[rmb(ga, gcn) + rmb(gcn, gcn+1) + rmb(gcn+1, gb)

−rmb(gcn, gcn)− rmb(gcn+1, gcn+1)

Limiting as n → ∞, we get ga = gb. Hence, the pair ( f , g) has a unique point
of coincidence.

Theorem 3. In Theorem 2, if we consider that the pair ( f , g) is weakly compatible, then ( f , g) has
a unique common fixed point.

Proof. Allow a ∈ X to be an arbitrary coincidence point of the pair ( f , g). There is a
unique point of coincidence a∗ ∈ X, for example, such that f a = ga = a∗ according to
Theorem 2. As per Lemma 1, a∗ is a coincidence point, i.e., f a∗ = ga∗. Theorem 2 provides
f a∗ = ga∗ = a∗, i.e., a∗ is a unique common fixed point of f and g.

Theorem 4. If we replace the conditions O-complete, (g, O)-continuous, and g-ICC with O-
complete (or O-complete), (g, O)-continuous (or (g, O)-continuous), and g-DCC (or g-MCC) and
the property ga0 � f a0 is followed by ga0 � f a0 (or ga0 ≺� f a0), then the results of Theorems 1–3
remain true.

4. Conclusions

This paper consists of ordered–theoretic coincidence point results, point of coinci-
dence results, and common fixed point results in the framework of rectangular Mb-metric
spaces endowed with an ordered relation. Some corollaries are also deduced from the
existing literature. An example is also constructed to demonstrate the utility of one of the
main results.
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